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Abstract

In this article binary state space mixed models (BSSMM) using a flexible skewed inverse link function

based on the generalized extreme value (GEV) distribution introduced by (Abanto-Valle et al., 2015) are

revisited. Commonly used probit, cloglog and loglog links are prone to link misspecification because of

their fixed skewness. The GEV inverse link is flexible to fit the skewness in the response curve with a

extra free shape parameter. Bayesian estimation of the parameters of BSSMM in general, and BSSMM

with GEV inverse link (BSSMM-GEV) in particular, is usually regarded as challenging, since the likelihood

function is a high-dimensional multiple integral. We apply a novel approach to make Bayesian inference

in BSSMM-GEV feasible. First, we approximate the likelihood function by integrating out the latent states

by using hidden Markov model (HMM) machinery to evaluate an arbitrarily accurate approximation of the

likelihood function. Second, we get the posterior mode by using a numerical optimization routine, and third,

we use importance sampling to sample from the posterior distribution of the parameters using a multivariate

normal distribution with mean and variance given by the posterior mode and the inverse of the Hessian

matrix evaluated at the posterior mode. However, the HMM approximation leads to a simple formula for

decoding, i.e., estimating the latent process. The proposed methods are illustrated with a real dataset and

the results showed that the BSSMM-GEV fits better than the traditional probit, cloglog and loglog inverse

links.
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1 Introduction

Binary response data with two possible outcomes are often encountered in statistical modeling. Time series

of binary responses may adequately be described by generalized linear models (McCullagh and Nelder, 1989).

However, these might not be adequate if the observations are correlated over time. To address the serial correla-

tion that might be present, West et al. (1985) used generalized linear state space models in a conjugate Bayesian

setup. Further studies of this topic have been conducted by Fahrmeir (1992), Song (2000), Carlin and Polson

(1992), Czado and Song (2008), Abanto-Valle and Dey (2014) and Abanto-Valle et al. (2015), among others.

Consider a binary time series {Yt , t = 1, . . . ,T}, taking the values 0 or 1 with probability of success given

by πt and which is related with a time-varying covariate vector xt = (xt1, . . . ,xtk)
⊤ and a q− dimensional latent

state variable θ t . We consider a generalized linear state space model framework for binary responses in the

following way

Yt ∼ Ber(πt) t = 1, . . . ,T, (1)

πt = F(x′tβ +S′
tθ t), (2)

θ t = Gtθ t +η t η t ∼ Nq(0,Wt). (3)

In the above setup the observed process {Yt} is described by equations (1)-(2), where πt =P(Yt = 1 | θ t ,xt ,St) is

the conditional probability of success, St is a q− dimensional vector, β is a k− dimensional vector of regression

coefficients, and xt = (xt1, . . . ,xtk)
′ is a k×1 vector of covariates. The system process is defined as a first-order

Markov process in Equation (3), where Gt is the q× q transition matrix, Wt is the covariance matrix of error

terms ηt , Ber(.) and Nq(., .) indicate the Bernoulli and q−dimensional normal distributions respectively. In

the terminology of generalized linear models (McCullagh and Nelder, 1989), F is the inverse link function. For

ease of exposition, we refer to F as the link function in this article.

A critical issue in modeling binary response data is the choice of the links. In the context of binary regres-

sion, logit and probit links are two widely used symmetric link functions (see, for instance, Albert and Chib,

1993; Basu and Mukhopadhyay, 2000a,b). However, as Chen and Shao (1999) argued, when the latent proba-

bility of a given binary response approaches 0 at a different rate than it approaches 1, symmetric link functions

may not be adequate to fit binary data, potentially causing substantial bias in the mean response estimates

(Czado and Santner, 1992). To deal with this problem some asymmetric links have been proposed in the liter-

ature. Two of the commonly adopted asymmetric link functions are the complementary loglog (cloglog) and

the loglog. However, these two links have fixed skewness and lack flexibility, not allowing knowing how much
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skewness is incorporated.

Considerable research have been conducted trying to introduce flexibility of skewness as well as tail behav-

ior into the link functions. For example, Stukel (1988) proposed a two-parameter class of generalized logistic

models, Kim et al. (2007) used the skewed generalized t-link, and Bazán et al. (2010) adopted the skewed pro-

bit links and some variants with different parameterizations. Wang and Dey (2010), Wang and Dey (2011) and

Jiang et al. (2013) introduced the flexible class of link functions as an appropriate model for binary cross sec-

tional data. Among them, the GEV link is very flexible because of a free shape parameter, providing great

flexibility in fitting a wide range of skewness values in the response curve.

On the other hand, state-space models for binary responses were used by Carlin and Polson (1992) and

Song (2000) without including covariates. Czado and Song (2008) introduced covariates for binary state-

space models with probit link and called the resulting class the binary state-space mixed models (BSSMM).

Abanto-Valle and Dey (2014) extended the BSSMM to scale mixture of normal links and developed an ad-

hoc MCMC method to sample from the posterior distribution of parameter and latent states. More recently,

Abanto-Valle et al. (2015) introduced the BSSMM-GEV by using the Just Another Gibbs Sampler (JAGS) in

the R package for the estimation procedure. However, the resulting MCMC algorithm has some undesirable

features. In particular, the procedure is quite involved, requiring a large number of computer-intensive simula-

tions. In addition, the computational cost increases rapidly with the sample size.

In this paper, we compare the BSSMM by assuming three standard link functions and the GEV link. We

consider the logit, cloglog, loglog and and gev links. We call the corresponding binary state space mixed

model as BSSMM-PROBIT, BSSMM-CLOGLOG, BSSMM-LOGLOG and BSSMM–GEV. We also, apply an

alternative Bayesian estimation method to the BSSMM class of models. First, we approximate the likelihood

function by integrating out the latent states, as suggested by Langrock (2011) and Langrock et al. (2012). Sec-

ond, we get the maximum a posteriori by using a numerical optimization routine, and third, we use importance

sampling to sample from the posterior distribution of the parameters using a multivariate normal distribution

with mean and variance given by the maximum a posteriori and the inverse of the Hessian matrix, evaluated at

the maximum a posteriori, respectively.

The remainder of this paper is organized as follows. Section 2 gives a brief review about the GEV dis-

tribution. Section 3 outlines the setup of the BSSMM models for the three flexible link functions as well as

the likelihood approximation and evaluation procedure using HMM methods and the Bayesian approach for

parameter estimation. Section 4 shows two criteria for model comparison. Section 5 is devoted to the appli-
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cation and model comparison of all the six models using a real dataset. Finally, some concluding remarks and

suggestions for future developments are given in Section 6.
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Figure 1: Left: pdf plot of GEV distribution. Right: cdf plot of GEV distribution. Solid line (ξ = 0), dashed

line (ξ = 0.6), and dotted line (ξ =−0.6).

2 Generalized extreme value link

The GEV link models are based on the Generalized Extreme Value (GEV) distribution, which is given by

G(x) = exp

[
−

{
1+ξ

x−µ

σ

}− 1
ξ

+

]
, (4)

where µ ∈ R is the location parameter, σ ∈ R+ is the scale parameter, ξ ∈ R is the shape parameter and x+ =

max(x,0). The distribution in Model (4) is called the GEV distribution. Its importance as a link function arises
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from the fact that the shape parameter ξ purely controls the tail behavior of the distribution (Wang and Dey,

2010, 2011). Figure 1 provides a comparison of pdf and cdf plots of the GEV class with different ξ to show the

flexibility of such distributions. By looking at the cdf plot it is obvious that as the values of the shape parameter

change, so do the approach rates to 1 and 0.

Since the usual definition of skewness, µ3 = {E(X −µ)3}{E(X −µ)}−
3
2 , does not exist for large positive

values of X’s in the GEV model, Wang and Dey (2010) and Wang and Dey (2011) extended the skewness

measure of Arnold and Groeneveld (1995) to the GEV distribution in terms of its mode. Wang and Dey (2010)

and Wang and Dey (2011) showed that, based on this skewness definition, the GEV distribution is negatively

skewed for X <−0.307 and positively skewed for X >−0.307.

3 Binary response state-space mixed models with GEV link

3.1 Model setup

Let Y1:T = (Y1, . . . ,YT )
′, where Yt , t = 1, . . . ,T , denote T independent binary random variables. Suppose xt is a

k×1 vector of covariates. We assume that

Yt ∼ Ber(πt) t = 1, . . . ,T (5)

πt = P(Yt = 1 | θt ,xt ,β ) = F(x′tβ +θt) (6)

θt = φθt−1 + τηt . (7)

In the GEV case, F(x) = 1−G(−x), where G(x) represents the cdf at x for the GEV distribution with µ = 0

and σ = 1 and unknown shape parameter ξ . Notice that the GEV link specified here is the mirror reflection

ofthe GEV distribution described in Section 2, so is positively skewed for ξ < −0.307 and negatively skewed

for ξ > −0.307. Also, when ξ = 0, the GEV model reduces to CLOGLOG model. We assume that ηt are

independent and normally distributed with mean zero and unit variance, | φ |< 1, i.e., the latent state process is

stationary and θ1 ∼ N (0, τ2

1−δ 2 ). Clearly θt represents a time-specific effect on the observed process.

3.2 Likelihood evaluation by iterated numerical integration

To formulate the likelihood in the BSSMM-GEV, we require the conditional distributions of the random vari-

ables yt , given θt (t = 1, . . . ,T ), and of the random variables θt , given θt−1 (t = 2, . . . ,T ). We denote these by

5



p(yt | θt) and p(θt | θt−1), respectively. The likelihood of the model defined by equations (5) , (6) and (7) can

then be derived as

L =
∫

. . .
∫

p(y1, . . . ,yT ,θ1, . . . ,θT )dθT . . .dθ1

=
∫

. . .
∫

p(y1, . . . ,yT | θ1, . . . ,θT )

× p(θ1, . . . ,θT )dθT . . .dθ1

=
∫

. . .
∫

p(θ1)p(y1 | θ1)

×
T

∏
t=2

[
p(yt | θt)p(θt | θt−1)

]
dθT . . .dθ1. (8)

Hence, the likelihood is a higher-order multiple integral that cannot be evaluated analytically. Through numer-

ical integration, using a simple rectangular rule based on m equidistant intervals, Bi = (bi−1,bi), i = 1, . . . ,m,

with midpoints b∗i and length b, the likelihood can be approximated as follows:

L ≈ bT
m

∑
i1=1

. . .
m

∑
iT=1

p(θ1 = b∗i1)p(y1 | θ1 = b∗i1)

×
T

∏
t=2

p(θt = b∗it | θt−1 = b∗it−1
)p(yt | θt = b∗it )

= Lapprox . (9)

This approximation can be made arbitrarily accurate by increasing m, provided that the interval (b0,bm) covers

the essential range of the latent process. We note that this simple midpoint quadrature is by no means the only

way in which the integral can be approximated (cf. Langrock, 2011).

3.3 Fast evaluation of the approximate likelihood using HMM techniques

The approximate likelihood, in the form given in (9), can be evaluated numerically, but the evaluation will

usually be computationally intractable since it involves mT summands. However, instead of the brute force

summation in (9), an efficient recursive scheme can be used to evaluate the approximate likelihood. To see

this, we note that the numerical integration essentially corresponds to a discretization of the state space, i.e., the

support of the latent process θt . Therefore, the approximate likelihood given in (9) can be evaluated using the

well-established tools for HMMs, which are models that have exactly the same dependence structure, but with

a finite and hence discrete state space (cf. Langrock, 2011; Langrock et al., 2012). In the given scenario, the

discrete states correspond to the intervals Bi, i = 1, . . . ,m, in which the state space has been partitioned. A key
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property of HMM, which we exploit here, is that the likelihood can be evaluated efficiently using the so-called

forward algorithm, a recursive scheme which iteratively moves forward along the time series, updating the

likelihood and the state probabilities in each step (Zucchini et al., 2016). For an HMM, applying the forward

algorithm results in a convenient closed-form matrix product expression for the likelihood, and this is exactly

what is obtained also for the BSSMM with GEV link:

Lapprox = δP(y1)ΓP(y2)ΓP(y3) · · ·ΓP(yT−1)ΓP(yT )1
⊤ . (10)

Here, the m×m-matrix Γ =
(
γi j

)
is the analogue to the transition probability matrix in case of an HMM,

defined by γi j = p(θt = b∗j | θt−1 = b∗i ) · b, which is an approximation of the probability of the latent process

changing from some other value in the interval Bi to some value in the interval B j, this conditional probability

is determined by Eq. (7). The vector δ is the analogue to the Markov chain’s initial distribution in case of an

HMM, here defined such that δi is the density of the N (0, τ2

1−φ 2 )-distribution — the stationary distribution of

the latent process — multiplied by b. Furthermore, P(yt) is an m×m diagonal matrix with the ith diagonal

entry p(yt | θt = b∗i ), so it is the analogue to the matrix comprising the state-dependent probabilities in case of

an HMM. This conditional probability is determined by Eq. (5). Finally, 1⊤ is a column vector of ones. Using

the matrix product expression given in (10), the computational effort required to evaluate the approximate

likelihood is linear in the number of observations, T , and quadratic in the number of intervals used in the

discretization, m.

In practice, this means that the likelihood can typically be calculated in a fraction of a second, even for T

in the thousands and say m = 100, a value which renders the approximation virtually exact. Furthermore, the

approximation can be made arbitrarily accurate by increasing m (and potentially widening the interval [b0,bm]).

It should be noted here that, although we are using the HMM forward algorithm to evaluate the (approx-

imate) likelihood, the specifications of δ , Γ and P(yt) given above do not exactly define an HMM, since in

general the row sums of Γ will only approximately equal one, and the components of the vector δ will only

approximately sum to one. If desired, this can be remedied by scaling each row of Γ and the vector δ to total 1.

3.4 Bayesian inference for BSSMM with GEV link

Because we have some constraint in the original parametric space (β ∈ R
p,{|φ | < 1,τ > 0, | ξ |< 0.6}) of the

BSSMM-GEV, we consider transformations for the common parameters, as follows: ψ = log

(
1+φ
1−φ

)
, ω =

log(τ), and κ = log

(
0.6+ξ
0.6−ξ

)
. Let ϕ = (β⊤,ψ ,ω ,κ)⊤ and p(ϕ) be the prior distribution of ϕ . From equation
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(10), we then obtain the posterior distribution up to a normalization constant

p(ϕ | yT ) ∝ p(ϕ)Lapprox(ϕ). (11)

Suposse we wish to calculate an expectation Ep(ϕ |yT )[h(ϕ)], which can be calculated as

Ep(θ |yT )[h(ϕ)] =

∫
h(ϕ)p(ϕ | yT )dϕ∫

p(ϕ | yT )dϕ

=

∫ h(ϕ)p(ϕ |yT )
q(ϕ) q(ϕ)dϕ
∫ p(ϕ |yT )

q(ϕ) dϕ

=

Eq(ϕ)

[
h(ϕ)ω(ϕ)

]

Eq(ϕ)

[
ω(ϕ)

] , (12)

where ϕ(ϕ) =
p(ϕ |yT )

q(ϕ) and now Eq[.] denotes an expected value with respect to q(θ). Therefore a sample of

independent draws ϕ1, . . . ,ϕm from q(θ) can be used to estimate Ep(ϕ |yT )[h(ϕ)] by

h̄ =
∑m

i=1 ω(ϕ i)h(ϕ i)

∑m
i=1 ω(ϕ i)

. (13)

It have been shown that using one sample ϕ ′
is in estimating the ratio in (12) is more efficient than using two

samples (one for the numerator and another for denominator) (Chen et al., 2008). It follows from the strong

law of large numbers that h̄ → Ep(θ |yT )[h(θ)] as m → ∞ almost surely (Geweke, 1989). A variance of h̄(θ) can

be consistently estimated by ∑m
i=1 ω(θ i)

2[h(θ i)− h̄]2/[∑m
i=1 ω(θ i)]

2.

4 Model comparison criteria

Given the wide range of candidate models, it has become increasingly important to be able to discriminate

between competing models for a given application. Another popular metric of summary statistics for Bayesian

model comparison is the deviance information criterion (DIC) proposed by Spiegelhalter et al. (2002). This

criterion is based on the posterior mean of the deviance. It can be approximated by D =
Q

∑
q=1

D(θ q)/Q, where

D(θ) = −2log f (yT | θ) = −2logL (θ). The DIC can be estimated using the Monte Carlo output by D̂IC =

D+ p̂D = 2D−D(θ̄), where p̂D is the effective number of parameters, and can be evaluated as p̂D = D̄−D(θ̄).

Given the comparison of two alternative models, the model that best fits a dataset is the model with the smallest
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DIC value. It is important to integrate out all latent variables in the deviance calculation, since this yields a

more appropriate penalty term p̂D. For all these criteria, the evaluation of the likelihood function L (θ) is a

key aspect. However, for the BSSMM-GEV it can be evaluated using results given in Subsection 3.2 and 3.3.

Finally, we use the Log-Predictive Score (LPS, Delatola and Griffin, 2011), which can be estimated as:

L̂PS =− 1
T ∑T

t=1 log p(yt | yt−1, θ̄) .

5 Case study: Deep brain stimulation on attention reaction time

To illustrate the method developed in Section 3 applied to binary responses, we consider responses from a

monkey performing the attention paradigm described in Smith et al. (2009). The task consisted of making a

saccade to a visual target followed by a variable period of fixation on the target and detection of a change

in target color followed by a bar release. This standard task requires sustained attention because in order to

receive a reward, the animal must release the bar within a brief time window cued by the change in target color

(see Smith et al., 2009, for a more detailed description of the experiment). Thus our behavioral dataset for this

experiment is composed of a time series of binary observations with a 1 corresponding to the reward being

delivered and a 0 corresponding to the reward not being delivered at each trial, respectively. The goal of the

experiment is to determine whether, once performance has diminished as a result of spontaneous fatigue, deep

brain stimulation (DBS) allows the animal to recover its pre-fatigue level of performance. In this experiment,

the monkey performed 1250 trials. Stimulation was applied during 4 periods across trials 300-364, 498-598,

700-799 and 1000-1099, indicated by shaded gray regions in Figures 2 and 3. Dividing the results into periods

when stimulation was applied (”ON”) and not applied (”OFF”), there are 240 correct responses out of 367

trials during the ON periods and 501 correct responses from 883 trials during the OFF periods. Out of 1250

observations, 741 (or 59.28%) are correct responses2. For this dataset we fit the binary state-space model with

three standard link functions (PROBIT, CLOGLOG and LOGLOG), as well as the GEV link function defined

in previous sections, where πt is modeled by

πt = P(Yt = 1 | θt) = F(β0 +β1t +θt).

As before, F(.) represents the cdf associated with the corresponding standard link functions in PROBIT,

CLOGLOG and LOGLOG models. In the GEV case, let G(x) be the cumulative distribution function at x for the

2We thank Anne C. Smith for making the dataset available at her website: http://www.annecsmith.net/deepbrainstimulation.html
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GEV distribution with µ = 0 and σ = 1. Then, F(β0+β1t+θt) = 1−G(−β0−β1t−θt), where θt is the arousal

state of the macaque monkey at time t, for t = 1, . . . ,1250. Let ϕ = (β⊤,ψ ,ω ,κ)⊤the parameter vector of the

BSSMM-GEV. We assume that the parameters are prior independent, such that p(ϕ) = p(β )p(ψ)p(ω)p(κ),

and set the densities as follows: β ∼ N2(0,100I2), ψ ∼ N (4.5,100), ω ∼ N (−1.5,100), where N2(., .)

and N (., .) denote the bivariate normal and univariate normal distributions, respectively. All these priors are

slightly flat. We impose a prior in the scale of ξ ∼U (−0.6,0.6) and given the transformation κ = log

(
0.6+ξ
0.6−ξ

)
,

we obtain the prior of κ using the inverse transformation method. We set the common parameters of the

BSSMM-PROBIT, BSSMM-CLOGLOG and BSSMM-LOGLOG as in the BSSMM-GEV case.

Now, we apply the method described in Section 3 to fit the BSSMM-PROBIT, BSSMM-CLOGLOG,

BSSMM-LOGLOG and BSSMM-GEV models. All the calculations were performed using stand-alone code

developed by us using the Rcpp interface in R. First, we approximated the likelihood using bm =−b0 = 3 and

m = 50,100,150,200,400. Second, we obtained numerically the posterior mode using the optim routine in the

R package. Table 1 reports the results for each model fitted here. It is important to observe that for m above

150 the results are almost the same. Finally, we apply the importance sampling algorithm to draw a random

sample from the posterior distribution of the parameters using a multivariate normal distribution with mean and

variance given by the posterior mode the inverse of the Hessian matrix evaluated at the posterior mode, using

bm = −b0 = 3 and m = 400, respectively. For each model, we draw a sample of size 500. We introduce an

extra resample step in the procedure in order to get a final sample of size 1000, which is used to calculate the

moments and posterior 95% credibility intervals given in Table 2.

Table 2 shows, that for all the models considered here, the posterior means of φ are close to 1, showing

higher persistence of the autoregressive parameter for states variables and thus in binary time series. The

posterior means of τ2 are between 0.0068 and 0.0094. For GEV model we found that the posterior mean

and 95% credibility interval for ξ are -0.5573 and (-0.5923, -0.4376). Notice that according to Section 2, this

result indicates the data favor positively skewed link functions, which more closely correspond to the LOGLOG

among the standard link functions we consider here.

To assess the goodness of the estimated models, we calculate the DIC and the LPS criteria described in

Section 4 to compare models using different link functions. The minimum value of the DIC and LPS give the

best fit. Table 3 summarizes the DIC and LPS for our four models. Both criteria select the BSSMM-GEV as

the best model for DBS dataset. This confirms our observation that the data support positively skewed link

functions, namely the BSSM-LOGLOG standard link, as well as BSSM-GEV with negative skewed parameter.
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Table 1: Posterior mode of the parameters obtained when fitting the BSSMM-PROBIT, BSSMM-CLOGOLOG,

BSSMM-LOGLOG and BSSMM-GEV respectively, for the DBS dataset (using m = 50,100,150,200,400 and

bmax =−bmin = 3) and time in minutes to get the posterior mode.

BSSMM-PROBIT

m β0 β1 ψ ω κ time

50 0.8764 -0.0015 5.5013 -2.4521 – 0.08

100 0.8775 -0.0015 5.4982 -2.4551 – 0.23

150 0.8775 -0.0015 5.4982 -2.4551 – 0.43

200 0.8775 -0.0015 5.4982 -2.4551 – 0.65

400 0.8775 -0.0015 5.4982 -2.4551 – 2.45

BSSMM-CLOGLOG

m β0 β1 ψ ω κ time

50 2.0374 -0.0034 5.9804 -2.3497 – 0.10

100 1.1571 -0.0025 6.2162 -2.4319 – 0.34

150 0.6355 -0.0017 4.9109 -2.2532 – 0.63

200 0.6355 -0.0017 4.9109 -2.2532 – 0.94

400 0.6355 -0.0017 4.9109 -2.2532 – 3.58

BSSMM-LOGLOG

m β0 β1 ψ ω κ time

50 1.8118 -0.0021 5.5862 -2.3484 – 0.11

100 1.8110 -0.0021 5.5844 -2.3499 – 0.34

150 1.8110 -0.0021 5.5844 -2.3499 – 0.65

200 1.8110 -0.0021 5.5844 -2.3499 – 0.99

400 1.8110 -0.0021 5.5844 -2.3499 – 3.59

BSSMM-GEV

m β0 β1 ψ ω κ time

50 0.6141 -0.0012 4.6957 -2.3492 -2.8248 0.16

100 0.6176 -0.0012 4.6958 -2.3382 -2.8126 0.45

150 0.6182 -0.0012 4.6958 -2.3388 2.8113 0.73

200 0.6182 -0.0012 4.6958 -2.3388 2.8113 1.46

400 0.6182 -0.0012 4.6958 -2.3388 2.8113 4.17
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Figure 2: Estimation results for the DBS dataset. Decoded θt using the Viterbi algorithm. BSSMM-

PROBIT:solid black line, BSSMM-LOGLOG: solid yellow line, BSSMM-GEV: dotted green line, BSSMM-

CLOGLOG: doted blue line.
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Figure 3: Estimation results for the DBS dataset. πt obtained the decoded state θt using the Viterbi algorithm.

BSSMM-PROBIT:solid black line, BSSMM-LOGLOG: solid yellow line, BSSMM-GEV: dotted green line,

BSSMM-CLOGLOG: doted blue line

Figure 2 shows the decoded states using the Viterbi algorithm for each of the fitted models. Different line

types and colors indicate the decoded states for each of the four fitted models respectively. All the estimates

follow a similar pattern, but there are large differences between the estimates, especially in the last OFF period.

In Figure 3, we plot the probability of a correct response computed using the four fitted models. In this case

the estimated probability is less constrained and tracks the data independently of the ON/OFF information of
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Table 2: Estimation results for the DBS data set. First row: Posterior mean. Second row: Posterior 95%

credible interval in parentheses.

Parameter BSSMM-PROBIT BSSMM-CLOGLOG BSSMM-LOGLOG BSSMM-GEV

β0 0.9452 0.7948 1.8268 0.8098

(-0.0279,1.7241) (-0.0542,1.2372) (0.5522,3.0517) (-0.0529,1.1369)

β1 -0.0017 -0.0021 -0.0022 -0.0016

(-0.0028,-0.0003) (-0.0028,-0.0010) (-0.0035,-0.0008) (-0.0020,-0.0004)

φ 0.9952 0.9924 0.9946 0.9898

(0.9871,0.9981) (0.9864,0.9952) (0.9838,0.9988) (0.9835,0.9954)

τ2 0.0068 0.0084 0.0094 0.0077

(0.0032,0.0134) (0.0048,0.0185) (0.0029,0.0200) (0.0022,0.0104)

ξ – – – -0.5573

– – – (-0.5923,-0.4376)

Table 3: DBS dataset. DIC: deviance information criterion. LPS: Log-Predictive Score

Model DIC Rank LPS Rank

BSSM-PROBIT 1441.23 4 0.5737 4

BSSM-CLOGLOG 1454.04 3 0.5792 3

BSSM-LOGLOG 1433.60 2 0.5695 2

BSSM-GEV 1429.89 1 0.5694 1

the stimulation. In all the cases, on average the response curve lies around the 0.75th level but decreases are

observed at the end of the first stimulation-ON period, around trial 375, at the end of the 4th OFF period, around

trial 950, and for the remainder of the experiment from trial 1100 onwards, with some slight differences starting

around 1150. All the models are able to account for stimulation effect. The results indicate that stimulation

has a positive influence on the performance. However, they also show that the performance does not improve

during the first stimulation period. Overall, however, all the models results indicate an abrupt step-like decline

in performance towards the end of the experiment, around trial 950, which undergoes a significant increase

during the final stimulation period before a final significant drop to zero. All the results are consistent with

Smith et al. (2009).
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6 Conclusions

In this article, we present an easy-to-implement Bayesian estimation approach for the BSSMM-GEV. While

we focus on practical and computational aspects of fitting these models to real data, may well exist interest in

deriving theoretical properties of the estimators.

We illustrated our methods through an empirical application, which showed that BSSMM-GEV model

provides better model fit than the BSSMM-PROBIT, BSSMM-CLOGLOG and BSSMM-LOGLOG in terms

of parameter estimates, interpretation and robustness aspects.

This article makes certain contributions, but several extensions are still possible. First, we focus on binary

observations, but the setup can be extended to binomial and ordinal data. Second, if the rate of zeros or ones are

not the same, we can compare the performance of our flexible link with other skewed links, such as the skew

normal or the skew Student-t. Finally, we can use the distribution function of the asymmetric Laplace distri-

bution as a link for quantile modeling of BSSMM. Nevertheless, a deeper investigation of these modifications

in the context of BSSMM models is beyond the scope of the present paper, but our results provide stimulating

topics for further research.
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