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Abstract

The problem of validating or criticising models for georeferenced data is chal-
lenging as the conclusions may be sensitive to which partition of the data into
training and validation cases is utilized. This is an obvious problem with the
basic model validation scheme, since only a few out-of-sample locations are
usually selected to validate the model. On the other hand, cross-validation
approach which considers several possible configurations of data divided into
training and validation observations is an appealing alternative, but it could
be computationally demanding, as estimation of parameters usually requires
computationally intensive methods.

This work proposes the use of cross-validation techniques to choose be-
tween competing models and to assess the goodness of fit of spatial models
in different regions of the spatial domain. In particular, we consider un-
certainty in the locations by assigning a probability distribution to them.
To deal with the computational burden of cross-validation we propose the
use of estimated discrepancy functions in a computationally efficient manner
based on importance weighting posterior samples. Furthermore, we propose
a stratified cross-validation scheme to take into account spatial heterogene-
ity, reducing the total variance of estimated predictive discrepancy measures
considered for model assessment. We illustrate the advantages of our pro-
posal with simulated examples of homogeneous and inhomogeneous spatial
processes and with an application to a rainfall dataset in Rio de Janeiro.
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criticism, Discrepancy function, Importance sampling.

1. Introduction

In many practical problems, the researcher is interested in modelling some
phenomenon that occurred in space as a stochastic process. The usual model
criticism is done through model comparison and prediction for a few out-
of-sample observations. These model checks are often not able to assess
whether the assumed model is plausible for the data in the whole spatial
domain. From a theoretical viewpoint, statistical inference should go beyond
parameter estimation and prediction (see Robert, 2007, page 343). Notice
that if hypothesis testing is performed regarding parameters from models
which are not adequate to the data then the conclusions from the tests are
not meaningful. In this context, checking the goodness of fit of the assumed
model is an important step. However, in the geostatistical context, this is a
challenging task since only one realization of the process is available for both
parameter estimation and model checking.

The usual approaches for model checking in spatial statistics are based
on selecting a subset from the locations to make prediction with the as-
sumed model. The observed values which were left out of the estimation
procedure are then compared with the predictions. However, the choice of
locations used for model fitting and prediction is usually ad-hoc. Some ex-
amples can be seen in the literature such as in multivariate random fields
context, Majumdar and Gelfand (2007) and Apanasovich and Genton (2010)
considered 68 monitoring stations used for estimation and take out 5 loca-
tions for verification purposes using pollution data. In the spatial-temporal
context, Fonseca and Steel (2011) and Bueno et al. (2017) used the same idea
to check the non-gaussian models using 67 locations for parameter estima-
tion and they leave out three locations for predictive performance assessment
in temperature data. Ideally, model validation techniques should allow for
assessing the goodness of fit of spatial models in different regions of the spa-
tial domain. Diggle (2014) points out that if a spatial model fits the data
well, it can be used to generate datasets which are statistically similar to
the observed sample. This idea suggests that cross-validation techniques are
potentially useful tools for model checking.

In the literature, various authors have suggested the use of cross-validation
for modelling univariate data. Burman (1989) introduces validation tech-
niques in a study of optimal transformation of variables, based on k-fold



cross-validation and repeated learning testing methods. Thall et al. (1997)
demonstrated that repeated data splitting is preferred over k-fold cross-
validation. They propose to apply cross-validation to a very large number of
randomly generated partitions of the data. The conditional predictive ordi-
nate (CPO) proposed by Gelfand (1996) is a very useful model assessment
tool which has been widely used in the statistical literature under various
contexts, such as in the detection of surprising observations. Conditional
predictive ordinate is based on leave-one-out cross-validation (LOO-CV).

From a Bayesian standpoint, Marshall and Spiegelhalter (2003) and Bur-
man (1989), amongst others, show that the cross-validation can be compu-
tationally very expensive, since a full MCMC analysis has to be repeated,
leaving out each in turn validation set. Stern and Cressie (2000) considered
importance weighting and re-sampling methods in the context of posterior
predictive model checking via CPO and posterior predictive p value. Gel-
man et al. (2014) review some information criteria, such as Akaike, deviance
and Watanabe-Akaike (WAIC - Watanabe (2010)) from a Bayesian perspec-
tive, using out-of-sample and LOO-CV techniques. In the same context, Li
et al. (2016) discussed two predictive evaluation methods based on Impor-
tance Sampling (Gelfand et al. (1992)) and WAIC in Bayesian models with
possibly correlated latent variables via LOO-CV and Vehtari et al. (2017)
used the sample approach introducing an efficient computation of LOO-CV
using Pareto-smoothed importance sampling to measure the predictive accu-
racy in Bayesian models. In the context of accounting for uncertainty in the
choice of validations sets, Alqallaf and Gustafson (2001) propose Bayesian
cross-validation for several data partitions sampled from the prior distribu-
tion of the possible sets of training and validation cases. The model checking
is based on estimating discrepancy functions, which are statistical measures
commonly used in the literature for model comparison.

Although many papers have exploited cross-validation methods for uni-
variate data, this is not the case for spatial data analysis. For instance, the
usual setup for model checking in geostatistics is to make prediction for one
or a few selected validation sets. However, the choice of observation sites for
validation of spatial models is not always “robust” to the considered sampling
or allocation of sites. In general, it does not consider the sampling process
that generated the locations. In fact, models that ignore information about
sample selection can lead to biased inferences and predictions (Diggle et al.,
2010; Ferreira and Gamerman, 2015). Pfeffermann et al. (2006) discuss this
problem in the context of a finite superpopulation model.
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The use of cross-validation techniques in a large volume of spatial data
becomes a computational challenge, due to the difficulty of applying tradi-
tional prediction methods in a time-tolerant boundary. If we were to make
prediction for several vectors of points, the cross-validation procedure would
be repeated again for all possible selected configurations of training and val-
idation samples. For most geostatistics problems, this scheme becomes com-
putationally prohibitive. Thus, more sophisticated approach are useful, both
to reduce the final cost and increase efficiency.

In this work, we propose to use cross-validation techniques to choose be-
tween geostatistical models and to assess the goodness of fit of spatial models
in different regions of the spatial domain. Our proposal extends the work of
Alqallaf and Gustafson (2001) to correlated data modelling. In this context,
we allow for uncertainty in the selection of the validation sets in spatial data
analysis by considering a probability distribution for the spatial locations. In
particular, we propose three distributions for the spatial locations. The first
proposal is uniform on the spatial domain. The second proposal is a condi-
tional distribution which is based on distances from already selected points
aiming a better coverage of the spatial region of interest. The third proposal
is uniform in several strata. For that purpose, we adopt spatial stratified
sampling, where the possibly heterogeneous area is divided into several sub-
areas more homogeneous than the whole area, reducing the total variance of
estimated predictive discrepancy measures. Besides, this proposal allow for
identification of sub-regions where the model has a poor predictive perfor-
mance. This may be used as a tool to indicate outliers or non-stationarity.
To deal with the computational burden of cross-validation techniques, we
propose an efficient algorithm based on importance weighting and only a
handful of MCMC (Markov Chain Monte Carlo) runs.

This paper is organized as follows. In Section 2, an illustration which
motivates this work is presented. Section 3 briefly reviews the main aspects
of spatial data analysis, namely, basic geostatistical models, spatial arrange-
ments and inference. Section 4 and 5 describe Bayesian cross-validation using
expected discrepancy estimation via MCMC (Markov Chain Monte Carlo),
and report a procedure for validating models based on stratified spatial data.
In particular, scheme based on stratification aims to allow for: (i) spatial het-
erogeneity, (ii) reduction in total variance of estimated predictive discrepancy
measures considered for model assessment. In Section 6, simulated examples
are presented. Finally, Section 7 and 8 show an application to a rainfall
dataset and conclusions, respectively.



2. Motivation

In this work, the spatial locations are assumed to be a random sample
from a specified distribution and locations are sampled to compose the vali-
dation set according to the prior probabilities of the sets.

As follows we present an illustrative example that shows that the usual
validation setup in spatial data analysis might select, with quite high prob-
ability, a model which is not the best option for a certain application. This
happens mostly if the uncertainty in the choice of locations for model vali-
dation is not taken into account.

2.1. An illustrative example: Uncertainty of Data Partition

Consider location zq,...,x, randomly simulated in a unit square with
n = (20, 60,90) within an irregular grid. Responses Y = (Y (z1),...,Y(x,))
are generated from a Student-t process, that is,

Y |o% ¢,v~ST (O, v, OQR) , (1)
with R the correlation matrix with elements r;; = exp{—||z; — z,||/¢} and
range parameter ¢ > 0, which determines the rate at which the correlation
between observations decreases as distances grow. The decay is faster for
small values for ¢ and smoother for larger values for ¢ (more details see
Appendix A). In this example, the parameters are set to v = 3, 02 = 1
and varying values for ¢ = (0.05,0.30,0.70). Figures 1 and 2 present the
spatial arrangement and the three different correlation functions considered,
respectively.

Figure 1: Sample locations randomly generated within the unit square for three datasets

with n=20, 60 and 90.
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Figure 2: Exponential correlation function p(u) = exp{—u/¢} with varying range ¢.

For prediction purpose, we randomly choose I = 100 validation configu-
rations of all possible subsets of size ny. Notice that there are (nf/) possible
validation sets, thus performing cross-validation for all possibilities is too
time consuming. For this arbitrarily chosen configurations, we omitted ran-
domly 0.05n and 0.25n points (the validation sample) and calculated the
predicted value for these locations using the remaining points (the training
sample). We fitted the Gaussian (GM) and Student-t (STM) models to the
simulated data and used MCMC techniques for estimating the model param-
eters for each of the 100 sets at each data configuration (n, ¢, ny ). The prior
distributions considered for STM and GM models are 0=2 ~ G(0.1;0.1) and
¢ ~ G(1,0.22/med(u)), with med(u) representing the median of distances in
the data. The parameter v has a Jeffreys prior distribution as proposed in
Fonseca et al. (2008). The prior distribution assigned to o2, ¢ and v, can be
seen in Appendix C. For model assessment we consider the Mahalanobis-
Distance (Mahalanobis (1936) - see more details in Appendix B) as the
discrepancy measure (D) which takes into account the correlation between
observations. Thus, the model choice will depends on the difference in the
discrepancy functions for each model which is given by

s =pW —DW i=1,...1 (2)

where [ is the amount of validation configurations and D is a discrepancy
measure, so that if () < 0 we have that STM is preferable than GM. Figure
3 presents the box-plots for 100 randomly selected validation configurations
for cross-validation performance varying n, ¢ and ny. Notice that we have



different results for each choice of validation sample size and parameter ¢. If
we consider the validation set with size ny = 5%n, the percentages of wrong
decisions are considerably larger than when we consider ny = 25%n. The
percentages of wrong decisions are also larger when ¢ is large, for example,
¢ = 0.70, which indicates that the larger the spatial correlation the more
difficult it is to choose between Gaussian and Student-t models. According
to Breusch et al. (1997), similar inferences are made about the mean p under
GM and STM, but different inferences can be made about scale, because the
scale is differently represented in the two models. Thus, each model used for
prediction might lead to different prediction intervals for ungauged locations.
This difference in the inference and predictions also depends on the range
parameter as indicated by our simulated illustration.

In the context of spatial data analysis, the influence of location arrange-
ment in the region of interest must be taken into account. In addition, the
size of the validation sample and the value of the range parameter seem to
be crucial for model choice. This illustrative example motivates our work to
incorporate the uncertainty in the validation set in the full Bayesian infer-
ence for the unknowns which besides the model parameter and predictions
include the partition in validation and training sets.
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Figure 3: Cross-validation performance: box-plots of predictive discrepancy measure for
GM versus STM varying n, ¢ and ny. First row represents ny equal to 0.05n and second
row represents ny equal to 0.25n. Values of § below the dashed line imply that the
STM model is preferable. Numbers represent the percentage of times the wrong model
(Gaussian) was selected when considering the discrepancy function in equation (2).

3. Basic geostatistical model

Let us consider that data are obtained by sampling a spatially continuous
phenomenon S(x) at a finite number of locations xy,...,x, which varies
continuously within a region A. Hence, if Y; denotes the measured value at
the location z;, a simple model for the data takes the form

where p represent the mean and the Z!s are mutually independent, zero-
mean random variables with variance 72 called nugget effect, which can be
interpreted as sampling error or inherent geological variability (or both).
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The underlying spatial process {S(x) : # € R?} is a stationary process with
zero mean, constant variance o2 and correlation function p(u;¢), where ¢ is
the correlation parameter and u is the distance between two locations. If
Gaussianity is assumed, Y ~ N,(ul,0?R + 721,,) where R represents the
correlation matrix with elements r;; = p(||z; — z||; ¢) and diagonal matrix
I,.

Gaussian stochastic processes are commonly used in practice for geostatis-
tical data due to the facilities coming from the properties of the multivariate
Gaussian distributions. Although the Gaussian process is mathematically
convenient, its assumption can be very restrictive and the data may often
present non-Gaussian characteristics, see Fonseca and Steel (2011) for details.

The next subsection presents a benchmark model for a spatial data anal-
ysis which allows for non-Gaussian behaviour of spatial data. This model is
compared using the efficient cross-validation techniques schemes proposed in
this paper. Inference for model parameters and predictive distributions are
also described.

3.1. Spatial mizture model

As follows we consider three model specifications for spatial data analysis:
the Gaussian, the Student-t and the Gaussian-log-Gaussian processes. These
models might be written as spatial mixture models, with the base model being
the Gaussian usual setup.

(M1) Gaussian model: As a benchmark we assume the Gaussian model.
The distribution of Y is

y | 0% ¢~N (1p, 721, + 0’R). (4)

(M2) Student-t model: As an alternative to Gaussianity we assume a
Student-t model with v degrees of freedom. Notice that for v — oo we
recover the Gaussian model. The distribution of Y is

y | 0% ¢,v ~ ST (1p,v,7°1, + 0°R) . (5)

Similar to the Gaussian process, the Student-t process has the advan-
tage of depending on the mean and covariance functions. Details about the
Student-t process in a non-Bayesian context can be seen in Roislien and Omre
(2006).



(M3) Gaussian-Log-Gaussian model: As proposed by Palacios and Steel
(2006), this process is able to capture heterogeneity in space through a mixing
process used to increase the Gaussian process variability,

Y mo® ¢, A ~N (1p, 71, + o> (A2 RAT?)). (6)

This model assumes A = diag(d(z1),...,0(z,)) and In(8) ~ N, (—%1,v R).
This mixing generates a multivariate scale mixture of Normals. Properties,
estimation and prediction for the GLG model are introduced in Palacios and
Steel (2006) and extended to the space-time case in Fonseca and Steel (2011).
The v € R" is a scalar parameter introduced into the distribution {n(d) and
variation inflation is achieved when it is close to zero.

3.2. Inference for geostatistical models

In this work, we follow the Bayesian approach to inference and prediction.
In the context of geostatistical models, the posterior distribution of model
parameters 0, p(6 | y) o< f(y | 0)m(0), is not obtained in closed form, and
stochastic simulation methods are often considered (Gamerman and Lopes,
2006).

In the simulated study and in our application, we assume the exponential
correlation function given by

p<\|u|r,¢>=exp{—%}, ™)

where ¢ > 0 represents the range parameter which controls the rate of decay
with distance wu, i.e., the distance at which there is essentially no spatial
correlation.

For all models we assign the same independent non-informative priors to
p, 0* and ¢. In particular, u ~ N, (0,77) with large value of 77, 072 ~
Ga(a,b) and 772 ~ Ga(a,b) with small values of a and b. For the range
parameter ¢ we take into account that the prior is critically dependent on
the scale of distances between locations. So, ¢ ~ Ga(1,c¢/med(d)), with
med(d) representing the median of distances in the data.

If Gaussianity is assumed for S(z) as in equation (4), then the likelihood

function for the spatial model is given by

1 o) = o2l e { Sy - 10 s -} @
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that is, y = (y1, . .. ,yn)/ follows an n-variate Normal distribution with mean
i and covariance matrix ¥ = 721, + 0?R. The posterior samples for model
parameters j, 02, ¢ are obtained by the Gibbs algorithm with Metropolis-
Hastings steps considering random walk proposals. Further details about
the MCMC scheme are deferred in Appendix C.

The likelihood function of the Student-t spatial process is given by

v+n I —(v+n)/2

r(=n) AR y —1p)]
T(Z) ) RIS ’ 7
9)

with T'(-) the gamma function, mean p and covariance matrix ¥ = 721I,, +
o0?R. For the degrees of freedom parameter v we assign a Jeffreys prior
distribution, as proposed in (Fonseca et al., 2008) and detailed in Appendix
C.1. The posterior samples for model parameters ju,o?, ¢, v are obtained
by the Gibbs algorithm with Metropolis-Hastings steps considering random
walk proposals.

For the Gaussian-log-Gaussian spatial process, we assume a mixing vari-
able §; € R, assigned to each observation ¢« = 1,...,n, yielding to a mul-
tivariate Gaussian distribution for y conditional on § = (d1,...,0,). The
resulting likelihood function looks like equation (8) with 3 replaced by ¥ =
21, + o> (A2 RA™Y?), with A = Diag(é:,...,6,). For the parame-
ter v we set a GIG(0,0,¢) (generalized inverse Gaussian) prior. Notice
that very small values of v (around 0.01) correspond to near Normality
while large values of v (of the order of say 3) indicate very thick tails and
In(6) ~ Np(—351,vR). The posterior samples for model parameters are ob-
tained by the Gibbs algorithm with Metropolis-Hastings steps for ¢, v and §
which are based on random walk proposals. For a more elaborate algorithm,
see Palacios and Steel (2006). Appendix C presents the prior distributions
and posterior inference for the model parameters.

In the context of prediction, let y = (yo,ys) where yo represents out-of-
sample observations for which we want to obtain predictions and y, repre-
sents the observations used for parameter estimation. Conditional predictive
distributions are obtained in closed form for all considered models. For the
Gaussian model the conditional distributions remain Gaussian with mean
and variance given by

fly | wo® ¢,v) =

EYy | ys] = po + EOSE;sl(ys — 1ps) (10)
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VarlYo | ys| = o0 — 2052;512507 (11)

where we have partitioned

_ [ Mo (200 os
H= </Ls) == (ESO Ess)

For the Student-t model the conditional distributions remain Student-t
with degrees of freedom vy = v + d,, with mean and variance given by

EYy | ys] = to + Z0s 25 (s — 1ps), (12)

VarlYy | ys| = &(s) [Eoo — 2032;1230] ) (13)
with

!

5(8) — v+ (YS - ]-/Ls) Zssl<YS - 1#5)
v+ dg

which d, represents the dimension of vector y,. Note that by letting v go to

infinity, we can recover the Gaussian conditional covariance structure. See

Roislien and Omre (2006) for details.

For the Gaussian-Log-Gaussian model case and conditional on the mixing
variables §, the predictive distributions are analogous to (10) and (11) with
> =721, 4+ 0*(A~Y2 R AY?). The mixing variables & are considered latent
variables and are sampled in the MCMC algorithm, details are deferred to
Appendix C.1.

Y

4. Cross-validation of Bayesian models for spatially correlated data

We consider the uncertainty in the choice of data split into validation and
training sets by defining a prior distribution of such sets. In the Bayesian
analysis of spatial data, the fit of the model usually requires MCMC sam-
pling from the posterior distribution. We extend the technique proposed by
Algallaf and Gustafson (2001) to spatially correlated data, so the valida-
tion measure does not require a separate posterior sample for each training
sample.
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4.1. General Development

Suppose that the observed data consist of responses y = (y1,y2, .- -, Yn)
arising from the process Y (x) and locations z = (z1,...,z,) described in
equation (3). For a given model, let § and y"® be the wector of model
parameters and the replicated response of a hypothetical realization of the
response vector, respectively. We define split s as a 0 — 1 vector, which divides
the n cases into training and validation vectors. We adopt 7'[s] and V[s] to
denote the training and validation cases in each split vector considered.

For the purpose of building the split vectors, we denote the sample sizes
of training and validation by nr and ny, respectively. In this case, ny and
ny are fixed and n = ny + ny. In spatially correlated data, we define the
specific split vector as

o — { 0, x is a training location
k 1, otherwise,

and the split vector s = (sq,. .., s,) of the same dimension of observed data,

indicating for each locations zy, k = 1,...,n, if y, is used for training (k €

T's]), or yi is used for validation (k € V[s]).

Our goal is to average of cross-validation results considering many data
partitions. Indeed, this averaging is done with respect to p(s), the distri-
bution of s, that is, p(s) = p(s1,sa,...,5,). A first approach would be to
consider the distribution p(s) to be the uniform distribution over such splits.
Under this assumption,

—1 n
n
s) = ,if E S; = nr.
p() (TLT) p= J T

Notice that this choice of prior might not be reasonable if there is a pattern
in x = (z1,...,x,) as in the case of inhomogeneous processes. To account
for this possible feature of spatial data, we consider an extension of this prior
in Section 5. An alternative is to assume a probability distribution for the
sets based on Euclidean distances considering a finite set of spatial sample
locations Zy = (xg,x1,...,Tk_1), for k =1,... n within a region of interest.
This idea derives from the cluster selection via the K-means ++ method
(Arthur and Vassilvitskii (2007)). A first location (z) is sampled based in
an unconditional prior with probability p(zq) = % and the other locations are
sequentially sampled based on a conditional prior over the already sampled
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locations, that is, p(xy | Zx), for k = 1,...,n. The prior via distances can be
obtained as

p(s) = p(zo)p(x1 | T1)p(xa | T2) ... play | Tp),

where np is the training sample size and xg is the starting point selected with
probability p(zg) = % We select the locations x; with probability given by

k :
mm{]xj—xol,...,]a:j—xk_ll}
- min{|z; — xo|,. .., |r; — Tp_1|}

as in the case of the K-means +4 method. This prior assumes different
probabilities for the sample selection locations and could be potentially useful
in irregular spatial regions as often seen in data applications.

After the choice of a specific split vector s, let yr and yyg be defined
as the observed training and validation cases. Given the split s, p(0 | yryg) is
defined as the posterior distribution of # given the training data only. Thus,
using Bayes theorem, the posterior distribution is given by

where for each split vector s there is a single corresponding data vector yrig).

Notice that y" is simply distributed according to the sampling model
assumed for the data, i.e., [y™” | 6,yrg|, which represents the predictive
distribution given the training data, for a specific split vector s. This dis-
tribution is used to obtain samples from the marginal predictive density
p(y™ | yrjs)) in a composition sampling algorithm.

4.2. Ezxpected discrepancy estimation

Our cross-validation assessments are based on r(y"®,yy[s), called a dis-

crepancy function for checking model adequacy, whose expectation under
F(Y™ | yris) is evaluated. It requires the distribution of the replicated
response vector y"P. In particular, we are interested in computing the ex-
pectation bellow

U=E{ry? yvy)}- (15)

The expected value in (15) represents a statistical measure for comparing
Bayesian models and r represents a discrepancy function. Notice that r

14



depends on two unknown quantities y"® and s, thus ¥ can be computed as

v = / Z Poyvie) S | yris)p(s) dy™”

seS
— ZE (Y™, yvis) | yris)] p(s)

seS

The Monte Carlo estimator for the expected discrepancy is given by

I
Z " Yo | Yoo ) - (16)

NIP—‘

The split vectors s, s ... s(I) are simulated independently from p(s) and
I represents the number of splits. The Monte Carlo estimator for the ex-
pectancy of interest is well known to be unbiased. If the posterior distri-
bution f(y" | yrjg) is not available analytically, then methods based on
stochastic simulation can be employed to obtain samples from the posterior
of interest. Notice that the expected discrepancy of interest may be rewritten
as

//Z Poyvis) fY 0, yr)p(0 | yrs)p(s) do dy™

ses

Let (0i5,y;;"), i = 1,...,] and j = 1,...,J be samples from the joint
conditional distribution of 6 and y™®, f(y"” | 0,yr5)p(0 | yris), then the
Algorithm 1 describes how to compute (16) by simulating from the posterior
distribution of model parameters via MCMC. This approach is based on
obtaining one MCMC sample for each split. We call this estimator by the
monte carlo (MC) estimator

1 J
- 1 1 re
Ve = 7 Z j Z T(yijpa yV[s(i)])7 (17>

where I and J represent the number of splits and size of the posterior sample,
respectively. The MC estimator is an unbiased estimator of expression (15).
Notice that (17) requires a MCMC sample for each validation set sampled
from p(s). This if often very expensive. Next, we present some alternatives
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Algorithm 1: Monte Carlo (MC) estimator

1. Simulate independent split vectors sV, s ... s) from p(s);
2. for each s do
‘ use a MCMC run to draw a sample 0;y, ..., 0y from p(0 | yrism));

end
3. for each (i,j) do

‘ simulate yf;p from p(y™® | 6 = 0,5, YT[s“)]);
end

to (15), which are computed from samples from the posterior p(f | y) and
p(y™® | 6,y). The number of splits I and the size of the posterior sample for
each split J must be specified.

For illustrating the method, we applied algorithm 1 to the motivation
example of subsection 2.1. Table 1 presents the Monte Carlo estimate based
on the 100 validation sets, using the discrepancy measure D and varying n,
¢ and ny for each model. We can verify that the STM best fits the dataset
for all cases. Indeed, this is the model that was used to generate the data.
Notice, however, that particularly for this illustration, it was run 100 MCMC
chains for each data configuration (n x ¢ x ny ) and each competing model.
This is too time consuming even for these small spatial datasets.

Table 1: MC estimate based on algorithm 1 for 100 validation sets using the Mahalanobis-
Distance for each model and varying n, ¢ and ny. The model that best fits the data is
the one which presents smaller values in the measure.

¢ ¢

5%n  0.05 030 0.70 25%n  0.05 0.30 0.70
GM 1.287 1.121 1.850 GM  3.519 3.080 3.173

n=20 STM 1.214 1.092 1.168 STM  3.216 2.961 3.102
n = 60 GM 2363 2233 2.133 GM  5.653 5.284 5.179

STM  2.344 2.226 2.125 STM  5.599 5.256 5.156
" — 90 GM  2.697 6.517 2.552 GM  6.777 6.518 6.466

STM  2.642 6.471 2.546 STM  6.637 6.497 6.449

Aiming to reducing the computational cost, we consider the importance
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sample estimator (SIR), which requires only a handful of MCMC runs as an
alternative estimate of expression (15). The idea is to approximate the pos-
terior density of a given training sample by a distribution based heuristically
on the same amount of data, but which does not depend on the specific split
s. In particular, this distribution is used as an importance function and is

defined as
9(0) o< f(y | 0)*m(6), (18)

where f(y | 6) denotes the likelihood function for the complete data, 7(6)
is the prior distribution and o = nr/n with ny fixed. Notice that if both n
and ny are large, the likelihood f(yr | #) based only on the training sample
yr will approximate to the full likelihood f(y | #) raised to the power a.
Alqallaf and Gustafson (2001) claim that raising the whole-data likelihood
to the power « has the effect of flattening the posterior to a degree commen-
surate with conditioning only on a fraction « of the data. The function g(0)
is the same function employed in fractional Bayes factor for model compari-
son. In that context, O’'Hagan (1995) proposed using a fractional part of the
entire likelihood, f(y | €)%, instead of the training sample. Sampling impor-
tance resampling is considered to obtain a sample from the desired posterior
distribution using the approximation in (18). The Algorithm 2 describes how
to compute the SIR estimator. The SIR estimator is defined as the average

Algorithm 2: Sampling Importance Resampling (SIR) estimator

1. Simulate independent split vectors sV, s ... s(D) from p(s);

2. Let Op1,...,0,; be the hth of H independent MCMC samples
simulated from ¢(@) ;

3. Draw ;" from p(y™? | 0 = 0y,;,y), for h=1,..., H and
g=1...,J;

4. Each of these H samples yields an importance sampling estimate
of E[r(y™, yvsin) | Yo

of importance sampling estimate of E [r(y"®, yy(sw)) | Yris)], across the I
independent splits and the H independent samples from g(6),

J re
‘i/m _ 1 i i ijl r (yhjpa YV[s<i)]) whjj (19>

T J
H h=1 " i=1 Zj:l Wh

~l =
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where each weight term wy; = p(0n; | y71s))/9(0r;) has simple form'

log(wyj) = log f(yris) | On;) — alogf(y | On;)-

The number of splits I, the size of the posterior sample for each split J and
the H independent MCMC samples must be specified.

Note that if the simulation standard error is not required, then in fact
this estimator can be based on a single MCMC run, i.e., H = 1, otherwise
H > 1 and it is expected to be quite small. Appendix D shows how to
determine a standard error of \iimc and \ifm estimators.

So far we have considered prior distributions for the validation sets which
do not accommodate spatial heterogeneity. In the next section, we propose
an uniform prior in sub-regions to take into account spatial heterogeneity
and to accommodate possible preferential sampling in the locations.

5. Accounting for heterogeneity in the spatial domain

In this section, we propose a stratified sampling scheme to obtain train-
ing and validation sets. In stratified sampling, the region of n locations is
first divided into sub-regions which are called strata of sizes nq,ng,...,ng,
respectively. These sub-regions are non-overlapping, and together they com-
prise the whole region, so that, n = Z,[f:l ng. The full training data size
is denoted by np, i.e., np = Zszl npr where each term of this summation
represents the training data size in each stratum k = 1,..., K. Analogously,
the full validation data size is ny = Zszl nyg. If a simple random sample is
taken in each stratum, the whole procedure is described as stratified random
sampling.

The following notations in Table 2 refer to stratum k.

IThe weights are obtained in Appendix D.1.
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Table 2: Stratified sampling notation.

Notation

ng: total number of spatial points in stratum k

nr,: number of spatial points of training data in stratum k
ny,: number of spatial points of validation data in stratum &
Wy = %: stratum weight

o

Jv = “¢: sampling fraction, i.e., the ratio of

validation sample size to the total sample size.

fr, = ™ . training sampling fraction in the &k stratum
fv. = 2k validation sampling fraction in the k& stratum

Stratification might produce a gain in precision in the estimates of char-
acteristics of the whole region, if the variability inside each stratum is small
and the variability between strata is large (Cochran, 1999). It may be possi-
ble to divide a heterogeneous region into sub-regions, where each sub-region
is internally homogeneous in the context of spatial cross-validation.

The following steps should be carried out to perform cross-validation
using a stratified sampling scheme :

1. Stratify the study region into k strata.

2. Sample in each stratum k, assuming a uniform prior on the splits,
to obtain the split vectors s“¥) where k = 1,..., K represents the
stratum and ¢ = 1,2, ..., I} the sizes of the split vectors generated in
each stratum k.

For the sake of simplicity, we set the sizes of the split vectors I} equal for all
strata, I, k = 1,2,..., K. Note that the sizes of split vectors [, do not need
to be the same.

The split vector in each stratum s sU»*) is jointly generated from
p(s). Thus, we define the vector s( as the i-th split vector of all strata.

S0 = (500,02, 0K G =1, 1,

Notice that,

R C R )}

The proposed stratification changes the sampling of spatial locations for
validation and training sets, however, the sampling model is conditional
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on s and does not change with our proposal. Thus, the likelihood func-
tion is not affected. The vector of all observations can be written as y =
(Y115 s Ylmgs s Ykiis - - - » YKoy )- Lhe splits s are not uniformly distributed
over the entire spatial because they are jointly generated from a uniform prior
in each stratum. The proposed prior for the stratification design is given by

-1 -1 -1 Nk
n T2 nK . (-,k)
s) = if E s =mnp, (20
p( ) <nT1) (’N,TQ) (TLTK> = J Ty ( )

where each term of the product in equation (20) is the probability of choosing
a sample of size ng, in each stratum k. The expectations are computed with
respect to the discrepancy function for each stratum, denoted generically as

‘;[/k:E{T’k<yrep,yV[S])}, k:L...,K, (21)

where the expression (21) represents the expectation with respect to the
discrepancy measure in each stratum k.

5.1. Stratified Estimators

To compute the stratified estimators, we jointly simulate the split vectors
s ... s from p(s) as defined in (20). Following the same steps as in
Section 4.2, the stratified MC estimator is obtained as

{Ik ijrk Ui Vv un)} (22)

J=1

T,st
Wmc

and the stratified SIR estimator as,

K K K
\Ilgfr = Zwk { Z I Z } Z k\i/sirk = Z \Ijzirw (23)
k=1 k k=1 k=1
where,
J re; *
\I]gz) _ Zj:l Tk (yhjp7 yV[s(U}) whj, E— L ,K,

7
Zj:l Wh;
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and w, = % is the stratified weight.Each weight term of the stratified
SIR estimator is given by wj; = p(0n; | yris))/9(0n;). The properties about
unbiased estimator are available for stratified estimators. See Appendix D.2
for further details about the computation of the weights.

5.2. The choice of stratification in spatial context

The strata can be defined based on prior knowledge of the degree of homo-
geneity of regions or defined arbitrarily according to easily specified spatial
boundaries, such as, latitude or longitude. Considerations about stratum
sizes and their shapes and sample sizes need to be made to reduce the sam-
pling variance of the expected discrepancy estimator.

According to (see Diggle, 2014, page 99), when the occurrence of an event
at a particular location makes it more likely than other events will be located
nearby, the resulting patterns display a kind of pattern. In this context, the
local knowledge of the underlying process could suggest the shape of the
strata (see Cressie, 1993, page 317).

Clustering methods may be used to obtain the strata. For instance, the
well-known K-means ++ (Arthur and Vassilvitskii (2007)) is an algorithm
that optimizes the criteria of grouping by using an iterative technique. The
initial step is to create an initial partition. The objects are then attributed
to the cluster with the closest mean. This procedure is done repeatedly until
achieved convergence. Notice that it is necessary to specify the number of
clusters to be analyzed.

According to Katzfuss et al. (2014) in context of Gaussian random fields,
the choice of partitions should be independent of the observed data, but it
should depend on the application under consideration. In their applications,
they consider a suitable general partitioning strategy using auxiliary vari-
ables or the latitude for produce subsets. Although the authors considered
procedures for create subsets, they do not take into account the restriction
of contiguity of geographic neighbourhood locations.

Another way of stratifying is to consider plausible strata and the possibil-
ity of modifying them to take into account geographical features of the site,
for example, mountains could influence the contiguity of spatially located
data. Gordon (1996) consider the selection of contiguity graphs.

In this work, stratified sampling was use to divide a possible heteroge-
neous spatial domain in subregions more homogeneous to achieve smaller
variances for the estimated discrepancy functions. In many analysis, the in-
terest focuses on identifying regions that rapid change (lines or curves) in the
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spatial surface. Identify locations or curves that fastly change is referred to
as wombling or boundary analysis. Banerjee and Gelfand (2006) developed
an inferential method for boundaries on Gaussian process surfaces, but this
had been applied only to usual geostatistical models. Liang et al. (2009)
present wombling methods for estimated intensity surfaces within a hierar-
chical point-process setting. This direction would be pursued in a future
research.

6. Simulated Study

To illustrate the usefulness of our cross-validation proposal, we consider
homogeneous and inhomogeneous processes scenarios under geostatistical
modelling. We simulated data from different scenarios, considering different
configurations for the location sampling. For each scenario, we first simulated
a realization of a stationary Gaussian process on the unit square, treating the
spatially continuous process S(-) as constant within each lattice cell. Then,
we simulated non-preferentially or preferentially scenarios according to each
of the sampling designs presented in Figure 4 (complete spatial randomness
and inhomogeneous process). The data were generated from equation (3)
with:

(i) S is stationary Gaussian process with mean 0, variance o2 and correlation
function p(u, @) = Corr(S(z),S(z")) for any = and 2’ from a distance
u apart.

(ii)) X | S is an inhomogeneous Poisson process with log-linear intensity
function

A) = eap{a + BS()} (24)
(iii) Y | S, X is a set of mutually independent Gaussian variables with

Y; ~ N(u+ S(z;), 7).

Note that if 3 = 0, the sampling is done completely at random, i.e., we
have a homogeneous Poisson process. The simulated surface in (i) is given
by a Gaussian process with the following parameters: y = 4,0% = 1.5,¢ =
0.15,x = 0.5 and 72 = 0.25. We adopted the exponential correlation function
in all scenarios.
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Scenario 1 — CSR (Complete spatial randomness), we considered the case
where the intensity function A(z) is a contanst. A dataset was sim-
ulated with sample size equal to n = 82 and intensity parameters
B =0,a = 4.605. This is presented in Figure 4 (a).

Scenario 2 — CSR with outliers, we study the same surface of Figure 4 (a)
with observations contaminated by summing a random increment uo,
such that o is the observational standard deviation and u ~ U (6, 8) for
observations 10, 48, 50 and 82. The contaminated locations considered
are neighbours in space. This is presented in Figure 4 (b).

Scenario 3 — Preferential Sampling, we choose the configuration with high-
est concentration of points in a given region. The point process rep-
resents the inhomogeneous Poisson process, with intensity A(z), a =
2.996, 5 = 1.0 and n = 100. This is presented in Figure 4 (c).

+outli
o *outlier
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Figure 4: Sample locations and underlying realizations of the signal process for the three
models considered in the simulation study: (a) CSR (complete spatial randomness) ; (b)
CSR with outliers; (c) preferential sampling.

For all sample designs presented above, we made a cross-validation compar-
ison of the three geostatistical models presented in section 3.2.Consider the
observations yq, ..., ¥y, at locations x1,...,x,. In this study we will compare
three models using the cross-validation technique:

(M1) Gaussian model:

Yy | Ky 027 ¢ ~ N (1M772]n + O-QR)
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(M2) Student-t model:
y | p, 0% ¢, v~ ST (1,u, v, 71, + O'QR)
(M3) Gaussian-Log-Gaussian model:
y | o é, A~N (1u,7‘21n + JQ(A_l/2 RA_l/Q))

Parameter estimation and prediction follow the Bayesian approach as pre-
sented in subsection 3.2 using the three proposed distributions for s,. We
sampled from the posterior of the model parameters using Metropolis-Hastings
with random walk proposals, which led to reasonable acceptance rates in the
vicinity of 30% to 50% for each parameter. The chains for the simulated
parameters have burn-in of 10000 and lag of 10 with resulting posterior sam-
ple size of 6981. Convergence was checked using coda package (Plummer
et al. (2006)) through R software. For all models the nugget effect was fixed
in the true value so that the focus of this study could be the spatial surface
estimation and prediction. The prior distributions used for all models were
pw~ N(0;10%), 072 ~ G(0.1;0.1), ¢ ~ G(1;2.3/med(u)). For the M3 model,
v~ GIG(0;0.75;6) and 0 | ¢,v ~ LG(—%;vo?R).

For the CSR and CSR with outlier scenarios were arbitrarily chosen ny =
77,ny = 5. MC and SIR estimators are based on averaging over the same
I = 100 splits. The parameter v is fixed at 3 for the M2 model in the CSR
scenario so that we are actually fitting a wrong model. For the preferential
scenario, we considered ny = 95 and ny = 5.

As can be seen in Table 3, the execution time (minutes) for the SIR
estimator using H = 5 is smaller than that for the MC estimator, if it is
considered the uniform prior. Analogously, we verified the computational
time considering a prior via distances. The time was similar to the previous
case and we omitted from the text. The computational cost is approximately:
5 to 6 times smaller for the Gaussian model, 5 to 8 times smaller for the
Student-t model and 6 to 10 times smaller for the GLG model when using
the SIR estimator. The high computational cost of the MC estimator is due
to the need of calculating the covariance matrix for each sampled split vector.
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Table 3: Computational times (in minutes) for three competing models.

M1 M2 M3
MC SIR MC SIR MC SIR
CSR 672 139 926.4 140 2028 210
CSR with outlier 672 120 828 183 1212 208.8
Preferential 967.2 163 1423.2 187 2481.6 298.8

We adopted the discrepancy measures based on the MC and SIR estima-
tors with their respective standard errors, assuming the uniform prior and
the prior via distances for the split vectors. In these examples, both prior
distributions led to similar conclusions. For clarity of analysis exposition,
we omit the results of uniform prior and Table 4 presents the discrepancy
measures based on the MC and SIR estimators with their respective stan-
dard errors adopting the prior via distances. We use Mahalanobis Distance
(MH), average Interval Score (IS) and Log Predictive Score (LPS) for pre-
dictive performance evaluation. As expected the SIR estimator variability
is greater than that of the MC estimator for the three scenarios, because
the SIR estimator is a heuristic approximation based on the same amount of
data. However, the point estimator obtained by SIR is a good approximation
of the original estimator.

Table 4 (CSR) presents predictive measure estimates for the complete
random scenario. It indicates that M3 and M1 models have similar values,
although it still correctly chooses the Gaussian model as the best model.
Model M2 with v = 3 has much worse performance than the other models
as it is not able to recover Gaussian tails. This example indicates that the
proposed cross-validation approach is leading to correct indications of best
model for this scenario.

Table 4 (CSR with outlier) correctly indicates that the M3 model is the
best choice for this scenario. This is due to the fact that this model tends
to detect sub-regions with larger variability. On the other hand, M1 and
M2 models overestimate the variance in the whole spatial domain. Although
the Student-t process has heavier tails than the Gaussian, it does not have
the flexibility to model georeferenced data. The Student-t process inflates
the variance of the whole process in the presence of outliers and does not
allow for both individual or regional outlier detection and different kurtosis
behaviours across space (see Lobo and Fonseca (2019) for a more detailed
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discussion).

Table 4 (Preferential Sampling) indicates similar results for M1 and M3
models for all adopted measures. We emphasize that although our dataset is
under effect of preferential sampling, we fit usual geostatistical models which
do not take this effect into account.

Table 4: Cross-validation for M1 and M3 models in each scenario with prior via distances.
The same splits are considered for all models.

CSR
MH average IS LPS
M1 MC 3.113 (1.3 x 107%) 4.422 (1.2 x 107%)  7.352 (2.5 x 1079)
SIR  3.057 (0.004) 4.191 (0.014) 7.420 (0.013)
M2 MC 4.030 (8.7 x 107%) 6.468 (5.4 x 1071%)  7.917 (2.5 x 107°)
SIR  3.828 (0.004) 6.491 (0.003) 7.958 (0.012)
M3 MC 3477 (3.4x107%) 4.763 (7.2 x 1078)  6.907 (1.5 x 107)
SIR  3.394 (0.020) 4.990 (0.253) 7.551 (0.062)
CSR with Outlier
MH average IS LPS
M1 MC 2.760 (1.3 x 107%) 7.158 (7.2 x 1078)  14.503 (4.1 x 107°)
SIR  2.829 (0.004) 7.114 (0.004) 14.536 (0.029)
M2 MC 4.499 (8.7 x 107%) 11.352 (3.0 x 107?) 18.795 (3.2 x 107°)
SIR  4.505 (0.002) 9.933 (0.015) 18.489 (0.023)
M3 MC 2.795 (4.1 x 107%) 4.966 (2.5 x 1078)  9.409 (9.9 x 1079)
SIR  2.062 (0.010) 4.699 (0.125) 7.751 (0.031)
Preferential Sampling
MH average IS LPS
M1 MC 3.154 (1.7 x 107%) 5.691 (9.4 x 1078)  7.441 (6.8 x 1079)
SIR  3.116 (0.007) 5.470 (0.020) 7.520 (0.059)
M2 MC 3.039 (1.3 x 107%) 6.781 (7.1 x 107®)  8.380 (3.4 x 107°)
SIR  3.762 (0.008) 6.241 (0.004) 8.160 (0.036)
M3 MC 4.052 (4.9 x 107%) 5.498 (6.4 x 10°7)  7.573 (5.9 x 107°)
SIR  3.957 (0.005) 5.558 (0.131) 7.422 (0.102)
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6.1. Analysing heterogeneity in the spatial domain

The same data presented in section 6 were stratified into four strata for
all scenarios. In this application, we do not apply any stratification method
to define the strata. Figure 5 presents the strata of the study region in A.
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Figure 5: Sample locations and underlying realizations of the signal process for the con-
sidered model in the simulation study: (a) CSR ; (b) CSR with outliers; (c) preferential
sampling. Strata are divided as: stratum 1 (bottom left), stratum 2 (top left), stratum 3
(bottom right) and stratum 4 (top right).

Table 5 shows the strata and selection of training and validation data
for the respective stratum via the sampling process for all scenarios. In this
study, we set the number of locations sampled for validation proportional
to the number of locations in each stratum. Notice that in scenario CRS,
a homogeneous process is considered, therefore it is expected the number of
events to be similar in each stratum, as shown in Table 5 (a). The I is
arbitrarily chosen in each stratum.

The execution time (in minutes) for the SIR estimator using H = 5 is
smaller than of the MC estimator, see Table 6. The computational cost for
SIR estimator is approximately: 4 to 6 times lower than MC estimator for
the Gaussian model, 4 times smaller than MC estimator for the Student-t
model and 6 to 8 times smaller than MC estimator for the GLG model.
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Table 5: Stratified sample for all scenarios.

CSR / Outlier Preferential

strata ny N Mk Wi strata Mg NrE vk Wi

1 21 19 2 0.250 1 47 42 5 0.500

2 17 15 2 0.250 2 20 18 2 0.200

3 24 22 2 0.250 3 13 12 1 0.100

4 20 18 2 0.250 4 20 18 2 0.200
total 82 T4 8 1 total 100 90 10 1

Table 6: Computational time (in minutes) for three competing models.

M1 M2 M3
MC SIR MC SIR MC SIR
CSR 880.2 205.2 R61.6 196.8 1533 208
CSR with outlier 808.8 183 928.8 231 1823.22 282.6
Preferential 11952 207.6 1101.6 2484 2259.6 286.80

Tables 7, 8 and 9 show that stratification reduces the variability of discrep-
ancy estimates for all scenarios and discrepancy measures. The hypothesis
of complete spatial randomness implies that the number of events per unit
area is constant (A) over all considered region. In the homogeneous case,
the estimates are approximately the same for each stratum. Regarding the
performance of the stratified estimator, their variability is smaller, mainly
for the SIR estimator.

The use of Mahalanobis distance, average Interval Score and Log Predic-
tive Score discrepancies leads to adequate model discrimination by indicating
the Gaussian model as the best model for scenario CRS. This is an expected
result, since the data are generated by the Gaussian model.

Clearly there is an increasing in the accuracy of the estimator by strat-
ifying the spatial region. Furthermore, the stratification allows the identifi-
cation of lack of fit for all models in region 3 for the scenario with outliers.
All models have much larger values of the discrepancy function for stratum 3
(bottom right in Figure 5 (b)), that contains the contaminated observations,
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as presented in Tables 8 (CSR with outlier) for all discrepancy measures
considered. Note, however the reduction of the variability of estimator. The
performances of the models are similar, except for M3 model. In this case,
the GLG model has better performance, indicating that if the region are
divided in sub-regions, a better predictive performance assessment of this
model for all sub-regions are provided .

The M3 model again stands out, because of its ability to capture het-
erogeneity in space. This is an appealing feature in the non-homogeneous
setup, because strata with a high concentration of events might present larger
variability.

Table 9 presents the preferential sampling scenario. The performance of
M1 and M3 models are similar, while M2 has the worst performance of all
three models. Stratified estimator shows the poor predictive performance in
region 1 for all models. In fact this is expected, as the fitted models do not
consider preferential sampling in its specification. We omitted the results of
M2 model for the stratified study, since it has a worse performance than M1
and M3 models for all scenarios.

Table 7:  Stratified cross-validation for M1 and M3 models for the complete spatial
randomness (CSR) scenario. The same splits are considered for all models.

M1 M3
strata MC SIR MC SIR
MH 1 1.81 (8.0 x 107%)  1.82 (0.002) 2.05 (1.8 x 107%)  2.08 (0.002)
2 1.78 (1.2 x 107%)  1.79 (0.002) 2.09 (1.9 x 107%)  2.04 (0.002)
3 1.73 (1.1 x 107%)  1.69 (0.002) 1.92 (1.6 x 107%)  1.96 (0.002)
4 1.66 (1.2 x 107%)  1.67 (0.003) 1.85 (1.7 x 107%)  1.91 (0.003)
Pt 1.74 (3.0x 1077)  1.74 (5.6 x 107*) 1.98 (4.5 x 1077) 1.99 (5.6 x 107%)
average IS 1 4.72 (1.9 x 1079)  4.94 (0.007) 4.25 (1.0 x 1071%)  4.63 (0.001)
2 4.56 (1.8 x 1079)  4.48 (0.026) 5.79 (2.7 x 107%)  6.28 (0.409)
3 4.04 (1.2 x 10719)  4.76 (0.011) 4.34 (5.0 x 1071%)  4.57 (0.000)
4 4.27 (1.7 x 1079 5.09 (0.038) 5.37 (6.7 x 107%)  5.57 (0.089)
st 4.39 (3.4x1071%) 4.82 (51 x107%) 4.94 (22x107%) 5.26 (0.031)
LPS 1 327 (1.4 x 107%)  3.44 (0.007) 3.34 (1.5 x 1075)  3.43 (0.004)
2 2.89 (9.7 x 1077)  3.39 (0.009) 3.46 (2.4 x 107%)  3.38 (0.003)
3 2.59 (6.0 x 10°7)  3.33 (0.009) 3.06 (1.4 x 107%)  3.21 (0.002)
4 2.82 (1.4 x 107%)  3.17 (0.011) 2.97 (2.4 x 107%)  3.21 (0.005)

Ut 289 (27x1077) 3.33(23x107%) 321 (47x1077) 3.31 (87 x 107%)
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Table 8: Stratified cross-validation for M1 and M3 models for the complete spatial ran-
domness (CSR) with outlier scenario. The same splits are considered for all models.

M1 M3

strata MC SIR MC SIR
MH 1 2.41 (3.9 x 107%)  2.14 (0.002) 1.98 (3.9 x 107°) 1.52 (0.003)

2 2.43 (4.1 x107%)  2.48 (0.003) 1.20 (4.1 x 107°) 1.55 (0.006)

3 3.42 (6.8 x 107%)  5.29 (0.070) 2.67 (6.8 x 107°) 2.68 (0.059)

4 2.33 (3.7 x 107%)  1.97 (0.004) 1.83 (3.7 x 107°) 1.47 (0.003)

¥t 264 (1.7x 105 297 (0.004) 1.92 (1.8 x 1075)  1.81 (0.004)
average IS 1 4.12 (1.7 x 10719)  4.49 (0.003) 2.658 (3.6 x 10719)  2.012 (0.022)

2 4.01 (2.5 x 10719)  4.64 (0.002) 2.29 (3.1 x 10719)  2.17 (0.012)

3 6.51 (2.8 x 10°7)  7.73 (0.055) 5.62 (2.6 x 10719)  6.45 (0.079)

4 3.44 (4.0 x 1071%)  4.87 (0.003) 3.66 (3.6 x 1071°)  2.82 (0.014)

Pt 4.52 (1.7x 107%)  5.43 (0.003) 3.56 (1.3 x 107%)  3.36 (0.008)
LPS 1 3.35 (25 x 10°°)  3.46 (0.004) 242 (15 x10°)  3.46 (8.0 x 10~ %)

2 3.26 (2.6 X 10*5) 3.72 (0.003) 1.92 (1.9 X 10*5) 2.64 (0.002)

3 4.64 (8.4 x107%) 5.98 (0.293) 3.92 (8.8 x 107%) 4.27 (0.053)

4 3.08 (2.1 x 107%)  3.36 (0.004) 3.15 (1.4 x 107?) 3.33 (5.0 x 107%)

st 3.58 (7.7 x 1077) 4.13 (0.019) 2.85 (9.3 x 107*)  3.42 (0.003)
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Table 9: Stratified cross-validation for M1 and M3 models in preferential sampling scenario.
The same splits are considered for all models.

M1 M3

strata MC SIR MC SIR.
MH 1 3.57 (1.7 x 107%)  3.63 (0.008) 3.38 (1.5 x 107%)  3.16 (0.004)
2 1.56 (9.9 x 107%)  1.58 (3.0 x 107%)  1.68 (1.2 x 107%)  1.84 (0.001)
3 0.97 (7.7 x1077)  0.95 (1.0 x 107*)  1.16 (1.0 x 107%)  1.15 (0.001)
4 1.64 (1.0 x 107%)  1.65 (2.0 x 107%)  1.73 (1.2 x 107%)  1.95 (0.003)
Ut 253 (28 x1077) 256 (8.7 x 107%) 2.48 (5.0 x 1075) 2.46 (0.001)
average IS 1 6.98 (1.9x 10°7)  6.50 (0.021) 6.89 (1.7 x 107'1)  6.72 (0.142)
427 (1.1 x 1079)  4.83 (0.009) 6.87 (8.5 x 1079)  7.37 (0.128)
3 4.35 (1.2 x 1071%)  4.60 (0.000) 6.91 (1.3 x 107°)  6.08 (0.210)
4 4.72 (2.6 x 107%)  4.32 (0.004) 6.87 (2.3 x 10711)  6.47 (0.139)
vt 573 (1.2 x 107%)  5.54 (0.002) 6.88 (7.9 x 1077)  6.74 (0.048)
LPS 1 817 (1.9x 107°)  9.36 (0.134) 9.02 (8.2 x 107°)  9.55 (0.018)
2 2.50 (1.0 x 107%)  3.23 (0.013) 4.42 (8.8 x 107%)  3.41 (0.010)
3 1.20 (1.6 x 1077)  1.36 (0.001) 2.67 (2.3 x 107%)  1.77 (0.004)
4 2.98 (1.6 x 1075)  2.95 (0.012) 4.71 (9.8 x 1075)  3.46 (0.012)
T 530 (1.4x 1075 6.06 (0.034) 5.21 (1.4 x 107*)  6.32 (0.005)

7. Application to a rainfall data

The dataset used in this application contains the total rainfall (in mm)
recorded in October 2010 in 32 locations in the city of Rio de Janeiro, Brazil,
obtained from Instituto Pereira Passos, known for offering one of the largest
collections of maps and statistical data of Rio de Janeiro available in Ar-
mazem de Dados. Stations with missing information were removed from the
study. Ferreira and Gamerman (2015) analyzed the same kind of data for
October 2005 in the context of optimal design using preferential sampling.

Figure 6 presents the spatial arrangement of rainfall stations in the city of
Rio de Janeiro. Note that the spatial arrangement of the monitoring stations
seems to indicate a higher concentration in places where precipitation levels
are very large. It appears that the point pattern associated with the stations
has been observed from an inhomogeneous process. Besides that, Figure 7
presents the altitude according to stations installed in the city of Rio de
Janeiro. Note that, higher altitudes are concentrated where there is a higher
rainfall intensity.
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[46.6,87.15) .
[87.15,103.5) oo %
[103.5,147.5)

® [147.5,210.8]

Figure 6: Rainfall data: stations installed in the city of Rio de Janeiro (the monitoring
stations are separated according to the intensity of rainfall).

[2,17.25)
[17.25,32.5)
[32.5,61.5)

® [61.5,357]

Figure 7: Rainfall data: altitude according to stations installed in the city of Rio de
Janeiro (the monitoring stations are separated according to the altitude).

For statistical inference purposes, the spatial mean was adjusted consid-
ering latitude and longitude as covariates. For this analysis, the models fitted
were the Gaussian (M1) and Gaussian-Log-Gaussian (M3) models presented
in Section 3.2.

We evaluated both models with exponential covariance structures for spa-
tial dependence. Parameter estimation and prediction follow the Bayesian
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paradigm as presented in subsection 3.2 using the three proposed distri-
butions for s,. The chains for the simulated parameters have burn-in of
10000 and lag of 10 with resulting posterior sample size of 3981. Con-
vergence was checked using coda package (Plummer et al. (2006)). The
prior distributions used for all models were (39, 81, 82) ~ N(0,10%13), 072 ~
G(0.1;0.1), ¢ ~ G(1;2.3/med(u)). For M3 v ~ GIG(0;0.75;6) and & |
¢,v ~ LG(—%;v0°R). The nugget effect 72 was set to 0 in this application.
The analysis of the posterior distribution of spatial mean shows significantly
different estimates for both models. The spatial mean for M3 is significantly
lower than the spatial mean estimated by M1. Actually, this is plausible
since the process for the data is inhomogeneous and model M3 compensates
this heterogeneity by estimating different variances across space.

An important issue in using cross-validation is the training dataset size.
If we have an acceptable amount of training data, the model is sufficiently
informed by the training set. First, we arbitrarily choose ny = 84%n and
ny = 16%n, for the training and validation samples, respectively. We also
considered an extreme sampling setup with a small training sample, ny =
32%n and ny = 68%n. It is expected that using a reduced training sample
size might cause some impact on the estimation of model parameters. For
both scenarios, we set I = 500 split vectors and H = 3 independent MCMC
samples simulated from SIR estimator. Note that the SIR estimator can
produce estimates close enough to the MC estimator.

Table 10 displays the performance of both models according to the Ma-
halanobis distance, average Interval Score and Log Predictive Score when
it is assigned a uniform prior to the splits. As expected, the results of our
analysis suggest it is best to use a relatively large training sample for making
cross-validation under our approach. The estimates obtained for M3 model
are smaller than for M1 model for both estimators and measures. This is due
to the fact that the Gaussian-Log-Gaussian process proposed by Palacios and
Steel (2006) is able to capture heterogeneity in space through a mixing pro-
cess used to increase the Gaussian process variability, although it does not
take into account dependence between the monitoring stations arrangement
and the total rainfall. Table 11 shows the performance of both models using
prior via distances. We obtained the same conclusions compared to uniform
prior. Both models do not perform well when the training sample size is very
small.

33



Table 10: Rainfall Data: cross-validation using discrepancy measures for M1 and M3
models using uniform prior. The same splits are considered for both models.

ny = 16%n MH average IS LPS

M1 MC  6.983 (1.9 x 107%)  246.732 (1.2 x 107%) 28.868 (0.024)
SIR  6.419 (0.003) 232.934 (3.314) 27.941 (0.080)

M3 MC 4552 (6.9 x 10°6)  149.468 (1.6 x 10~6) 26.765 (7.7 x 10°9)
SIR  4.805 (0.001) 131.533 (0.013) 25.463 (0.022)

ny = 68%n MH average IS LPS

ML MC 15257 (7.4 x 10°%) 376.952 (8.3 x 104) 161.751 (0.001)
SIR  14.699 (0.006) 355.724 (4.093) 131.105 (0.456)

M3 MC  7.829 (5.6 x 1077)  188.203 (4.6 x 10~%) 114.341 (3.6 x 10°)
SIR  7.746 (0.020) 192.63 (0.112) 102.925 (0.626)

Table 11: Rainfall Data: cross-validation using discrepancy measures for M1 and M3
models using prior via distances. The same splits are considered for both models.

ny = 16%n MH average IS LPS

ML MC  5.382 (1.6 x 1075)  423.291 (2.4 x 10%)  33.032 (0.076)
SIR 6.419 (0.005) 469.677 (0.498) 29.787 (0.062)

M3 MC 4552 (6.9 x 105  209.612 (1.3 x 1075) 26.765 (7.7 x 10~°)
SIR  4.805 (0.011) 189.610 (0.057) 27.564 (0.575)

ny = 68%n MH average IS LPS

ML MC 14784 (1.2 x 1075) 584.878 (0.002) 185.215 (0.082)
SIR  14.699 (0.004) 620.874 (0.103) 173.387 (0.407)

M3 MC  7.829 (5.6 x 1077)  238.587 (1.6 x 10~%) 117.092 (0.118)
SIR  7.746 (0.008) 216.337 (0.249) 111.636 (0.181)

In addition, we take into account spatial heterogeneity using stratified
cross-validation techniques. The choice of strata was performed after observ-
ing the sample locations. We divide the spatial region into k = 2 and k = 3
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strata via K-means ++ criteria. Although K-means ++ algorithm does not
take into accounting spatial contiguity constraints, define by the boundaries
between regions, the procedure indicated that locations belong to the same
strata if there is a contiguous spatial representation between these locations.
Figure 8 presents the two proposals for stratification considering K-means
++ as criteria. Notice that in the two cases in Figure 8 (i) and (ii), there is a
specific stratum where the monitoring stations are closer together and there
is a higher concentration of total rainfall data. The others strata are defined
by the remainder of the locations, that is, more distant locations with lower
values of total precipitation and altitudes, as can be seen in Figures 6 and 7.

stratum 1 - stratum 1

stratum 2 @ stratum 2 g
(;-\—ig' ’ stratum 3 C\f “

Figure 8: Proposals for stratification via K-means ++ algorithm: (i) k¥ = 2 strata and (ii)
k = 3 strata.

Table 12 presents the sample arrangement considering the two proposal
with ny = 12.5%n taking into account the weights, w, for each stratum,
respectively. The results for stratified scenario can been seen in Table 13.

Table 12: Stratified scenarios: training and validation samples.

strata np  ny w strata np ny w
1 8 1 0.250 1 ) 1 0.250
2 20 3 0.750 2 9 1 0.250
- - - - 3 14 2 0.500
total 28 4  1.000 total 28 4  1.000
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Table 13: Rainfall Data: stratified cross-validation using discrepancy measures for M1 and

M3 models. The same splits are considered for both models.

M1 M3
k=2 strata MC SIR MC SIR
MH 1 1.549 (9.2 x 1077) 2.264 (0.002) 1.437(6.7 x 1075) 1.391 (0.003)
2 3.668 (1.2 x 1079) 3.334 (0.003) 3.194(4.11 x 107?) 3.123 (0.013)
Wt 3.139 (1.1 x 1079) 3.067 (0.001) 2.755 (2.3 x 1079) 2.690 (0.004)
average IS 1 233.694 (2.8 x 107°)  236.143 (0.066)  171.451 (2.5 x 1075)  199.013 (0.002)
2 255.229 (7.2 x 107%)  253.440 (0.074)  219.911 (1.3 x 107°)  222.920 (0.014)
Tt 249.845 (5.0 x 107°)  240.467 (0.035) 207.796 (6.7 x 1075) 204.99 (0.002)
LPS 1 5.360 (5.0 x 1079) 6.989 (0.029) 8.772 (7.7 x 107%) 8.869 (0.076)
2 17.612 (1.3 x 107°)  16.603 (0.023)  10.585(0.036) 11.470 (0.213)
gt 14.549 (8.8 x 107%)  14.200 (0.013)  9.225 (0.018) 10.820 (0.032)
M1 M3
k=3 strata MC SIR MC SIR
MH 1 1.764 (1.1 x 107) 1.325 (0.002) 1.057 (3.9 x 1077) 1.652 (0.003)
2 1.336 (4.9 x 1077) 1.441 (0.001) 1.731 (2.5 x 107) 1.189 (0.005)
3 3.020 (1.1 x 1079) 3.763 (0.004) 2.816 (9.2 x 1079) 2.975 (0.019)
st 2.285 (8.8 x 1077) 2.573 (0.002) 2.105 (4.0 x 107°) 2.198 (0.006)
average IS 1 310.195 (3.9 x 107°)  297.982 (0.003)  167.967(3.0 x 10°7)  161.333 (0.026)
2 98.212 (1.1 x 1075)  104.186 (0.130)  158.002 (4.1 x 107%)  146.484 (0.019)
3 282.455 (5.2 x 107°)  262.927 (1.867)  318.476 (2.6 x 107°)  314.289 (0.930)
Wt 243.329 (3.1 x 107°)  240.769 (0.222) 240.730 (1.1 x 107°) 234.099 (0.108)
LPS 1 5.906 (6.0 x 1079) 5.019 (0.009) 7.582 (2.0 x 1075) 8.886 (0.049)
2 4.624 (1.0 x 1079) 4.999 (0.004) 4.633 (4.7 x 107) 5.685 (0.307)
3 12.111 (8.0 x 107%)  15.236 (0.053)  9.275 (0.003) 12.330 (0.306)
st 8.688 (5.1 x 107) 10.122 (0.007)  7.692 (0.001) 9.807 (0.073)

Observe that the different discrepancy estimates in Table 13 between
strata considering MH, average IS and LPS measure seen in both scenarios,
k = 2 and k = 3, respectively. For k = 2 scenario, observe that M1 produce
high estimates in stratum 2 considering MH, average IS and LPS measures,
as can be seem from Table 13. In fact, this might be a result of the number
of neigbours that are far or more close apart. Furthermore, the stratification
allows the identification of lack of fit for both models in stratum 2 compared
to stratum 1 for £ = 2 and all strata considering & = 3. Besides that,
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M3 model apparently performs better for both choices of training sample,
indicating better predictive performance considered in the two stratification
proposed in this application.

8. Conclusions

This work considers Bayesian model comparison and criticism for spa-
tially correlated data analysis. Cross-validation techniques are considered to
evaluate the model predictive performances and we allow for uncertainty in
the choice of validation sets through the prior distribution on the possible
sets.

The proposed split vector prior distributions allow to accommodate the
uncertainty in the validation and trainning set choice. This addresses impor-
tant issues that have not been completely dealt with in the literature, such
as the ad hoc choice of validation sets in spatial data analysis.

The prior via distances choose the location to compose the training sample
according to their respective probabilities. These probabilities depending
on their respective distance between of the previous selected point and all
the others candidates points to the training sample. Since irregular spatial
regions as often occur in data applications, the prior via distances is an useful
alternative to the uniform prior.

The SIR estimator is a good approximation of the MC estimator and
requires only a few MCMC runs for the parameter estimation step, besides
overcoming the computational limitation of Bayesian cross-validation tech-
niques.

The proposed stratified scheme contributes to reducing the global vari-
ability of SIR estimators. Futhermore, it indicates regions with lack of fit in
the spatial domain textcolorredsuch as presence of outliers and preferentia-
bility in the point pattern.

Our stratification approach relies on the definition of strata in the spa-
tial domain. As pointed out by Cochran (1999), there are important issues
related to the building of the strata, such as: the potential variables used to
determine them; the determination of their boundaries; and the number of
strata.

Moreover, the question of choosing the training sample size should also
be considered and it is not trivial. We considered two different scenarios in
the application to rainfall data to accommodate the possible effect of choos-
ing either a too small or too large training set through the three proposed
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prior distributions: uniform, distances and stratified. Further research would
consider the validation size effects in the context of spatial model choice.
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Appendix A. Student-t process

An n-dimentional random vectory = (y(x1), ..., y(z,)) follows a Student-
t spatial process (Roislien and Omre (2006)) with degrees of freedom v € R,
mean vector ul € R"™ and covariance matrix ¥ = o2 R if its joint probabili-
dade density function is given by

PeE ), sy -]
ZOREIE v |
(A.1)

where I'(-) denotes the gamma function and R is the correlation matrix
with elements 7;; = exp{—||z; — z;||/¢}, with range parameter ¢ > 0, that
determines the rate at which the correlation between observations decreases
as distances grow.

The Gaussian process is a special case of Student-t proces with degrees
of freedom v — oc.

fy lp,o®o,v) = I

v
2

Appendix B. The choice of discrepancy function

One way to evaluate a spatial model is through the accuracy of its pre-
dictions. In particular, we are interested in using the predictions to measure
the performance of a model and to compare several models.

It is very common to use the sum of squared prediction errors as a measure
of discrepancy, because it is type of cross-validation that provides a measure
of model fitness for those observations left out of the estimation procedure.
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Alqallaf and Gustafson (2001) and Thall et al. (1997) adopt this measure
for fitting a univariate dataset. As follows some common used discrepancy
measures are presented.

Mean squared prediction errors It can be written as

re 1 re
r(y" P yvi) = — Il (vl — yvi) [P (B.1)
ny

Gelman et al. (2014) explain that equation (B.1) has the advantage of
being easy to compute and to interpret, but the disadvantage of being less
appropriate for models that are far from the normal distribution. In addition,
this measure does not take into account the correlation between observations.

Mahalanobis Distance This measure takes into account the covariance ma-

trix of the common distribution of the two random vectors (Mahalanobis
(1936)).

r(y" P, yv) = \/(YQE[Z] —yvis) 2 yvE — Yve)s (B.2)

where ¥ = 72I. + 0?R is the predictive covariance matrix of the regions
formed by the locations that belong to both vectors. Therefore, using the
Mahalanobis distance, we can compare the validation data sample, taking
into account the spatial dependence. Extreme values for the Mahalanobis
distance indicate a conflict between the validation data and predictive data.
Bastos and O’Hagan (2008) adopt this measure to validate and assess the
adequacy of a Gaussian processes emulator.

We adopt as discrepancy measures the predictive accuracy for probabilis-
tic forecasts known as scoring rules A review of the most common scoring
rules and properties are presented by Gneiting and Raftery (2007). In this di-
rection, Gelman et al. (2014) presents different ways of defining the accuracy
or error of model’s predictions, and show methods for estimating predictive
accuracy or error from data. Vehtari et al. (2017) consider these measures in
the context of leave-one-out cross-validation (LOO-CV).

Interval Score Interval forecasts is a crucial special case of quantile predic-
tion (Gneiting and Raftery (2007)). It compares the predictive credibility
interval with the true value one, and consider the uncertainty in the predic-
tions such that the model is penalized if an interval is too narrow and misses
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the true value (validation observation). The Interval Score is given by

2 2
r(y yvi) = (u—10)+ ;(l R AUCI I ;(YV[sl — My, s (B3)
where [ and u represent for the forecaster quoted 7 and 1 — 2 quantiles and
yv[s] the sample validation vector. A natural choice for 7 is 0.05 resulting in
a range of 95% of credibility. Note that for each element of yy g we have one
interval score measure. The global measure is obtained taking the average of
the interval scores for all validation cases.

Log Predictive Score This measure evaluates the accuracy of the density
forecasts using predictive log-scores. It is based on the predictive distribution
q and on the observed yyg,

rep

r(y"®, yvis) = —log [a(yvis)] - (B.4)

Note that under the Gaussian model assumption, it is similar to the Maha-
lanobis distance in (B.2).

Appendix C. Markov chain Monte Carlo sampler

The prior distributions considered for the parameters in Section 2 and
proposal densities used in the MCMC algorithm are detailed as follows.

1. 0> ~ GI(a,b), a,b > 0. The proposed density in the MCMC sampler
is:
In(0?) ~ Normal(ln(a®*=Y), T(r2))-

2. i~ Normal,(0,77), 77 > 0. The proposal density in the MCMC
sampler is:
 ~ Normal (u*=Y, a(zu)).

3. ¢ ~ Gama(l,c/med(us)), with ¢ > 0 and med(us) denoting the median
distance in the observed data. The proposal density in the MCMC
sampler is:

In(¢) ~ Normal(In(e*~Y), a(2¢)).
4. Jeffreys independent prior distribution Fonseca et al. (2008):

() - (452231
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with ¢/(a) = W the trigamma function. In the context of regression
models, this prior distribution guarantees that the posterior distribu-
tion for v is proper. The proposal density in the MCMC sampler is:

In(v) ~ Normal(In(v*=V), 0(21,)) :

Appendiz C.1. GLG Bayesian model

We follow Palacios and Steel (2006) to obtain the posterior distribution
of parameters in the GLG model. The vector y has conditional distribution
given by

y |, 6,0% A, 7% ~ Normal,(p, 721, + 02(A~Y2 R A™Y/?))

with A = diag(dq,...,0,) and ¢ the spatial range parameter. Define ¥ =
2L, + 0?(ATVPRATY?).

1. 0> ~ GI(a,b), a,b > 0. The proposed density in the MCMC sampler
is:
In(0?) ~ Normal(ln(a®*=Y), 0(r2))-

2. i~ Normal,(0,77), 77 > 0. The proposal density in the MCMC
sampler is:
1~ Normal (=Y, O’(ZM)).

3. ¢ ~ Gama(l,c/med(us)), with ¢ > 0 and med(us) denoting the median
distance in the observed data. The proposal density in the MCMC

sampler is:
In(¢) ~ Normal(In(e* =), 0(2¢)).

4. v~ GIG((,0,1), C € R, 6 € R and ¢ € R. The proposal density in the
MCMC sampler is:

In(v) ~ Normal(In(v*=D), O'(QU)).

5. In(d) | v,¢ ~ Normal, (—%1, UR). The proposal in the MCMC sam-
pler is:
The spatial region is divided in subregions and a random walk proposal
density is used for each subregion. Palacios and Steel (2006) propose a
independent sampler which might be more efficient than random walk
proposals in the case of large datasets.

In Gaussian case, we run the sampler without the steps for v (next to
zero) and & (which is equal to 1).
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Appendix D. Variance estimator

According to Robert and Casella (2009), the generic problem involves
evaluating the integral

@mawzjﬁmﬂ@m, (D.1)

where x denotes the set where the random variable X takes its values, which
is usually equal to the support of the density f.

The principle of the Monte Carlo method for approximating equation
(D.1) is to generate a sample X7,..., X, from the density f and proposed
as an approximation to the empirical average

=3 hwy)

since h,, converges almost surely to Ef(h(X)) by the strong law of large
numbers.

When h?(X) has a finite expectation under f the speed of convergence of
h,, can be assessed, since the convergence takes place at a speed O(y/n) and
the asymptotic variance of the approximation is

l/m@yJMMXMWmM% (D-2)

var(hy,) = -

which can also be estimated from the sample (Xi,..., X)) through

n

1

Uy = —
n? 4

Jj=1

[h(x;) — ha]”.

Analogously to equation (D.2), we can obtain the variance of the estima-
tors W,,. and Wg,;,.. Notice that from the equation (17) we obtain,

11 < .12
var(¥,, :[_ﬁZZ[ Y ' Yviso)) — ¥ c] (D.3)

=1 j5=1

Thus,

W
—
.
I
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is the SIR estimator variance, obtained from equation (19), where,

Z}jzl r (y:;pa YV[s<i)]) Why
Z;'Izl Wh

According to Alqallaf and Gustafson (2001) to determine the variance of
\ilsir, consider the terms ¥,; as elements of an H by I matrix, and note that
each element has the same distribution. We can consider a term that denote
the variance of this distribution, a term the common covariance of any pair
of distinct elements from the same row, and another term be the common
covariance of any pair of distinct elements from the same column. Notice
that any two elements from different rows and columns are uncorrelated.
Therefore,

Wy =

H H I i1
A 1 1 - N
’U(ZT(\Ijsir) == m {ﬁ Z Z(qjhz ‘Ilszr)Q + 2 Z Z (\I’hz \Ijsir)(\ljhj - \Dsir)
h=1 i=1 h=1 i=1 j=1
I H h-1
+ 2 Z Z (\Ilhz \I’sir)(qjji \Ijszr)}
i=1 h=1 j=1

Appendiz D.1. SIR estimator details
We draw a MCMC sample from ¢(f), which is then reweighted using
importance sampling to obtain p(f | s). The same posterior sample is used

for every split s considered, saving computational time.
The equation weighting term wy,; = % can be obtained by applying
vj

the logarithm of the ratio as follows
p(Oh; | yT[s])} f(yris) | Ony)
log(wp;) = log {— =logs —/—F———~-
() 9(Ons) f(y | Onj)®
= log f(yris) | Ons) — clog f(y | Ons) (D.5)

Appendiz D.2. Stratified Variance var(\ilk)
For the MC estimator, we have each r (y;-ep 7}’v[s<i>}> as the discrepancy
distribution. Then

. 1 &1 e
Wine, = in ; DL (i, yviso)

=1
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is the MC estimator in each stratum. We can obtain the variance of the
stratified MC estimator as

U(ZT(\iJSt) =

-3 %(1 - ka)nsk (D.6)

where
ng

SZ = ;) Z(Tm - \i]k’)z

(i, —1) =

and 7, denotes any discrepancy function. Note that equation (D.6) can be
written as

K
var(¥%) = wvar (Z@Zt>

(D.7)

Therefore, var(¥st) = var(w,¥;) = w?var(V;),Vk = 1,..., K. Analo-
gously, we have a similar result for the SIR estimator variance.
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