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Abstract

In this article, finite mixtures of scale mixtures of skew-normal (FM-SMSN) distributions are

introduced with the aim of dealing simultaneously with asymmetric behavior and heterogeneity

observed in some data sets. A Bayesian methodology based on the data augmentation principle

is derived and an efficient Markov-chain Monte Carlo (MCMC) algorithm is developed. These

procedures are discussed with emphasis on finite mixtures of skew-normal, skew-t and skew-slash

distributions for both univariate as well as multivariate case. Univariate and bivariate data sets

using FM-SMSN distributions are analyzed. According to the results FM-SMSN distributions

support both data sets.

Keywords: Bayesian inference, finite mixture, scale mixture of normal distributions, Markov

chain Monte Carlo.
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1 Introduction

Finite mixtures of distributions have been vastly applied in different scientific fields, such as genetics

(Fu et al., 2011), neural networks (Zhang et al., 2013), image processing (Bouguila et al., 2004)

and social sciences (da Paz et al., 2017), just to mention a few. This class of models comprise a

powerful tool to deal with heterogeneous data in which observations belong to distinct populations

and to approximate complex probability densities.

The class of scale mixtures of skew-normal distributions (Branco and Dey, 2001, SMSN) deals

efficiently with skewness and heavy-tails. The SMSN family encompasses the entire symmetric class

of scale mixtures of normal distributions (Andrews and Mallows, 1974). Additionally, it contains as

proper elements the skew-normal (Azzalini, 1985, SN), skew-t (Azzalini and Capitanio, 2003, ST)

and skew-slash (Wang and Genton, 2006, SSL), among others. These distributions are characterized

by heavier tails than the skew-normal, providing a reasonable alternative for robust inference in

presence of skewness.

As an attempt to model properly data sets arising from a class or several classes with asymmetric

observations, Lin, Lee and Yen (2007) and Lin, Lee and Hsieh (2007) proposed a methodology for

maximum likelihood estimation of finite mixtures of skew-normal and skew-t distributions based

on EM-type algorithm (Dempster et al., 1977). Basso et al. (2010) extended these ideas to finite

mixture models based on SMSN distributions.

Frühwirth-Schnatter and Pyne (2010) introduced a Bayesian methodology for finite mixtures of

univariate as well multivariate skew-normal and skew-t distributions. Based on the data augmen-

tation principle, the authors developed a Markov chain Monte Carlo (MCMC) algorithm in order

to perform the sampling from the joint posterior distribution. Furthermore, they expressed the re-

sulting model using a stochastic representation in terms of a random-effects model(Azzalini, 1986;

Henze, 1986) and the standard hierarchical representation of a finite mixture model introduced by

Diebolt and Robert (1994).

In this paper, a Bayesian approach for finite mixture of scale mixtures of univariate and multi-

variate skew-normal models is proposed. To that end, the class of models presented by Basso et al.

(2010) and a multivariate extension are described from a Bayesian perspective and the methods
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considered by Frühwirth-Schnatter and Pyne (2010) are employed.

The remainder of the paper is organized as follows. Section 2 introduces the scale mixtures

of skew-normal distributions. Section 3 is related to modeling finite mixtures of scale mixtures

of skew-normal (FM-SMSN) distributions from a Bayesian viewpoint. Section 4 is devoted to the

application and model comparison among particular members of the FM–SMSN using univariate

and bivariate data sets. Finally, some concluding remarks and suggestions for future developments

are given in Section 5.

2 Scale mixtures of skew-normal distributions

In this section the class of scale mixtures of skew-normal distributions (Branco and Dey, 2001) is

introduced. First, the univariate skew-normal distribution is described and the multivariate version

is derived. Then, based on the stochastic representation, the SMSN distributions are presented, in

particular, the skew-t and the skew-slash. Finally, a reparameterization is defined.

2.1 The univariate and multivariate Skew-Normal Distribution

As defined by Azzalini (1985), a univariate random variable Z follows a skew-normal distribution,

Z ∼ SN(µ, σ2, λ), if its probability density function is given by

fZ(z) =
2

σ
φ

(
z − µ
σ

)
Φ

(
λ

(
z − µ
σ

))
, z ∈ <, (1)

where φ(·) and Φ(·) are, respectively, the probability density function (pdf) and the cumulative

distribution function (cdf) of the univariate standard normal distribution. Furthermore, (µ, σ2, λ) ∈

< × <+ ×< are the location, scale and skewness parameters respectively.

Lemma 1 A random variable Z ∼ SN(µ, σ2, λ) has a stochastic representation given by

Z = µ+ σδW + σ
√

1− δ2ε, (2)

where W ∼ TN[0,∞)(0, 1) and ε ∼ N(0, 1) are independent and δ = λ/(
√

1 + λ2). TNA(·, ·) and

N(·, ·) denote the truncated normal on set A and the normal distributions respectively.
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Azzalini and Dalla Valle (1996) proposed a multivariate version of the skew-normal distri-

bution as a generalization of the stochastic representation stated in equation (2). Let Y =

(Y1, . . . , Yp)
′ ∈ <p such that Yj = δjW +

√
1− δ2εj , j = 1, . . . , p, where W ∼ NT[0,+∞)(0, 1)

and ε = (ε1, . . . , εp)
′ ∼ Np(0,Σε) are independent and δj ∈ (−1, 1). Np(·, ·) denotes the mul-

tivariate normal distribution. Hence, the transformation Z = µ + σY with location parameter

µ = (µ1, . . . , µp)
′ ∈ <p and diagonal scale matrix σ =Diag(σ1, . . . , σp), σj > 0, is immediately

associated to the follow stochastic representation

Zj = µj + σjδjW + σj

√
1− δ2j εj . (3)

The resulting distribution is denominated the basic multivariate skew normal distribution, Z ∼

SNp(µ,Σ,λ), with density

fZ(z) = 2φp(z− µ; Σ)Φ(λ
′
σ−1(z− µ)), (4)

where φp(·) is the zero mean multivariate normal distribution probability density function. It

is possible to relate λ and Σ to the parameters δ = (δ1, . . . , δp)
′
, σ and Σε in the stochastic

representation (3) through

Σ = σΣσ, λ =
1√

1− δ′δ
Σ
−1
δ, (5)

where Σ = ∆Σε∆ + δδ
′

and ∆ =Diag(
√

1− δ21 , . . . ,
√

1− δ2p). Moreover, Σjj = (1− δ2j )(Σε)jj +

δ2j = 1, thus Σjj = ω2
j , consequently, Σ is a correlation matrix.

Considering the parameters (µ,Σ,λ) , the parameters (δ,σ,Σε) in the stochastic representa-

tion (3) are obtained from

δ =
1

1 + λ
′
Σλ

Σλ, Σε = ∆−1Σ∆−1 − λ̃λ̃
′
, (6)

where Σ = σ−1Σσ−1, σ =Diag(Σ)1/2 a diagonal matrix obtained from the diagonal elements of

Σ, λ̃ = (λ̃1, . . . , λ̃1) in which λ̃j = δj/
√

1− δj and ∆ as previously defined.
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2.2 Scale mixtures of univariate and multivariate skew-normal distributions

Let Z be a random variable such that Z ∼ SN(0, σ2, λ). A random variable X is in the scale

mixtures of skew-normal family, X ∼ SMSN(µ, σ2, λ,H), if it can be written as

X = µ+ k1/2(U)Z, (7)

where µ, k(·) and U are, respectively, a location parameter, a positive weight function and a random

variable with cumulative distribution function H(·;ν) and probability density function h(·;ν) where

ν is a scalar or a vector parameter indexing the distribution of U .

Lemma 2 A random variable X ∼ SMSN(µ, σ2, λ,H) has a stochastic representation given by

X = µ+ σδk1/2(U)W + k1/2(U)σ
√

1− δ2ε, (8)

where W ∼ TN[0,+∞)(0, 1) and ε ∼ N(0, 1) are independent and δ = λ/(
√

1 + λ2).

A random variable X belongs to the scale mixtures of multivariate skew-normal family, X ∼

SMSNp(µ,Σ,λ, H), if it can be written as

X = µ+ k1/2(U)Z, (9)

where Z ∼ SNp(0,Σ,λ).

Along this work, we restrict our attention to the case in that k(U) = U−1. As mentioned above,

the SMSN family constitutes a class of asymmetric thick-tailed distributions including the skew

normal, the skew-t and the skew-slash distributions, which are obtained by choosing the mixing

variables as: U = 1, U ∼ G(ν2 ,
ν
2 ) and U ∼ Be(ν, 1), where G(·, ·) and Be(·, ·) indicate the gamma

and beta distributions respectively.

2.3 Reparameterization

Following Frühwirth-Schnatter and Pyne (2010), a parameterization in terms of θ∗ = (µ, ψ, τ2, ν)

is applied for the scale mixtures of skew-normal distributions, hence the stochastic representation

given by the equation (8) is rewritten as

X = µ+ ψk1/2(U)W + k1/2(U)τε, (10)
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where ψ = σδ and τ2 = σ2(1 − δ2). The original parametric vector θ = (µ, σ2, λ, ν) is recovered

through

λ =
ψ

τ
, σ2 = τ2 + ψ2. (11)

Introducing the new parametric vector θ∗ = (µ,ψ,Ω, ν), it is equally possible to find a similar

representation for the scale mixtures of multivariate skew-normal distributions:

X = µ+ψW + ε, (12)

where ψ = (ψ1, . . . , ψp)
′
, ψj = σjδj , Ω = Σ − ψψ′ , ε ∼ Np(0, k

1/2(U)Ω) and W |U = u ∼

TN[0,+∞)(0, k
1/2(u)). The original parametric vector θ = (µ,Σ,λ, ν) is recovered through

Σ = Ω +ψψ
′
, λ =

1√
1−ψ′Σ−1ψ

σΣ−1ψ, (13)

remembering that σ =Diag(Σ)1/2 a diagonal matrix obtained from the diagonal elements of Σ.

3 Finite mixtures of Scale mixture of skew-normal distributions

3.1 The model

Consider a K-component mixture model (K > 1) in which a set x1, . . . ,xn arises from a mixture

of SMSNp distributions, given by

f(xi|ϑ,η) =
K∑
k=1

ηkg(xi|θ∗k), (14)

where ηk > 0, k = 1, . . . ,K,
∑K

k=1 ηk = 1 and g(·|θ∗k) denotes the SMSNp(θ
∗
k) pdf. Here, ϑ and

η denote the unknown parameters with ϑ = (θ∗1, . . . ,θ
∗
K) and η = (η1, . . . , ηK). According to the

reparameterization introduced on subsection 2.3, θ∗k = (µk, ψk, τ
2
k , νk) and θ∗k = (µk,ψk,Ωk, νk)

are the parameters for the component k assuming p = 1 and p ≥ 2 respectively.

Introducing the allocation vector S = (S1, . . . ,Sn), i. e., the vector containing the information

about in which group the observation xi of the random variable Xi is. The indicator variable
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Si = (Si1, . . . , SiK)>, with

Sik =


1, if Xi belongs to component k

0, otherwise

(15)

and
∑K

k=1 Sik = 1. Given the weights vector η, the latent variables S1, . . . ,Sn are independent

with multinomial densities

p(Si|η) = ηSi11 ηSi22 . . . (1− η1 − · · · − ηK−1)SiK . (16)

The joint density of X = (X1, . . . ,Xn) and S = (S1, . . . ,Sn) is given by

f(x, s|ϑ) =
K∏
k=1

n∏
i=1

[ηkg(xi|θ∗k)]
Sik . (17)

Note that from the stochastic representation and the introduction of the latent variables W =

(W1, . . . ,Wn) and U = (U1, . . . , Un) described on subsection 2.2, a p-dimensional random variable

Xi drawn from the scale mixture of skew-normal distributions has a hierarchical representation.

Hence, the individual Xi belonging to the k-th component can be written as

Xi|θ∗k, wi, ui, Sik = 1 ∼ Np(µk +ψkwi, u
−1
i Ωk),

Wi|ui, Sik = 1 ∼ TN[0,+∞)(0, u
−1
i ), (18)

Ui|Sik = 1, νk ∼ h(·;νk).

Thus, the joint density of X and the latent variables S, W and U is

f(x, s,w,u|ϑ,η) =

K∏
k=1

[ n∏
i=1

[ηkf(xi|θ∗k, wi, ui)f(wi|ui)f(ui|νk)]Sik
]
p(s | η). (19)

3.2 Bayesian Inference

To perform a Bayesian analysis, the first step is to select the priors distributions. In the context of

finite mixture models, it is necessary a special attention on these choices since it is not suggested

to choose an improper prior because it might implies in an improper posterior density (Frühwirth-

Schnatter, 2006). Additionally, as noticed by Jennison (1997), it is recommended to avoid be as
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“noninformative as possible” by choosing large prior variances because the number of components

is highly influenced by the prior choices. For these reasons, as in Frühwirth-Schnatter and Pyne

(2010), it was adopted the hierarchical priors introduced by Richardson and Green (1997) for

mixtures of normals to reduce sensitivity with respect to choosing the prior variances.

Hence, taking an arbitrary mixture component k, the prior set was specified as: η ∼ D(e0, . . . , e0),

(µk, ψk)|τ2k ∼ N2(b0, τ
2
kB0), τ

2
k |C0 ∼ IG(c0, C0) and C0 ∼ G(g0, G0), where e0, b0 ∈ <2, B0 ∈ <2×2,

c0, g0 and G0 are known hyper parameters, D(·, . . . , ·) and IG(·, ·) indicate the dirichlet and inverse

gamma distributions, respectively. Looking for the multivariate case, extensions of the preceding

priors were chosen: η ∼ D(e0, . . . , e0), (µk,ψk)|Ωk ∼ N2×p(b0,B0,Ωk), Ωk|C0 ∼ IW (c0, C0),

C0 = diag(ζ1, . . . , ζp), and ζj ∼ G(g0, G0), j = 1, . . . , p, where e0, b0 ∈ <2×p, B0 ∈ <2×2, c0, g0 and

G0 are known hyper parameters, Nq×p(·, ·, ·) and IW (·, ·) indicate the matrix normal and inverse

Wishart distributions respectively. Considering the parameter ν priors, νk ∼ G(1,∞)(α, γ) and

νk ∼ G(1,40)(α, γ), where α and γ are known hyper parameters and GA(·, ·) denotes the truncated

gamma on set A, are specified to the FM-ST and FM-SSL models respectively.

The joint posterior density of parameters and latent unobservable variables can be written as

p(ϑ,η,w,u, s|x) ∝
{ K∏
k=1

[ n∏
i=1

[ηkf(xi|θ∗k, wi, ui)f(wi|ui)f(ui|νk)]Sik
]
p(θ∗k)

}
p(s | η)p(η), (20)

where p(θ∗k) = p(µk,ψk|Ωk)p(Ωk|C0)p(C0)p(νk). As expressed in Tanner and Wong (1987), in

light of the data augmentation principle, conditional on the allocation vector S, the parameter

estimation may be executed independently for each parametric component θ∗k and for the weights

distribution η, as a consequence, the full conditionals of the parameters and the latent unobservable
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variables for the finite mixture of SMSN model are written as follows:

p(η|s) ∝ p(s|η)p(η) (21)

p(wi|Sik = 1, · · · ) ∝ [f(xi|θ∗k, wi, ui)f(wi|ui)]Sik , (22)

p(ui|Sik = 1, · · · ) ∝ [f(xi|θ∗k, wi, ui)f(wi|ui)f(ui|νk)]Sik , (23)

p(µk,ψk| · · · ) ∝
∏

{i:Sik=1}

f(xi|θ∗k, wi, ui)p(µk,ψk|Ωk), (24)

p(Ωk| · · · ) ∝
∏

{i:Sik=1}

f(xi|θ∗k, wi, ui)p(Ωk|C0), (25)

p(C0| · · · ) ∝
K∏
k=1

p(Ωk|C0)p(C0), (26)

p(νk| · · · ) ∝
∏

{i:Sik=1}

f(ui|νk)p(νk). (27)

Additional details about the full conditionals are available in Appendix A and B, respectively.

In furtherance of to make Bayesian analysis feasible for parameter estimation in the FM-SMSN

class of models, random samples from the posterior distributions of (s,ϑ,η,w,u) given x are drawn

through Monte Chain Monte Carlo simulation methods. Algorithm 1 describes the sampling scheme

from the full conditionals distributions of the parameters and the latent unobservable variables.

Algorithm 1 MCMC for finite mixture of scale mixtures of skew-normal.

1 Set t = 1 and get starting values for S(0), (θ
∗(0)
1 , . . . ,θ

∗(0)
K ), η(0), w(0) and u(0);

2 Parameter simulation conditional on the classification S(t−1):

2.1 Sample η(t) from p(η|s(t−1));

2.2 Sample the component latent variables w
(t)
i and u

(t)
i , i = 1, . . . , n, from the full condi-

tionals (22)-(23) and the component parameters µ
∗(t)
k ,ψ

∗(t)
k ,Ω

∗(t)
k , ν

∗(t)
k , k = 1, . . . ,K,

from the full conditionals (24)-(27).

3 Sample S
(t)
i independently for each i = 1, . . . , n from

Pr(Si = j|xi,ϑ) =
g(xi|θ∗j )Pr(Si = j|ϑ)∑K
k=1 g(xi|θ∗k)Pr(Si = k|ϑ)

. (28)
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4 Set t = t+ 1 and repeat the steps 2, 3 and 4 until convergence is achieved.

Post-processed the MCMC, in order to deal with the label switching problem, the Kullback-

Leibler algorithm introduced by Stephens (2000) is applied. Introduced by Redner and Walker

(1984) into the mixture models background, the term label switching refers to the invariance of the

mixture likelihood function under relabeling the components. Considering the maximum likelihood

estimation, where we are looking for the corresponding modes of the likelihood function, label

switching is not an object of interest. From the Bayesian point of view, however, it is a topic of

concern because the labeling of the unobserved categories changes during the sample process of the

mixture posterior distribution.

4 Application

In this section, MCMC methodology introduced in the previous section is applied to real data sets.

Two different well known data sets in the context of finite mixture are analyzed. The first one, a

univariate data set, is the body mass index data. The second one, a bivariate data set, is the Swiss

Fertility and Socioeconomic Indicators (1888) data. Additionally, in order to compare the fit of the

different models considered, we compute two classical comparison criteria, the Akaike Information

Criterion (Akaike, 1974, AIC) and the Bayesian Information Criterion (Schwarz, 1978, BIC), and

two versions proposed by Gelman et al. (2014) of the Bayesian criteria known as Watanabe-Akaike

Information Criterion (Watanabe, 2010, WAIC)

4.1 The Body Mass Index Data

The body mass index (BMI) for men aged between 18 to 80 years is considered. This data set

has been analyzed by Lin, Lee and Hsieh (2007), Lin, Lee and Yen (2007) and Basso et al. (2010).

The data set comes from the National Health and Nutrition Examination Survey, developed by

the National Center for Health Statistics (NCHS) of the Center for Disease Control (CDC) in the

United States of America. The BMI, expressed in kg/m2, is the ratio of body weight in kilograms

and body height in meters squared and has been used as a standard measure for overweight and

obesity.
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The original sample consists of 4579 BMI records observations, however, as in Lin, Lee and Hsieh

(2007), Lin, Lee and Yen (2007) and Basso et al. (2010), in order to explore the mixture charac-

teristics, it is considered only those participants who have their weights within [39.50kg, 70.00kg]

and [95.01kg, 196.80kg]. In consequence, the remaining data set is composited by two subgroups:

the first consists of 1069 participants and the second, of 1054.

The FM-SN, FM-ST and FM-SSL univariate models were fitted to the BMI data set. To that

end, the priors hyperparameters were chosen as: e0 = 4, b0 = (0, 0), B0 = Diag(10, 100), c0 = 2.5,

g0 = 0.5 + (r − 1)/2, r = 2, G0 = g0(ρSx)−1, ρ = 0.5, in which Sx is the sample variance. For the

FM-ST and FM-SSL models, α = 2 and γ = 0.1 (Juárez and Steel, 2010) were specified. Lastly,

50000 iterations of the algorithm MCMC were executed, the first 10000 draws were discarded as

a burn-in period, and then the next 40000 were recorded. In order to reduce the autocorrelation

between successive outputs of the simulated chain, only every 40th values of the chain were stored.

With the resulting 1000, the posterior estimates were calculated.

Table 1 contains the parameters maximum a posteriori estimation for the models under analysis:

FM-SN, FM-ST and FM-SSL, besides their corresponding 95% high posterior density credibility

interval. Additionally, we computed the BIC, AIC, WAIC1 and the WAIC2 as models comparison

criteria. The criteria values indicate that the FM-ST model has the best fitting result followed

by the FM-SSL. An interesting point to underline is that our results are in line with Basso et al.

(2010), as long as the authors obtained very similar results for the FM-ST and FM-SSL. It is

important to mention that the Kullback-Leibler algorithm (Stephens, 2000) was applied and the

label switching problem was not identified, probably because there are two well defined components.

This verification validates all the previous results.

Figure 1 consists in a graphical comparison between the three models under analysis in this

work when they are applied to density estimation. In order to obtain a better visualization, the

fitting results were superimposed on a single set of coordinate axes. The figure analysis indicates

that the heavy tailed FM-SMSN models (FM-ST and FM-SSL) have a better fit than the FM-SN

model. Hence, it is possible to say that both analysis, the one based on models comparison criteria

and the graphical, point that heavy tailed FM-SMSN models have more satisfactory results.

Also in figure 1, a visual analysis indicates that the first component presents a symmetric behav-
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Table 1: Estimation results for fitting the distributions under analysis to the BMI data.

Parameters
FM-SN FM-ST FM-SSL

MODE 95% MODE 95% MODE 95%

µ1 21.102 (19.952,22.706) 20.711 (19.732,21.939) 20.695 (19.940,21.600)

µ2 28.296 (27.692,28.732) 29.107 (28.585,29.715) 28.775 (28.292,29.332)

σ2
1 5.578 (4.484,8.426) 5.705 (4.508,9.434) 5.732 (4.186,8.138)

σ2
2 64.000 (57.248,71.870) 39.810 (31.529,49.980) 35.927 (27.002,45.219)

λ1 0.305 (-0.601,1.166) 0.647 (-0.251,1.292) 0.605 (0.030,1.159)

λ2 3.286 (2.284,4.131) 2.377 (1.659,3.289) 2.904 (2.178,3.768)

η1 0.484 (0.453,0.513) 0.491 (0.463,0.516) 0.487 (0.463,0.516)

η2 0.516 (0.487,0.547) 0.509 (0.484,0.537) 0.513 (0.484,0.537)

ν1 - - 31.914 (12.671,78.699) 8.840 (3.450,31.672)

ν2 - - 7.050 (4.538,12.265) 2.588 (1.786,3.804)

BIC 13808.20 13790.21 13790.62

AIC 13768.63 13739.34 13739.74

WAIC1 13765.27 13730.95 13734.55

WAIC2 13748.77 13714.91 13715.49

ior. Reinforcing the results introduced on table 1, figure 2 illustrates very well this comportment in

the sense that for the FM-SN and FM-ST models the first component skewness parameter credibil-

ity intervals contains the 0 and, for the FM-SSL, the credibility interval lower band is really close

to 0. Another interesting point from the graphical analysis is that only the second component looks

like to present heavy tails and, on table 1, these characteristics are clearly verified. To estimate

a specific νk for each component k = 1, 2 is an advantage in comparison with Basso et al. (2010),

it incorporates more flexibility in the modeling and makes the differentiation between heavy tails

and non heavy tails components possible.

4.2 The Swiss Fertility and Socioeconomic Indicators (1888) Data

As an application of the multivariate models here proposed, the Swiss Fertility and Socioeconomic

Indicators data (Mosteller and Tukey, 1977) is analysed. In 1888, Switzerland was entering a

period known as the demographic transition, i. e., its fertility was beginning to fall from the high

level typical of underdeveloped countries and life expectancy was rising. The data set consists on

47 French-speaking regions observations on 6 variables: fertility, males involved in agriculture as

occupation, draftees receiving highest mark on army examination, education beyond primary school

for draftees, catholic (as opposed to protestant) and infant mortality, each of which is in percent.

For the actual analysis the variables males involved in agriculture as occupation and catholic (as
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Figure 1: Histogram of the BMI data with FM-SN, FM-ST and FM-SSL fitted models.
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Figure 2: First Component skewness parameters full conditional samples.

opposed to protestant) was chosen.

Considering the estimation process for the FM-SN, FM-ST and FM-SSL models, the priors

hyperparameters set was specified as: e0 = 4, b0 = (0, 0, 0, 0), B0 = Diag(100, 50), c0 = 3,

g0 = 0.01 and G0 = 0.01. For the FM-ST and FM-SSL models, α = 2 and γ = 0.1 (Juárez and

Steel, 2010) were specified. A MCMC simulation for 20000 iterations was drawn, the first 10000

draws were discarded as a burn-in period, and then the next 10000 were recorded. In order to

reduce the autocorrelation between successive values of the simulated chain, only every 10th values

of the chain were stored. With the resulting 1000 we calculated the posterior estimates.
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Table 2: Estimation results for fitting the distributions under analysis to the Swiss Fertility and

Socioeconomic Indicators data.

Parameters
FM-SN FM-ST FM-SSL

MODE 95% MODE 95% MODE 95%

µ11 86.9456 (40.1899,100.4691) 87.0765 (37.4758,98.9539) 87.8605 (30.184,97.5692)

µ12 99.9113 (91.3471,104.1774) 100.0964 (91.2522,104.0726) 99.9200 (87.9491,103.5447)

µ21 48.9545 (37.7709,58.8895) 54.6026 (44.0188,69.3384) 49.2419 (39.5855,60.5054)

µ22 0.3929 (-2.858,2.9914) 1.4496 (-1.3172,2.8623) 0.9048 (-2.2383,2.5885)

λ11 -6.4033 (-14.9332,5.8284) -6.6017 (-15.4791,6.5275) -6.8093 (-19.8278,14.5387)

λ12 0.6630 (-1.2509,3.107) 0.7705 (-1.3708,3.0089) 0.6582 (-1.8449,3.4751)

λ21 0.2034 (-1.5931,1.8167) -0.3158 (-3.0543,1.5330) 0.2117 (-1.5624,1.7471)

λ22 10.1714 (5.2164,19.1119) 7.5526 (1.9366,16.8224) 12.8892 (4.9878,24.2531)

Σ1,11 829.1405 (228.4878,2320.9692) 804.7753 (258.3221,1821.5043) 817.4741 (199.3698,2202.7477)

Σ1,12 155.7333 (20.4612,491.9568) 142.1053 (20.1312,373.1442) 147.8842 (10.3269,456.3256)

Σ1,22 36.3575 (12.7539,129.5463) 31.8416 (10.1468,93.2204) 32.1106 (9.8144,112.6119)

Σ2,11 454.4555 (260.2786,780.5774) 337.3832 (141.3357,756.5421) 413.5714 (176.3066,755.931)

Σ2,12 -134.1912 (-418.8719,5.6376) -78.6445 (-268.1597,1.2529) -145.8333 (-366.7802,0.3296)

Σ2,22 320.8791 (211.4496,567.751) 62.5551 (8.3697,320.8531) 342.3077 (54.8696,508.0684)

η1 0.6519 (0.5165,0.7676) 0.3647 (0.2522,0.4951) 0.3611 (0.2337,0.4819)

η2 0.3481 (0.2324,0.4835) 0.6353 (0.5049,0.7478) 0.6389 (0.5181,0.7663)

ν1 - - 16.3462 (1.3707,51.0251) 12.6596 (3.105,36.3747)

ν2 - - 2.8863 (1.0387,24.8196) 3.2718 (1.0002,32.3217)

BIC 830.91 831.20 839.87

AIC 803.16 799.74 808.42

WAIC1 813.37 838.05 832.08

WAIC2 756.29 730.75 746.37

As in the previous case, table 2 contains the parameters maximum a posteriori estimation for

the multivariate models under analysis: FM-SN, FM-ST and FM-SSL, besides their corresponding

95% high posterior density credibility interval and the BIC, AIC, WAIC1 and WAIC2 to enable

models comparison. The BIC and WAIC1 comparison criteria values indicate that the FM-SN

model has the best performance between the models under analysis, however, considering the AIC

and WAIC1, the FM-ST model looks like to have the best fit for the data. It is important to

mention that, once again, the Kullback-Leibler algorithm (Stephens, 2000) was applied and the

label switching problem was not identified.

A graphical analysis of the figure 3 permits a visualization of the results introduced by the

models comparison criteria. Also in figure 3, a visual analysis indicates that only the second

component looks like to present heavy tails. Illustrating the results introduced on table 2, figure 4

reinforces this perception as the second component degrees of freedom credibility intervals is in a

range of lower values than the first component degrees of freedom.
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Figure 3: Plot of the Swiss Fertility and Socioeconomic Indicators data with FM-SN, FM-ST and

FM-SSL fitted models.
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Figure 4: νk, k = 1, 2, full conditional samples.

5 Conclusion

In this work, a Bayesian finite mixture modeling based on scale mixtures of skew-normal distribu-

tions was proposed. The introduced models extend Basso et al. (2010) and Frühwirth-Schnatter

and Pyne (2010) in the sense that not only the univariate case is investigated as in Basso et al.

(2010) and that a wider range of SMSN distributions as the ones analyzed by Frühwirth-Schnatter

and Pyne (2010) are studied. The class of models on focus here simultaneously accommodates

multimodality, asymmetry and heavy tails, thus consists in a powerful tool for practitioners from
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different areas.

A Markov chain Monte Carlo algorithm is developed by exploring the hierarchical structure of

the SMSN distributions. Additionally, two well known data sets in the finite mixture context are

analyzed, the BMI data as an univariate application and the Swiss Fertility and Socioeconomic

Indicators (1888) data as a multivariate application. An interesting extension which will be pur-

sued in a future research is to develop fully Bayesian inference, i. e., to consider the number of

components as an unknown quantity of interest.
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A Finite mixture of Scale Mixtures of Skew-normal full condi-

tional distributions

Considering the FM-SN model and assuming Fn×2 = (1 w), for each k = 1, . . . ,K, construct a

matrix Fk ∈ <Nk×2, Nk =
∑n

i=1 Sik. Similarly, construct an observation matrix xk ∈ <Nk×p.

Hence, by the Bayes theorem, the full conditionals are

� η|s ∼ D(e0 +N1, . . . , e0 +NK);

� (µk, ψk)|s,x,w, τ2k ∼ N2(bk,Bk);

Bk =
(

1
τ2
k
B−10 + 1

τ2
k

(F
′
kFk)

)−1
bk = B

(
1
τ2
k
B−10 b0 + 1

τ2
k

(F
′
kxk)

)
� τ2k |s,x,w, C0, µk, ψk ∼ IG(ck, Ck);

ck = c0 + Nk
2 + 1

2

Ck = C0 +
(xk−Fkβk)

′
(xk−Fkβk)+(βk−b0)

′
B−1

0 (βk−b0)
2

� C0|τ21 , . . . , τ2K ∼ G(g,G).

g = g0 +Kc0

G = G0 +
∑K

k=1
1
τ2
k

where βk = (µk ψk)
′
. Considering now the latent variable W

� Wi|Sik = 1, xi, µk, ψk, τ
2
k ∼ TN[0,+∞)(a,A);

a = (xi−µk)ψk
τ2
k+ψ

2
k

A =
τ2
k

τ2
k+ψ

2
k

For the FM-ST and the FM-SSL models the full conditionals are almost the same, the difference

is that F is replaced by Fw
n×2 = (

√
u
√

uw) and x, by xw =
√

ux, where
√

u is the square root

element by element. Considering now the latent variable W

17



� Wi|Sik = 1, xi, ui, µk, ψk, τ
2
k ∼ TN[0,+∞)(a,A/ui).

Lastly, for the latent variable U and the degrees of freedom

� Skew-T

Ui|Sik = 1, xi, wi, νk, µk, ψk, τ
2
k ∼ G

(
νk
2 + 1, νk2 + (xi−µk−ψkwi)2

2τ2 +
w2
i
2

)
;

� Skew-Slash

Ui|Sik = 1, xi, wi, νk, µk, ψk, τ
2
k ∼ G(0,1)

(
νk + 1, (xi−µk−ψkwi)

2

2τ2 +
w2
i
2

)
;

νk|s,u ∼ G(1,40)(α+Nk, γ −
∑

i:Sik=1 ui)

For the degrees of freedom in skew-t is not possible to find a closed form to the full conditionals,

so a Metropolis-Hastings step is required. To sample νk, k = 1, . . . ,K a normal log random walk

proposal was used

log(νnewk − 1) ∼ N(log(νk − 1), cνk) (29)

with adaptive width parameter cνk (Shaby and Wells, 2010). The proposal was shifted away from

0, as it is advisable to avoid values for νk that are close to 0, see Fernández and Steel (1999).

B Finite mixture of Scale Mixture of Multivariate Skew-normal

full conditionals distributions

Considering the FM-SN model and assuming Fn×2 = (1 w), for each k = 1, . . . ,K, construct a

matrix Fk ∈ <Nk×2, Nk =
∑n

i=1 Sik. Similarly, construct an observation matrix xk ∈ <Nk×p.

Hence, by the Bayes theorem, the full conditionals are

� η|s ∼ D(e0 +N1, . . . , e0 +NK);

� (µk,ψk)|s,x,w,Ωk ∼ N2×p(bk,Bk,Ωk);

Bk =
(
B−10 + F

′
kFk

)−1
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bk = B
(
B−10 b0 + F

′
kxk

)
� Ωk|s,x,w, C0,µk,ψk ∼ IW (ck, Ck);

ck = c0 +Nk + p

Ck = C0 + (xk − Fkβk)
′
(xk − Fkβk) + (βk − b0)

′
B−10 (βk − b0)

� ζj |Ω1, . . . ,ΩK ∼ G(g,G), j = 1, . . . , p.

g = g0 +K c0
2

G = G0 + 1
2

∑K
k=1 Ω−1k,jj

where βk = (µk ψk)
′
. Considering now the latent variable W

� Wi|Sik = 1,xi,µk,ψk,Ωk ∼ TN[0,+∞)(a,A);

A = 1

1+ψ
′
Ω−1
k ψk

a = ((xi − µk)Ω−1k ψk)A.

As in the univariate case, for the FM-ST and the FM-SSL models, F is replaced by Fw
n×2 =

(
√

u
√

uw), x, by xw =
√

ux and for latent variable W,

� Wi|Sik = 1,xi, ui,µk,ψk,Ωk ∼ TN[0,+∞)(a,A/ui).

Considering the latent variable U and the degrees of freedom,

� Skew-T

Ui|Sik = 1,xi, wi, νk,µk,ψk,Ωk ∼ G
(
νk
2 + 1, νk2 +

(xi−µk−ψkwi)
′Ω−1

k (xi−µk−ψkwi)
2 +

w2
i
2

)
;

� Skew-Slash

Ui|Sik = 1,xi, wi, νk,µk,ψk,Ωk ∼ G(0,1)

(
νk + 1,

(xi−µk−ψkwi)
′Ω−1

k (xi−µk−ψkwi)
2 +

w2
i
2

)
;

νk|s,u ∼ G(1,40)(α+Nk, γ −
∑

i:Sik=1 ui)

As before, for the degrees of freedom in skew-t is not possible to find a closed form to the full

conditionals, so a Metropolis-Hastings step was required and the same proposal distribution (29)

was used.
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Frühwirth-Schnatter, S. (2006), Finite Mixture and Markov Switching Models, 1 edn, New York:

Springer.
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