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Abstract

In this article, we introduce an approximated Bayesian estimation method for stochastic

volatility (SV) models with scale mixtures of normal (SMN) distributions (Abanto-Valle et al.,

2010). Bayesian estimation of the parameters of stochastic volatility models in general, and

SV models with SMN distributions in particular, is usually regarded as challenging as the

likelihood is a high-dimensional multiple integral. Our estimation method is based on the

fact that the powerful hidden Markov model (HMM) machinery can be applied in order to

evaluate an arbitrarily accurate approximation of the likelihood of an SV model with SMN

distributions. Second, we get the posterior mode by using a numerical optimization routine and

third, we use importance sampling to sample from the posterior distribution of the parameters

using a multivariate normal distribution with mean and variance given by the posterior mode

and the inverse of the Hessian matrix evaluated at the posterior mode. However, the HMM

approximation leads to simple formula for forecast distributions, for computing appropriately

defined residuals, and for decoding, i.e., estimating the volatility of the process. The methods

developed are applied to analyze daily stock returns data on S&P500 index. Bayesian model

selection criteria results reveal that the SV models based on heavy-tailed SMN distributions

provide significant improvement in model fit as well as prediction to the S&P500 index data

over the usual normal model.

Keywords: non-Gaussian and nonlinear state-space models, scale mixture of normal dis-

tributions, stochastic volatility, Value-at-Risk.
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1 Introduction

Stochastic volatility (SV) models were introduced by Taylor (1982; 1986), providing a flexible and

parsimonious means of modeling time-varying variances of financial asset returns. These models

have significant financial and economic theoretical appeal (Melino and Turnbull, 1990) because of

their ability to capture the main empirical properties, i.e., the stylized facts, often observed in

daily series of financial returns (Carnero et al., 2004). These properties are crucial not only for

describing the return distributions but also for asset allocation, option pricing, forecasting and risk

management.

The basic SV model introduced by Taylor (1982) can be written as

yt = e
ht
2 εt, (1a)

ht+1 = µ+ ϕ(ht − µ) + σηηt, (1b)

where yt and ht are the compunded return and the log-volatility on time t, µ, ϕ and σ2η are the

mean, the persistence parameter and the volatility of the log-volatility process, respectively, and

{ϵt} and {ηt} are independent sequences of independent standard normal random variables. We

assume that |ϕ| < 1, that is the log-volatility is a stationary process. We denote this basic SV

model as SV-N.

Despite theoretical advantages, SV models have not been as popular as the GARCH models

(Bollerslev, 1986) in practical applications. The main reason is that the likelihood of the SV mod-

els is given by a higher-order multiple integral that is analytically intractable. Hence, SV models

require much more complex inferential and computational tools. Several estimation methods have

been proposed in the literature, for example the quasi-likelihood methods (Harvey et al., 1994), the

generalized methods of moments (Andersen and Sorensen, 1996), and simulated maximum likeli-

hood (Danielsson, 1994). Recently Langrock (2011) and Langrock et al. (2012) apply an alternative

frequentist estimation method, numerically maximizing an approximation of the likelihood func-

tion which is efficiently evaluated using recursive techniques routinely applied for hidden Markov

models (HMMs). By the other hand, Bayesian estimation is performed using Markov Chain Monte

Carlo (MCMC) methods.
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The MCMC approach for SV models is the usual methodology since the seminal work by

Jacquier et al. (1994), where Bayesian inference for standard SV models was first developed using

the single-move Gibbs sampling within the Metropolis-Hastings algorithm to sample from the log

volatilities. Kim et al. (1998) and Mahieu and Schotman (1998), among others, approximated the

distribution of log-squared returns with a discrete mixture of several normal distributions, allowing

jointly drawing on the components of the whole vector of log-volatilities. Shephard and Pitt (1997),

Watanabe and Omori (2004) and Omori and Watanabe (2008) suggested the use of random blocks

containing some of the components of the log-volatilities in order to reduce the autocorrelation

effectively. Meyer et al. (2003) and Skaug and Yu (2008) used the Laplace approximation to

compute the likelihood function by integrating out all unknown log-volatilities and applying the

Metropolis-Hasting algorithm to sampling the parameters. However, in all of these, the normal

distribution was assumed as the basis for parameter inference. Recently, the integrated nested

Laplace approximations (INLA) was used inside the R package (R-INLA) to fit SV models (Martino

et al., 2010; Ehlers and Zevallos, 2015). However it is restricted to the normal, Student-t and the

normal inverse gamma distributions and it is not a trivial task, to generalize inside the R-INLA,

to other distributions.

The SV-N model is unable to capture the usual heavy-tailed behavior of conditional distribu-

tion of the returns, since they are assumed to be Gaussian. Liesenfeld and Jung (2000), Chib

et al. (2002), Jacquier et al. (2004) and Abanto-Valle et al. (2010), amongst others, had provided

consistent evidence that leptokurtic distributions, such as the Student’s t, the generalized error or

the scale mixture of normal (SMN) distributions should be used in order to capture this feature.

In this context, the normality assumption is too restrictive and suffers from the lack of robustness

in the presence of outliers, which can have a significant effect on the model-based inference.

Abanto-Valle et al. (2010) extended the basic SV model by assuming the flexible class of scale

mixtures of normal (SMN) distributions (Andrews and Mallows, 1974; Lange and Sinsheimer, 1993;

Chow and Chan, 2008). By using a mixture representation of the SMN distribution they proposed

an efficient block sampler to sample the log-volatilities. The SV-SMN class of models contains the

normal (SV–N), Student-t (SV–T), slash (SV-S) and variance gamma (SV–VG) distributions. All

these distributions have heavier tails than the normal distribution, and thus can be used for robust
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inference in these types of models.

In this paper, we apply an alternative Bayesian estimation method to the SV-SMN class of mod-

els (Abanto-Valle et al., 2010) without using the mixture representation of the SMN distributions.

First, we approximate the likelihood function by integrating out the log-volatilities as suggested

by Langrock (2011) and Langrock et al. (2012). Second, we get the maximum a posteriori by

using a numerical optimization routine and third, we use importance sampling to sample from the

posterior distribution of the parameters using a multivariate normal distribution with mean and

variance given by the maximum a posteriori and the inverse of the Hessian matrix evaluated at the

maximum a posteriori, respectively.

The remainder of this paper is organized as follows. Section 2 gives a brief introduction to

SMN distributions. Section 3 outlines the general class of SV–SMN models as well as the likeli-

hood approximation and evaluation procedure using HMM methods and the Bayesian approach for

parameter estimation. Section 4 is devoted to model checking and model selection. In Section 5,

we carry out a detailed analysis of the S & P 500 data. Some concluding remarks as well as future

developments are deferred to Section 6.

2 Scale mixture of normal distributions

A random variable Y belongs to the SMN family if it can be expressed as

Y = µ+ κ(λ)1/2X, (2)

where µ is a location parameter, X ∼ N (0, σ2), λ is a positive mixing random variable with

cumulative distribution function (cdf ) H(· | ν) and probability density function (pdf ) h(·|ν), ν is

a scalar or parameter vector indexing the distribution of λ, and κ(·) is a positive weight function.

As in Lange and Sinsheimer (1993) and Choy et al. (2008), we restrict our attention to the case

where κ(λ) = 1/λ. Given λ, we have Y |λ ∼ N (µ, λ−1σ2), and the pdf of Y is given by

fSMN (y|µ, σ2, ν) =

∫ ∞

−∞
ϕ(y|µ, λ−1σ2)dH(λ|ν), (3)
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where ϕ(· | µ, σ2) denotes the density of the univariate N (µ, σ2) distribution. From equation (3),

the cdf of the SMN distributions is given by

FSMN (y|µ, σ2, ν) =

∫ y

−∞

∫ ∞

−∞
ϕ(u|µ, λ−1σ2)dH(λ|ν)du

=

∫ ∞

−∞
Φ

(
λ1/2[y − µ]

σ

)
dH(λ|ν), (4)

where Φ(·) is the cdf of the standard normal distribution. The notation Y ∼ SMN (µ, σ2,ν;H)

will be used when Y has pdf (3) and cdf (4). As mentioned above, the SMN family constitutes a

class of heavy-tailed distributions, including the normal, Student-t, and Slash distributions, which

are obtained, respectively, by choosing the mixing variables as: λ = 1, λ ∼ G(ν2 ,
ν
2 ), λ ∼ Be(ν, 1),

and λ ∼ IG(ν2 ,
ν
2 ), where G(·, ·), Be(·, ·) and IG(., .) denote the gamma, beta and the inverse gamma

distributions, respectively.

3 The heavy-tailed stochastic volatility model

3.1 Model formulation

In order to capture heavy-tailed features in the marginal distribution of the returns errors, we

modify the basic specification of the SV-N model (Taylor, 1982; 1986) replacing the normality

assumption of εt in equation (1b) by the SMN class of distribution. The resulting model can be

expressed as follows:

yt = e
ht
2 εt, (5a)

ht+1 = µ+ ϕ(ht − µ) + σηηt, (5b)

εt ∼ SMN(0, 1, ν), ηt ∼ N (0, 1), (5c)

where yt and ht are respectively the compounded return and the log-volatility on time t. As before,

µ, ϕ and σ2η are the mean, the persistence parameter and the volatility of the log-volatility process,

respectively, and εt and ηt assumed to be independent. We refer to this generalization as SV-SMN

models.

As depicted in Section 2, this class of models include the SV with student-t (SV-t), with slash

(SV-S) and with variance gamma distributions (SV-VG) as special cases. All these distributions
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have heavier tails than the normal dristibution and thus provide an appealing robust alternative

to the usual Gaussian process in SV models

3.2 Likelihood evaluation by iterated numerical integration

To formulate the likelihood in the class of the SV-SMN models, we require the conditional pdfs

of the random variables yt, given ht (t = 1, . . . , T ), and of the random variables ht, given ht−1

(t = 2, . . . , T ). We denote these by p(yt | ht) and p(ht | ht−1), respectively. For any member in the

class of SMN distributions, the likelihood of the model defined by equations (5a) , (5b) and (5c)

can then be derived as

L =

∫
. . .

∫
p(y1, . . . , yT , h1, . . . , hT )dhT . . . dh1

=

∫
. . .

∫
p(y1, . . . , yT | h1, . . . , hT )p(h1, . . . , hT )dhT . . . dh1

=

∫
. . .

∫
p(h1)p(y1 | h1)

T∏
t=2

p(yt | yt−1, ht)p(ht | ht−1)dhT . . . dh1.

Hence, the likelihood is a higher-order multiple integral that cannot be evaluated analytically.

Through numerical integration, using a simple rectangular rule based on m equidistant intervals,

Bi = (bi−1, bi), i = 1, . . . ,m, with midpoints b∗i and length b, the likelihood can be approximated

as follows:

L ≈ bT
m∑
i1=1

. . .

m∑
iT=1

p(h1 = b∗i1)p(y1 | h1 = b∗i1)

×
T∏
t=2

p(ht = b∗it | ht−1 = b∗it−1
)p(yt | ht = b∗it) = Lapprox . (6)

This approximation can be made arbitrarily accurate by increasing m, provided that the interval

(b0, bm) covers the essential range of the log-volatility process. We note that this simple midpoint

quadrature is by no means the only way in which the integral can be approximated (cf. Langrock

et al., 2012).
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3.3 Fast evaluation of the approximate likelihood using HMM techniques

The approximate likelihood, in the form given in (6), can be evaluated numerically, but the evalua-

tion will usually be computationally intractable since it involves mT summands. However, instead

of the brute force summation in (6), an efficient recursive scheme can be used to evaluate the ap-

proximate likelihood. To see this, we note that the numerical integration essentially corresponds to

a discretization of the state space, i.e., the support of the log-volatility process ht. Therefore, the

approximate likelihood given in (6) can be evaluated using the tools well-established for HMMs,

which are the models that have exactly the same dependence structure as the stochastic volatility

models, but with a finite and hence discrete state space (cf. Langrock, 2011; Langrock et al., 2012).

In the given scenario, the discrete states correspond to the intervals Bi, i = 1, . . . ,m, in which

the state space has been partitioned. A key property of HMM, which we exploit here, is that the

likelihood can be evaluated efficiently using the so-called forward algorithm, a recursive scheme

which iteratively traverses forward along the time series, updating the likelihood and the state

probabilities in each step (Zucchini et al., 2016). For an HMM, applying the forward algorithm

results in a convenient closed-form matrix product expression for the likelihood, and this is exactly

what is obtained also for the SVM-SMN class of models:

Lapprox = δP(y1)ΓP(y2)ΓP(y3) · · ·ΓP(yT−1)ΓP(yT )1
⊤ . (7)

Here, the m ×m-matrix Γ =
(
γij

)
is the analogue to the transition probability matrix in case of

an HMM, defined by γij = p(ht = b∗j | ht−1 = b∗i ) · b, which is an approximation of the probability

of the log-volatility process changing from some other value in the interval Bi to some value in the

interval Bj , this conditional probability is determined by Eq. (5b). The vector δ is the analogue to

the Markov chain initial distribution in case of an HMM, here defined such that δi is the density of

the N (µ,
σ2
η

1−ϕ2 )-distribution — the stationary distribution of the log-volatility process — multiplied

by b. Furthermore, P(yt) is an m×m diagonal matrix with the ith diagonal entry p(yt | ht = b∗i ),

hence the analogue to the matrix comprising the state-dependent probabilities in case of an HMM;

this conditional probability is determined by Eq. (5a). Finally, 1⊤ is a column vector of ones.

Using the matrix product expression given in (7), the computational effort required to evaluate the

approximate likelihood is linear in the number of observations, T , and quadratic in the number of
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intervals used in the discretization, m.

In practice, this means that the likelihood can typically be calculated in a fraction of a second,

even for T in the thousands and say m = 100, a value which renders the approximation virtu-

ally exact (see the simulation experiments below). Furthermore, the approximation can be made

arbitrarily accurate by increasing m (and potentially widening the interval [b0, bm]).

It should perhaps be noted here that, although we are using the HMM forward algorithm to

evaluate the (approximate) likelihood, the specifications of δ, Γ and P(yt) given above do not define

exactly an HMM, since in general the row sums of Γ will only approximately equal one, and the

components of the vector δ will only approximately sum to one. If desired, this can be remedied

by scaling each row of Γ and the vector δ to total 1.

3.4 Bayesian Inference for the heavy-tailed SV class of models

Because we have some constraint in the original parametric space ({|ϕ| < 1, ση > 0, ν > 0}) of the

SV-SMN class of models, we consider the following transformations for the common parameters as

follows: ψ = log

(
1+ϕ
1−ϕ

)
, ω = log(σ), and κ = log(ν). Let θ = (µ, ψ, ω, κ)⊤ and p(θ) be the prior

distribution of θ. From equation (7), we then obtain the posterior distribution up to a normalization

constant

p(θ | yT ) ∝ p(θ)Lapprox(θ). (8)

Suposse we wish to calculate an expectation Ep(θ|yT )[h(θ)], which can be calculated as

Ep(θ|yT )[h(θ)] =

∫
h(θ)p(θ | yT )dθ∫
p(θ | yT )dθ

=

∫ h(θ)p(θ|yT )

q(θ)
q(θ)dθ∫ p(θ|yT )

q(θ)
dθ

=

Eq(θ)

[
h(θ)w(ω(θ)

]
Eq(θ)

[
ω(θ)

] , (9)

where ω(θ) = p(θ|yT )

q(θ)
and now Eq[.] denotes an expected value with respect to q(θ). Therefore a

sample of independent draws θ1, . . . ,θm from q(θ) can be used to estimate Ep(θ|yT )[h(θ)] by

h̄ =

∑m
i=1ω(θi)h(θi)∑m

i=1ω(θi)
. (10)
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It is shown that using one sample θ′is in estimating the ratio in (9) is more efficient than using two

samples (one for the numerator and another for denominator) (Chen et al., 2008). It follows from

the strong law of large numbers that h̄→ Ep(θ|yT )[h(θ)] as m→ ∞ almost surely (Geweke, 1989).

A variance of h̄(θ) can be consistenly estimated by
∑m

i=1ω(θi)
2[h(θi)− h̄]2/[

∑m
i=1ω(θi)]

2.

4 Model checking and model selection

4.1 Model checking

The HMM forward algorithm can also be used to obtain forecast distributions for SV-SMN models.

For example, it is straightforward to find the cumulative distribution function of the one-step-ahead

forecast distribution on day t− 1, i.e., the conditional distribution of the return on day t, given all

previous observations. This is given by

F (yt | yt−1, yt−2, . . . , y0) ≈
m∑
i=1

ζiF (yt | yt−1, ht = b∗i ), (11)

where ζi is the ith entry of the vector αt−1/(αt−11
⊤), obtained from the forward probabilities,

αt−1 = δP(y1)ΓP(y2)ΓP(y3) · · ·ΓP(yt−1) ,

with δ, P(yk) and Γ defined as above. The corresponding expression for longer forecast horizons

is similar (see Chapter 5 of Zucchini et al., 2016, for details). The approximation in (11) usually

becomes virtually exact for values of m about 100. A closed-form expression for obtaining state

predictions, i.e., volatility predictions, is also available. Furthermore, the forecast distribution given

in Eq. (11) can be used in order to perform model checking via residuals (Kim et al., 1998). The

one-step-ahead forecast pseudo-residual (or quantile residual) is given by

rt = Φ−1(F (yt | yt−1, yt−2, . . . , y0)), (12)

for t = 1, . . . , T . For a correctly specified model, the rt follows a standard normal distribution

(Rosenblatt, 1952; Smith, 1985; Kim et al., 1998; Gerlach et al., 1999; Liesenfeld and Richard,

2003). Thus, forecast pseudo-residuals can be used to identify extreme values, and the suitability

of the model can be checked by using, for example, QQ-plots or formal tests for normality.
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4.2 Model comparison criteria

Given the wide range of candidate models, it has become increasingly important to be able to

discriminate between competing models for a given application. One of the most used methods to

compare several competing models for a given data set is derived from the conditional predictive

ordinate CPO statistics see (Gelfand et al., 1992; Chen et al., 2000). Let yT = (y1, y2, · · · , yT ) be

the full data and y(i) = (y1, y2, · · · , yi−1, yi+1, · · · , yT ) denote the data with the ith observation

deleted. For the ith observation, the CPO is defined as

CPOi = f(yi | y(i)) =
∫
θ∈Θ

f(yi | θ, y(i))π(θ | y(i))dθ.

The CPO is a cross-validated predictive approach, i.e., it relies on predictive distributions condi-

tioned on the observed data with a single data point deleted. In this paper, we propose a modified

version of the CPO called the autoregressive CPO. This CPO, known as prequential CPO, is

computed for each new observation using only the data from previous time periods (Dawid, 1984).

Let yt = (y1, y2, · · · , yt) be the data vector at time point t. The conditional predictive ordinate

(CPO) based on the forecasting predictive distribution of Yt given Yt−1 is defined as

f(yt | yt−1) =

(∫
f(yt−1 | θ)
f(yT | θ)

π(θ | yT )dθ
)−1(∫ f(yt | θ)

f(yT | θ)
π(θ | yT )dθ

)
, (13)

where θ is a parameter, f(yT | θ) is the likelihood function, and π(θ | y) is the posterior density

function. The CPO given by (13) suggests what values of yt are likely, given that the model was

fitted with observations y1, · · · , yt−1, and it is possible to see whether the observation supports the

model. Since for the proposed model a closed form of the CPOt is not available, a Monte Carlo

estimate of the CPOt is obtained by using a sample from the posterior distribution π(θ | yT ). Let

θ1, . . . ,θQ be a sample of size Q of π(θ | yT ). A Monte Carlo approximation of the CPOt is given

by the following expression:

ĈPOt =

 1

Q

Q∑
q=1

f(yt−1 | θq)
f(yT | θq)

−1 1

Q

Q∑
q=1

f(yt | θq)
f(yT | θq)

 .

In addition, a summary statistic of the CPOt’s is the log pseudo marginal likelihood (LPML),

defined by LPML=
T∑
t=1

log(ĈPOt). Models with greater LMPL values have better fit. Another
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popular metric of summary statistics for Bayesian model comparison is the deviance information

criterion (DIC) proposed by Spiegelhalter et al. (2002). This criterion is based on the posterior

mean of the deviance. It can be approximated by D =
Q∑
q=1

D(θq)/Q, where D(θ) = −2 log f(yT |

θ) = −2 logL(θ). The DIC can be estimated using the Monte Carlo output by D̂IC = D + p̂D =

2D−D(θ̄), where p̂D is the effective number of parameters an can be evaluated as p̂D = D̄−D(θ̄).

Given the comparison of two alternative models, the model that best fits a data set is the model

with the smallest DIC value. Note that it is important to integrate out all latent variables in the

deviance calculation as this yields a more appropriate penalty term p̂D; (see Kim et al., 2002). For

all these criteria, the evaluation of the likelihood function L(θ) is a key aspect. However, for the

SV-SMN class of models it can be evaluated using results given in Subsection 3.2 and 3.4.

Finally, the expected Akaike information criterion (EAIC), the expected Bayesian information

criterion (EBIC) and the Log-Predictive Score (LPS), can be estimated by ÊAIC = D+2♯(ϑ) and

ÊBIC = D + ♯(ϑ) log(T ), where ♯(ϑ) is the number of model parameters (see Brooks, 2002), and

LPS = − 1
T

∑T
t=1 log p(yt | yt−1, θ̄) (Delatola and Griffin, 2011; Abanto-Valle et al., 2014; 2015;

Leão et al., 2017).

5 Empirical Application

This section analyzes the daily closing prices for the S&P500 stock market index. The S&P500 index

contains the stocks of 500 Large-Cap corporations. Although a majority of those corporations are

US based, it also includes other companies having their common stocks within the index. The data

set was obtained from the Yahoo finance web site available to download at http://finance.yahoo.

com. The period of analysis is January 8, 1990 - December 31, 2012, which yields 5793 observations.

Throughout, we will work with the compounded returns computed as: yt = 100×(logPt−logPt−1),

where Pt is the closing price on day t.

Table 1 summarizes descriptive statistics for the compounded returns with the time series plot

in Figure 1. For the returns series, the basic statistics viz. the mean, standard deviation, skewness

and kurtosis are calculated to be 0.02, 1.17, -0.23 and 11.47, respectively. Note that the kurtosis

of the returns is > 3, so that daily S &P 500 returns likely shows a departure from the underlying
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Table 1: Summary statistics for S &P 500 return series

mean s.d. max min skewness kurtosis

Returns 0.02 1.17 10.95 -9.047 -0.23 11.47
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Figure 1: S&P 500 compounded returns with sample period from January 8, 1990 to December 31, 2012. The left panel

shows the plot of the raw series and the right panel plots the histogram of returns.

normality assumption. Thus, we reanalyze this data with the aim of providing robust inference by

using the SMN class of distributions. In our analysis, we compare between the SV-N, SV-T, SV-S

and SV-VG distributions from the SMN class of models.

We set the prior distributions of the common parameters of the SV-N, SV-T, SV-S and SV-VG

models as: µ ∼ N (0, 100), ψ ∼ N (4.5, 100), ω ∼ N (−1.5, 100). The prior distributions on the

transformed shape parameters were chosen as: κ ∼ N (2.5, 100) (SV-T), κ ∼ N (0.7, 100) (SV-S)

and κ ∼ N (2.5, 100) (SV-VG), respectively. All these priors are slightly flat.

Now, we apply the methodology described in Section 3 to fit the SV-N, SV-T, SV-S and SV-

VG models. All the calculations were performed using stand-alone code developed by the authors

using the Rcpp interface inside R. First, we approximate the likelihood using bm = −b0 = 3 and

m = 50, 100, 150, 200. Second, we obtain numerically the posterior mode using the optim routine

in the R package. Table 2 reports the results for each model fitted here. It is important to observe

that for m = 100, 150, 200, the results are almost the same. In the SV-S and the SV-VG the

computing time increases because we do not have a R function to evaluate the density of the slash
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and variance gamma distribution and we do it using numerical integration. Finally, we apply the

importance sampling algorithm to draw a random sample from the posterior distribution of the

parameters using a multivariate normal distribution with mean and variance given by the posterior

mode the inverse of the Hessian matrix evaluated at the posterior mode, using bm = −b0 = 3 and

m = 100, respectively. For each model, we draw a sample of size 500.

Based on the sample of size 500 obtained by importance sampling, we calculate estimates of

the posterior means and variances of µ, ϕ, σ2η, ν as described in Section 3.4 equations (9)-(10).

Table 3 reports the posterior mean, 95% credible interval and variance of the estimators. For all

models considered, we find that the posterior means of ϕ were very close to 0.99, indicating a high

persistence of the log-volatility process. The persistence in the log-volatility process underlying the

SV-N model was smaller than that obtained under the other three models. The posterior mean of

ση under the SV-T, SV-S and SV-VG were smaller than the one under the SV-N, indicating that

the volatility processes of the SV-T, SV-S and SV-VG were less variable than those in the SV-N case.
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Figure 2: Density curves of the univariate normal, Student-t, slash and variance gamma using the

estimated tail-fatness parameter from the respective SV model.

The posterior means of ν are 11.2189, 2.8899 and 7.7817 for the SV-T, SV-S and SV-VG models,
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Table 2: Posterior mode of the parameters obtained when fitting the SV-N, SV-T, SV-S and SV-VG

models to the S & P500 returns (using m = 50, 100, 150, 200 and bmax = −bmin = 3) and time in

minutes to get the posterior mode.

SVM-N

m µ ψ ω κ time

50 -0.1993 5.2685 -2.0206 – 0.09

100 -0.2018 5.2672 -2.0195 – 0.19

150 -0.2021 5.2673 -2.0196 – 0.38

200 -0.2021 5.2673 -2.0196 – 0.64

SV-T

m µ ψ ω κ time

50 -0.3743 5.6124 -2.2085 2.3942 0.65

100 -0.3757 5.6073 -2.2071 2.3947 1.29

150 -0.3757 5.6073 -2.2071 2.3947 2.07

200 -0.3757 5.6073 -2.2071 2.3947 3.23

SV-S

m µ ψ ω κ time

50 -0.6116 5.5272 -2.1593 1.0477 4.57

100 -0.6110 5.5271 -2.1592 1.4095 8.05

150 -0.6110 5.5271 -2.1592 1.4095 12.34

200 -0.6110 5.5271 -2.1592 1.4095 16.77

SV-VG

m µ ψ ω κ time

50 -0.1699 5.6711 -2.2427 1.9977 45.53

100 -0.1699 5.6711 -2.2427 1.9977 98.45

150 -0.1699 5.6711 -2.2427 1.9977 158.21

200 -0.1699 5.6711 -2.2427 1.9977 197.35

14



Table 3: Estimation results for the S&P500 daily index returns. The first row: Posterior mean.

The second row: Posterior 95% credible interval in parentheses. The third row: standard error of

the posterior mean.

Parameter SV-N SV-T SV-S SV-VG

-0.2122 -0.3891 -0.6069 -0.1333

µ (-0.5260,0.1263) (-0.7551,0.0287) (-0.9963,-0.2667) (-0.5328,0.2554)

0.0089 0.0177 0.0131 0.0237

0.9906 0.9933 0.9927 0.9939

ϕ (0.9839,0.99936) (0.9877,0.9956) (0.9871,0.9952) (0.9882,0.9958)

1.12× 10−4 2.57× 10−4 1.15× 10−4 1.12× 10−4

0.0173 0.0121 0.0133 0.0114

σ2
η (0.0126,0.0241) (0.0086, 0.0175) (0.0094,0.0187) (0.0079, 0.0158)

1.39× 10−4 8.79× 10−4 5.29× 10−4 1.31× 10−4

— 11.2189 2.8899 7.7817

ν — (7.8815,14.6406) (2.3395,3.4719) (5.3534,10.0791)

— 0.2844 0.0012 0.06762

respectively. These results seem to indicate that the measurement errors of the stock returns are

better explained by heavy-tailed distributions. The reason why the estimated volatility of the SV-

SMN models is more persistent and less variable can be understood by comparing the densities of

these distributions. To illustrate the tail behavior, we plot the normal (N (0, 1)) density, Student-t

(T (0, 1, ν)) density with ν degrees of freedom, the slash (S(0, 1, ν)) density with shape parameter

ν and the variance gamma with shape parameter (VG(0, 1, ν)). We set ν as the posterior mean of

the respective SV model (see Table 3 for details). Figure 2 depicts the four density curves (the

Student-t, slash and variance gamma distributions have been rescaled to be comparable; see Wang

and Genton, 2006, for details). All the distributions have heavier tails than that of the normal

distribution. Note that the slash distribution has a fatter tail than the other distributions that we

have considered (see Figure 2 right panel). Therefore, the SV-T, SV-S and SV-VG models attribute

a relatively larger proportion of extreme return values ϵt instead of ηt than the SV-N model, making

the volatility of the SV-T, SV-S and SV-VG models less variable. It also increases the persistence

of these models’ volatility. This interpretation is confirmed by comparing the volatility estimates.
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In Figure 3, we plot the decoded volatilities e
ht
2 . We find smoother trajectories under the models

SV-T, SV-S and SV-VG than for the SV-N model. Extreme returns, such as during the sub-prime

crisis, make the differences clear. This can have a substantial impact, for instance, on the valuation

of derivative instruments and several strategic or tactical asset allocation topics.

0

3

6

9

1/8/1990 12/23/1993 12/3/1997 11/27/2001 11/15/2005 11/5/2009

SV−N

SV−T

SV−S

SV−VG

Figure 3: Decoded e
ht
2 using the viterbi algorithm. The solid line (SV-N), dotted red line (SV-T),

dotted green line (SV-S) and the dootted blue line (SV-VG). The grey line indicates the absolute

returns.

Next, we compare the models in terms of their relative in-sample fit using the DIC, LPS, EAIC,

EBIC and LPML criteria. Models with greater LMPL values have better fit and models with

smallest EAIC, EBIC and LPS have the best fit. In table 4, we report the results. All the criteria

considered here indicate that the SV-VG model has the best fit.

We additionally performed an out-of-sample analysis of the forecast performance for the models

covered in Table 4. For the observation period January 8, 1990 until May 19, 2017, each return

series was divided into a calibration and a validation sample:

• Calibration sample: from January 8, 1998 until December 31, 2012.
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Table 4: SP&500 return data set. DIC: deviance information criterion, LPS: log-predictive score,

EAIC: expected AIC, EBIC: expected BIC. LPML:log-pseudo marginal likelihood.

DIC LPS EAIC EBIC LPML

Model Value Ranking Value Ranking Value Ranking Value Ranking Value Ranking

SV-N 15705.3 4 1.3550 4 15708.4 4 15728.3 4 -7861.92 4

SV-T 15663.2 2 1.3512 2 15667.3 2 15694.0 2 -7843.99 2

SV-S 15672.4 3 1.3520 3 15676.5 3 15703.2 3 -7844.91 3

SV-VG 15656.0 1 1.3506 1 15660.1 1 15686.8 1 -7836.57 1
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Figure 4: QQ-plot of the forecast pseudo-residuals: SV-N (top-left), SV-T (top-right), SV-S (bottom-left) and SV-VG

(bottom-right) for the IBVSP returns.
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• Validation sample: from January 2, 2013 until May 19, 2017.

As a first step, the SV-N, SV-T, SV-S and SV-VG models were fitted to the calibration sample

of each series. This was done by using the HMM method with m = 100, a value that is large

enough to ensure that any anomalies that may occur could not be attributed to inaccuracies in the

approximation of the likelihood. Then, for each one of the observations in the validation sample,

the (one-step-ahead forecast) pseudo-residual was computed according to equation (12).

The QQ-plot for the S & P 500 returns under the SV-N, SV-T, SV-S and SV-VG models are

shown in Figure 4. The QQ-plot indicates a lack of fit in the left tail and in the right tail for

the SV-N. For the SV-T, SV-S and SV-VG models, the QQ-plot indicates a lack of fit in the left

tail. The indicated mis-specification could be caused by the presence of correlation between the

perturbation terms defined by equations (5a) and (5b).

The QQ-plot discussed above is useful for assessing the relative fit of a model, but, for the

purpose of assessing the risk associated with a share or index, it is the extreme left tail of the

forecast distribution that is of particular interest. It determines the value-at-risk (VaR), defined

as the maximum possible loss of a portfolio (over a specified period) at a given confidence level.

For example, the one-day 1% VaR is the 0.01-quantile of the one-day-ahead forecast distribution.

Whenever the return falls below that quantile, an exception is said to have occurred. If the model

used for forecasting is correct, then, using a 100α%VaR, the number of exceptions, X, in n days

follows a Binomial(n, α) distribution. This distributional result makes it possible to implement

back testing, where the adequacy of the time series model is assessed through a comparison of

the observed number of exceptions and the corresponding theoretical distribution. A standard

approach to test the accuracy of VaR forecasts is to assess the violation rate, which is estimated as

α̂ = X/n. In order to examine the accuracy of VaR forecasts, we adopt the unconditional coverage

test introduced in Kupiec (1995). This is a likelihood ratio test with χ2
1-distributed test statistic

LRuc = 2{log[α̂x(1− α̂)n−x]− log[αx(1− α)n−x]}. (14)

The null hypothesis is that the achieved violation rate is equal to the predetermined nominal

probability α. See Kupiec (1995) for more details. According to the unconditional coverage test,

we accept the null hypothesis that the achieved violation rate is equal to 5% for all the returns
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Table 5: Violation rate (VR) as a percentage in n one-day-ahead forecast, P -values of the uncon-

ditional coverage test at the 1% and 5% levels.

0.01 0.05

Return Model n VR (%) P-value VR (%) P-value

SV-N 1102 0.0172 0.0285 0.0435 0.3161

S & P 500 SV-T 1102 0.0154 0.0935 0.0481 0.7701

SV-S 1102 0.0163 0.0528 0.0508 0.9012

SV-VG 1102 0.0154 0.0935 0.0472 0.6654

under all the models considered here. We reject that the achieved violation is 1% only for S & P

500 under the SV-N model.

6 Conclusions

In this article, we presented an easy-to-implement Bayesian estimation approach for the SV-SMN

class of models. The commonly made Gaussian assumption of the mean innovation was replaced

by univariate heavy-tailed processes, known as scale mixtures of normal distributions. While we

focused on practical and computational aspects of fitting these models to real data, there may of

course also be of interest in deriving theoretical properties of the estimators.

We illustrated our methods through an empirical application of the S&P500 index return series,

which shows that the SV-VG model provides better model fitting than the SV-N model in terms

of parameter estimates, interpretation, robustness aspects and out-of-sample forecast.

Our SV-SMN class of models showed considerable flexibility to accommodate outliers, however

their robustness aspects could be seriously affected by the presence of skewness and heavy-tailedness

simultaneously. To remedy this problem, the scale mixtures of skew-normal distributions can be

used, or alternatively, the conditional distribution of the returns could be modeled nonparametri-

cally (Langrock et al., 2015).

Finally, another important stylized fact often attributed to financial time series, the so-called

leverage effect, is not explicitly incorporated in the class of models presented in this paper. Models

19



with leverage effect involve a (negative) correlation between the innovations in the returns and

subsequent innovations in the log-volatility process. While relatively easy to accomplish when both

innovations are Gaussian — in which case the joint distribution of the innovations can simply be

taken to be a bivariate normal — it is not quite as straightforward to formulate corresponding

models where the distribution of the innovations in the returns is from the general class of SMN

distributions. We believe that the way forward to constructing corresponding models is via the use

of copulas, which can be used to couple arbitrary marginal densities, in particular SMN distributions

and normal distributions, respectively. This strategy was first proposed by Smith (2007), but has

since not been pursued further, and in particular not within classes of models as flexible as the

one discussed in the present paper. The copula-based extension of SV models, which is beyond the

scope of the present paper, is currently under investigation.
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