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Abstract

In this work we propose a robust approximation for spatial random fields. The method is
based on a scale mixture of Gaussian processes and attains scalability for large datasets by
projecting the original process into a lower dimensional space through knot based techniques.
In particular, this paper considers the predictive approach to approximate a parent process.
This proposal allows for more reliable predictions and, as a result, better representations of
the parent process based on predictive process approximations. The predictive approach is
based on krigging ideas and krigging predictors are well known to be affected by outliers
as they are obtained as linear combination of observations. As a result, it is expected that
the predictive process approximation might be affected by outliers and in this case, the
approximation might not be a good representation of the original parent process. In this
paper we propose a remedy to this issue by allowing the predictive process to be more
robust to outlying observations. Furthermore, the predictive process formulation depend on
the choice of knots which proved to be of major importance in the estimation of parameters
of interest. We investigate the effects of assuming a particular set of knots for the predictive
approximation. In addition, we investigate how these choices might influenciate outlier
identification.

Keywords: Large data; Spatial statistics; Predictive processes; Nonstationarity.

1Department of Statistics, Universidade Federal do Rio de Janeiro
2(to whom correspondence should be addressed) Department of Statistics, Universidade Federal do Rio

de Janeiro, Ilha do Fundão, thais@im.ufrj.br



1 Introduction

With the increase of high-resolution geocoded data, the big n problem became crucial in the

spatial and spatiotemporal setup. For instance, if Gaussianity is assumed, large covariance

matrices need to be inverted in the inference procedure and computational effort is of cubic

order on the number of locations. This limitation become even more important in the case

of spatiotemporal or multivariate data. Few time records over space may lead to huge

matrices of covariance, making the inference for unknown parameters not feasible. Thus, a

compromise between complexity and parsimony is called for in this context.

Several approaches were proposed to overcome the computational limitation imposed

by the Gaussian assumption. Vecchia (1988) and Stein et al. (2004) proposes the use of

conditional distributions where Z, the vector of observations in n locations, is partitioned into

subvectors Z1, ...,Zb of possibly different lengths, then p(z|φ) = p(z1|φ)
∏b

j=1 p(zj|z(j−1),φ),

where Z(j) = (Z1, ...,Zj) . In particular, if S(j) is some subvector of Z(j) then p(z|φ) ≈

p(z1|φ)
∏b

j=1 p(zj|s(j−1),φ). To use this approximation, one need to order the observations

in some manner, and it is suggested to use the rank of the projections of the observations

along some axis. Jones and Zhang (1997) use this approach to space-time processes and

they suggest defining the nearest neighbors based in a preliminary estimate of the space-

time correlation. More recently, Datta et al. (2015) use this ideia to define a new spatial

processes called the Nearest Neighbor Gaussian Process which is defined over a fix reference

set, using a parent process. In this set-up it is necessary to define a order for the spatial

locations and a finite reference set. The authors suggest the ordering as presented in Vecchia

(1988). Besides, they consider two reference sets: the observational and a randomly placed

locations.

Furrer et al. (2006) proposed the tapering approach which sets the covariance function

to zero beyond a certain range. The new covariance function is defined by the product of

two functions, the original covariance and the taper function. The selected taper function

should be exactaly zero from a certain range and it should preserves the original behaviour
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at the origin. The authors analyzed the effect of tapering using the infill asymptotic theory

which is based on the number of locations increasing within the fixed spatial domain. The

proposal considers Ktap(x, y) = K(x, y)Kθ(x, y) and the Schur product Ktap preserves some

of the shape of K and it is identically zero outside a fixed range. A possible objection to

tapering is that it may not be effective for a spatial covariance with long range correlations.

Fuentes (2007) also presents an approximation for the likelihood of Gaussian processes but

her approach is restricted to the spectral domain. The spectral density for the corresponding

lattice process is written as a sum with infinite terms which is truncated after 2N terms

achieving dimension reduction.

A different approach considers low-rank models which achieve the computational feasi-

bility by writing the spatial component as a linear combination of spatial basis functions.

The models differ in the parametrization and the basis function used. For example, commom

choices are the Fourier basis function and bisquere functions. A particular case of these mod-

els is the Gaussian Predictive model (Banerjee et al., 2008), in this case the basis function

is parameterized according to a parent process. Gaussian predictive processes represent the

original process in a lower dimension in which inference is feasible. The method considers

the projection of the original process onto a space defined by a set of locations called knots.

Thus, the original big n problem is transformed in a problem of dimension m with m << n.

In general terms, a new process is defined as a linear combination of observations at a fixed

set of knots. In particular, the weights are defined by the kriging interpolation based on the

points in the set of knots. Thus, this interpolation defines a new process for each location

in the spatial domain of interest.

However, notice that predictions are usually highly affected by outlying observations.

An outlier may have a strong effect in the prediction of its neighboors when the observed

value for the process at this location is much higher or lower than expected for that region

in space. Chilès and Delfiner (1999) comment that, in applied settings, even small changes

in some regions in space might cause large differences between the predicted and observed
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process. Observations in these regions should not be discarted as this might cause bias in

the estimation of parameters and predictions (Chilès and Delfiner, 1999, page 221). In that

context, it is expected that predictive processes as defined by Banerjee et al. (2008) will

be highly affected by outliers. In particular, the predictive process are based upon linear

combination of observations at a set of knots and linear combinations are well known to be

highly affected by outliers.

In fact, the traditional kriging predictor is well known to be affected by outliers and

several papers have proposed robust alternatives or modifications of usual kriging predictor.

Fournier and Furrer (2005) proposed a model to robustify the kriging predictor by defining

the spatial process as a mixture of a spatial process and a contamination process. In this

proposal each site has a correponding contamination variable which indicated whether the

site was contaminated or not. The optimal predictor in this case depends on weights which

will be affected by the contamination variables. However, the predictor is unfiasible in

practice and an approximation is considered.

In that context, we propose to extend the predictive approach of Banerjee et al. (2008)

to robust settings. As a solution to the high influence of outlying observations in the ap-

proximation of large Gaussian processes we propose the use of heavy tailed processes which

accommodate extreme observations in the sampling distribution as proposed by Palacios

and Steel (2006) and extended by Fonseca and Steel (2011). These proposals are based on

mixing a Gaussian process with a positive process allowing for heavier tails for the finite

dimensional distributions of spatial data. This will allow for more reliable predictions and

as a result better representations of the parent process based on predictive process approx-

imations. Notice that this issue might be even more crucial in the case of large domains in

which it is expected to find different behaviours across space. In such a case, a more flexible

class allowing for spatial heterogeneity is called for.

In this work we follow the predictive approach in the non-Gaussian modeling of georef-

erenced data. We consider robust versions of predictive processes in order to obtain models
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which are scalable to potentialy high dimensional spatial data and able to accommodate

heterocedasticity in space and outliers.

Furthermore, the predictive process formulation depend on the choice of knots which

proved to be of major importance in the estimation of parameters of interest. We investigate

the effects of assuming a particular set of knots for the predictive approximation. Further-

more, the corrections proposed in the literature to improve variance estimation might lead to

poor estimation of spatial correlation parameters. We also investigate this issue and discuss

how outlier indentification in the non-Gaussian setup is affected by the choice of such knot

sets and corrections.

In section 2 we describe the predictive approach to spatial process modeling as introduced

by Banerjee et al. (2008), which is based on Gaussian processes. In section 3 we introduce

the predictive approach based on non-Gaussian processes proposed in this work. Section 4

presents the design problem of choosing the knot set in the definition of a new process based

on knot techniques. Further, we discuss the outlier detection procedure considered and how

this might be related to the knot set choice. Section 5 presents a simulation experiment for

Gaussian and non-Gaussian processes to investigate the effect of the design selected in the

parameter estimation. In addition, we present results regarding the rate of outlier detection

proposed for different designs for the knot set. Section 6 presents conclusions and future

developments.

2 Predictive process modeling

Gaussian Predictive process modeling has the property of reducing the dimension of a original

parent process from n to m, where m << n. The method is based on the ideas of kriging and

projects the original data in a lower dimensional space defined by a set of knots. As follows

we present the model, main limitations and remedies already proposed in the literature.
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2.1 Predictive Gaussian process

Consider a stationary Gaussian process {ω(s) : s ∈ D} with mean function µ(s) = 0 and

covariance function Cov(ω(si), ω(sj)) = C(||si−sj||) observed at locations S = {s1, . . . , sn}.

Thus, ω = (ω(s1), . . . , ω(sn)) is such that ω ∼ N(µ,Σ), µi = 0 and Σij = C(||si − sj||). Let

S∗ = {s∗1, . . . , s∗m}, m << n be a set of knots in D, which might or might not be a subset

of S. Thus, from the parent process definition we obtain that ω∗ = (ω(s∗1), . . . , ω(s∗m))T ∼

Nm(0,Σ∗), with Σ∗ij = C(||s∗i − s∗j ||), i, j = 1, . . . ,m. Conditional on ω∗, the best linear

predictor at a location s0 is given by E(ω(s0) | ω∗) which is

ω̃(s0) = cT (s0)Σ
∗−1ω∗, (1)

where cT (s0) = [C(||s0 − s∗1||), . . . , C(||s0 − s∗m||)]. This interpolation is used by Banerjee

et al. (2008) to define a new process called the predictive process. Let {ω̃(s) : s ∈ D} be a

Gaussian process with 0 mean function and covariance function C̃(s, s
′
) = cT (s)Σ∗−1c(s

′
).

The predictive process representation for a variable of interest Z in a location s is given by

Z(s) = xT (s)β + ω̃(s) + ε(s), (2)

with covariance function C(s, s
′
) = cT (s)Σ∗−1c(s

′
) + τ 21s=s′ , where 1s=s′ represents the

indicator function, thats equal to 1 if s = s
′
. The process ω̃(s) is an orthogonal projection of

ω(s) and is the best representation of the parent process (see Banerjee et al., 2008). Thus,

for observed locations in S = {s1, . . . sn} the vector ω̃ = (ω̃(s1), . . . , ω̃(sn)) is predicted by

ω̃ = cTΣ∗−1ω∗, where cT = [cT (si)]
n
i=1. The vector Z = (Z(s1), . . . , Z(sn)) is modeled as

Z | ω̃,β, τ ∼ Nn(Xβ + ω̃, τ 2In) (3)

ω∗ | θ ∼ Nm(0,Σ∗). (4)

The big n problem reduces to a problem of dimension m, that is, inverses and deter-

minants required for likelihood computations and preditions depend on matrices of size m

instead of n, by using the Sherman-Morrison-Woodbury identity. Notice that the model for
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Z is different from the parent process and as a result the inferences for the model parame-

ters might be different. For instance, the variance for the process w(s) is different from the

process w̃(s). In the parent process the spatial variance is V ar(w(s)) = C(0) while in the

predictive process

V ar(w̃(s)) = cT (s)Σ∗−1c(s) (5)

Finley et al. (2009) proposed a solution to the bias problem in the variance estimation

by modifying the predictive process to have the same variance as the original process. Fur-

thermore, they propose a method to select knots which we investigate in more detail in our

simulated study. The authors propose the process

ẅ(s) = w̃(s) + ε̃(s), (6)

which is called modified predictive process. The error term ε̃(s) ∼ N(0, C(0)−cT (s)Σ∗−1c(s))

and the variance for ẅ(s) is the same as the original process w(s). In this work we investigate

how this correction in the variance might affect estimation of other model parameters.

3 Nongaussian predictive process modeling

Usual kriging estimators are sensitive to aberrant observations in the data as they are ob-

tained as a linear combination of sampled observations. Similarly, spatial predictions based

on Gaussian processes may be highly affected by outliers. Thus, it is expected that the pre-

dictive process defined in (2) is potentially dependent on the presence of outliers in the data.

Notice that if the outlier location is in S∗ the whole process approximation will be affected

by the outlying observation and the predictive approximation might not be a good repre-

sentation of the original parent process. Figure 3 presents a simulated example in which the

original process (Figure 3 (a)) is contaminated by outliers (Figure 3 (b)) and the predicted

surface has a different pattern than the original parent process due to presence of outliers

in the set of knots. In this example the low values in the bottom part of the region is not

captured by the approximation, which smooths the low values and predicts only peaks in
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that region. Examples of this kind motivates the idea that outlying observations should be

considered in the sampling distribution and robust solutions should be proposed to best rep-

resent the original process. In this section we present a robust alternative to the predictive

Gaussian approximation.

(a) Original surface. (b) Contaminated surface. (c) Gaussian predictive approximation.

Figure 1: Original process, interpolated surface for the data contaminated with outliers and

predictive approximation based on a Gaussian process for the contaminated data.

3.1 Nongaussian model

The usual assumption in geostatistics is that the finite-dimensional distribution for n ob-

servations Z(s1), . . . , Z(sn) is multivariate Gaussian. However, Gaussian processes are very

sensitive to extreme or outlier observations. In that context, Palacios and Steel (2006)

proposed heavy tailed processes based on mixing Gaussian process with a positive process

responsible for inflating the variance and accommodating extreme observations. Consider

the spatial process

Z(s) = xT (s)β +
w(s)

λ(s)1/2
+ ε(s), (7)

where ω(s) is a Gaussian process defined in s ∈ D, and it is independent of ε(s) ∼ N(0, τ 2).

The process λ(s) is the mixing process allowing for spatial heterogeneity. In matricial form

Z = Xβ + Λ−1/2ω + ε, ε ∼ N(0, τ 2In) (8)
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with Λ = diag(λ), λ = (λ1, . . . , λn). Integrating λ, the finito dimensional distribution of Z

has heavier tails than the Gaussian distribution. In order to obtain mean squared continuity

the variable λ need to be spatially correlated (ver Palacios and Steel, 2006). Thus, the

mixing process is modeled as

Z | ω,Λ,β, τ 2 ∼ Nn(Xβ + Λ−1/2ω, τ 2In) (9)

ω | σ2, a ∼ Nn(0,Σ) (10)

ln(λ) | a, ν ∼ Nn

(
−ν

2
1n, νR

)
(11)

with Σ = [C(si, sj)]
n
i,j=1 = σ2R, Rij = Cor(Z(si), Z(sj)), for i, j = 1, . . . , n e 1n is a unitary

vector of size n and ν ∈ R+. In this set-up the covariance between two points in space is

Cov(Zi, Zj) = σ2Rijexp{ν(1 + (1/4)[Rij − 1])} (12)

Let Z = (zTo , z
T
p )T , with zTo the observations of the process Z and zTp the desired predictions

in r non-observed locations. The predictive distribution is given by

p(zp | zo) =

∫
p(zp | zo, λ, ζ)p(λp | λo, ζ, zo)p(λo,θ | zo)dλdζ (13)

with λ = (λTo ,λ
T
p )T , and ζ = (β, σ2, τ 2,θ, ν). And predictions might be obtained from the

joint distribution of (zp,λp)

ln(λp) | λo, ν, zo ∼ Nr

(
CpoC

−1
oo (lnλo +

ν

2
1n)− ν

2
1r, v[Cpo −CpoC

−1
oo Cop]

)
(14)

zp | zo, λ, ζ ∼ Nr

(
(Xp − AXo)β + Azo, σ

2

(
Λ
− 1

2
p CppΛ

− 1
2

p +
τ 2

σ2
Ir − Λ

− 1
2

o CopΛ
− 1

2
p

))
(15)

with A = Λ
− 1

2
p CpoΛ

− 1
2

o

[
Λ
− 1

2
o CooΛ

− 1
2

o + τ2

σ2 In

]−1
and C(θ) =

 Coo Cop

Cpo Cpp

 .

3.2 Nongaussian Predictive process

Consider a set of knots S∗ = {s∗1, . . . , s∗m}, which might be or not in the sampled locations

S ∈ D, and the non-Gaussian process (7). Let ω∗ be predictions for the process ω(s) at
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location in S∗. Also let λ∗ be predictions for the variance process λ(s) at location in S∗.

ω∗ | σ2,θ ∼ Nm(0, σ2R∗) (16)

ln(λ∗) | θ, ν ∼ Nm

(
−ν

2
1m, νR

∗
)

(17)

with, R∗ = [Cor(s∗i , s
∗
j ;θ)]mi,j=1 = σ−2C∗(θ) and RT (s) = [Cor(s, s∗1;θ), . . . , Cor(s, s∗m;θ)].

Thus, the predictive non-Gaussian process is defined as

Z(s) = xT (s)β +
ω̃(s)

λ̃1/2(s)
+ ε(s), (18)

with,

ω̃(s) = cT (s)C∗−1ω∗

ln(λ̃(s)) =
ν

2

[
RT (s)R∗−1(θ)1m − 1n

]
+RT (s)R∗−1(θ)ln(λ∗)

Proposition 3.1 Consider the non-Gaussian predictive process as defined in (18). Thus,

the covariance for the predictive processes ω̃ and λ̃ are respectively given by

Cov(ω̃(s), ω̃(s
′
)) = cT (s;θ)C∗−1(θ)c(s

′
;θ) (19)

Cov(ln(λ̃(s)), ln(λ̃(s
′
))) = νRT (s)R∗−1R(s

′
) (20)

The model (18) is a predictive process and, as in the Gaussian case, induces a bias in

the estimation of the marginal variance τ 2. Thus, we propose a correction for the variance

as done in the Gaussian case (Finley et al., 2009).

Proposition 3.2 The variance correction for ω̃λ̃−1/2 is

ω̈iλ̈
−1/2
i = ω̃iλ̃

−1/2
i + ζi, i = 1, . . . , n (21)

onde ζi ∼ N(0, σ2
ζ ), com

σ2
ζ = σ2

(
exp {ν} −RT (si, s

∗)R∗−1R(si, s
∗)exp

{ν
2

[1 +RT (si, s
∗)R∗−1R(si, s

∗)]
})
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4 Design for non-Gaussian modeling

The selection of points to be included in the set S∗ is a crucial problem in the definition of

the predictive process w∗(s) as few points or points too close together might not represent

the spatial behaviour in space. On the other hand, the selection of a too large subset S∗ will

result in a too large covariance matrix to be inverted.

This problem is known as a design problem. The points selected should not affect the

estimation of parameters. In that context, a chosen set which is eficient for prediction might

not be for parameter estimation (see Zimmerman, 2006). Several papers indicate ways to

select these points. The methods are usually based on the minimization of a loss criteria,

depending on the goals to be achieved in the research. For instance, Xia et al. (2006) proposed

a method based on the maximization of the determinant of the Fisher information matrix.

Fuentes (2007) considers entropy maximization in a Bayesian context in order to maximize

the information obtained from data. Cressie (1993) uses the minimization of prediction

variances to increase or decrease the size of a grid with focus on improving the prediction of

new data.

In this work we are also interested in outlier detection. For this purpose, biased sampling

in regions with larger variability might induce poor prediction with very large credibility

intervals. While biased sampling in regions with lower variability might induce predictions

with unrealistic small prediction intervals.

As follows we present a brief review of known methods of knots selection and present a

proposal for the non-Gaussian geostatistic modeling.

4.1 Knots selection

Assume the number of knots is fixed and will be selected in D ∈ <d. Some possible sampling

choices take into consideration the spatial structure.
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1. Random grid: This grid is a simple choice which does not consider any spatial informa-

tion. In this case, all points have the same probability of being included in the knots

set.

2. Regular grid: It is frequently the grid choice due to its simplicity. However, it is

uneficient for some parameter estimation such as smoothness parameters as it does

not allow observations very close together. An example of regular grid is the regular

triangular grid (see Cressie, 1993, page 318).

3. Finley’s proposal: Finley et al. (2009) proposed a minimization criteria for the pre-

dictive variance in predictive processes. The authors consider m to be known and

construct the knot set to be as close as possible to the original process. Let θ be the

predictive variance of w(s) conditional on the predictive process w∗ in spatial points

s∗ which is given by

Vθ(s, s∗) = V ar(w(s) | w∗(·), s∗,θ) = C(s, s)− cT (s;θ)C∗−1(θ)c(s
′
;θ), (22)

and measures how well w̃(s) approximates w(s). Based on this idea the authors pro-

posed an algorithm to minimize the mean predictive variance for the observed locations

by minimizing

Vθ(s∗) =
1

n

n∑
i=1

V ar(w(si) | w∗(·), s∗,θ) (23)

Thus the algorithm to select m knots is

(a) Specify a set of all the possible locations that could be selected S = s1, . . . sN

with N > m. Some examples of the possible choices for the set S are a regular

grid or the observed locations, and others.

(b) Specify an initial set with n0 components. This set, could be randomly or deter-

ministicly chosen.

(c) In the step t + 1 compute Vθ(si, s
∗) for all si ∈ S. The point which achieves the

minimum variance is included in the knots set.
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(d) Repeat the the last item up to the selection of m points in the knot set.

4. Diggle’s proposal: Diggle and Lophaven (2006) presents two different views of this

problem, one is called retrospective and the other prospective. In the retrosprospective

method assume that some data is available for parameter estimation. In a second step

knots are chosen to minimize the predictive variance conditional on the estimated

parameters. In the prospective case, the proposal considers the expected predictive

variance to selec knots. They unite both goals of prediction and parameter estimation

by proposing a modified regular grid.

a) lattice plus close pairs (k × k,m, α): This grid is regular with dimension k × k

and f knots randomly selected in a circle of radius α centered in the f randomly

chosen knots.

b) lattice plus in-fill (K×k,m, k0×k0): Define a completely regular grid of dimen-

sion k × k. Then m cells are randomly selected in the grid and in the selected

cells a new grid is created with dimension k0 × k0.

According to the authors, the most effiecient grid is the lattice plus in-fill.

4.2 Knots selection for non-Gaussian models

In the non-Gaussian model (7) we need to specify the knots for the spatial process ω(s) and

also the knots for the variance process λ(s). We consider three approaches to non-Gaussian

modeling.

i) Use a set of knots for ω and a different set for the λ process. This could include more in-

formation into the model. For example, if we use 40 knots, we could use two differents

sets of dimention 40, one for each process, as well as use a different selection criteria

of knots for the two processes. Note that the computational cost of this proposal is

practically the same as that of using only a set of 40 knots.
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ii) Since our interest is to model processes that have regions with high variability, we could

think that a good design for the λ process should include a larger quantity of points

in the region with more variance, to do so we could use a pilot sample to estimate the

parameters of the model and select the locals with higher values of σ2

λi
, i ∈ {1, . . . , n}.

iii) The idea in the item (ii) could have some problems, because selecting only points with

large variability could make all the chosen points form a cluster, what harders or makes

it impossible to apply technique such as block sampling. In order to solve this difficulty

and allow the knots to consider not only locations with higher variability it is possible

to use values with higher variance but also using point with lower variability. In this

work the amount of points of higher variance will be equal to that of lower variance

points.

5 Applications

5.1 Simulation experiment: Gaussian data

In this simulated study we consider 100 replicates generated from a spatial process with

size n = 100 each. We intend to investigate the quality of parameter estimation when we

consider different grid types (random, regular, Finley and Diggle). Furthermore, we also

considered two versions of the model with corrected or not corrected marginal variance.

Data was simulated from a stationary Gaussian process {Z(s) : s ∈ D} with mean function

µ(s) = β1x1(s) + β2x2(s) where covariates generated from x1 ∼ N(3, 1), x2 ∼ N(10, 2),

and parameters β1 = 5 and β2 = 3. The covariance function considered was C(si, sj) =

σ2exp
(
− ||si−sj ||

a

)
, with σ2 = 2, a = 2. For all locations we considered τ 2 = 0.5. The

locations were randomly selected in a 10× 10 square.

For each Monte Carlo replication, the parameters were estimated from a Bayesian point

of view using the original Gaussian model and the Banerjee et al. (2008) proposal with 20,

40 and 60 knots. The knot selection procedures were the random, Finley’s and Diggle’s.
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The prior distributions for the parameters of interest are β ∼ N(0,Σβ), σ2 ∼ GI(α, δ),

τ 2 ∼ GI(γ, ξ) and a ∼ Ga (1, φ/med(d)), with med(d) the distance median. The prior

hyperparameters where chosen to result in vague prior distributions. The estimates were

obtained using MCMC method and 200000 iterations, and convergence was verified with

Geweke and Raftery and Lewis criteria (Raftery and Lewis, 1992).

Table 1 presents the relative Mean Squared Error (MSE) for the model parameters com-

puted over the 100 replicates. To have a clearer presentation, we compared the estimated

parameters with the estimates obtained for the Gaussian model using the complete dataset,

which would be the best estimates we could obtain from data instead of using the true pa-

rameter values. From table 1 it is evident that the largest bias created by the predictive

approximation are observed for the variance parameters σ2 and τ 2 and the spatial range a.

In addition, the percentual gain by increasing the number of knots from 20 to 60 is very

small for both parameters. The computational time gain obtained for 20 knots is significant

as the complete data takes 2765.715 seconds to run.

Table 2 presents the results for the correction in the global variance and different grids

(Finley and Diggle) for knot selection. The use of correction with the Finley grid improved

the estimation of τ 2, σ2 and a. The best results however were obtained by the use of

correction with the Diggles grid, except for the range parameter a. Notice that for this sample

size (n=100) the use of Diggle or Finley grids leads to a large increase in the computational

time for parameters estimation.

14



Table 1: MSE for model parameters and computational time for different number of knots

(20,40 and 60) for the random sample design.

Number of knots

Parameter 20 40 60

β1 0.0039 0.0022 0.0011

β2 0.0012 0.0005 0.0003

τ 2 0.8590 0.4228 0.2228

σ2 0.9012 0.4706 0.3350

alcance 4.0499 2.9488 2.1953

Time (sec) 379.7637 692.3181 1268.411
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Table 2: MSE for model parameters and computational time for different number of knots

(20,40 and 60). For different combination of proposals.

Correction Grid Parameter Number of knots

20 40 60

β1 0.0230 0.0232 0.0226

β2 0.0173 0.0169 0.0169

No Finley τ 2 1.7572 1.2024 0.9476

σ2 1.4936 1.0140 0.9240

a 1.6152 1.6888 1.7093

Time (sec) 382.12 689.72 1289.33

β1 0.0281 0.0282 0.0282

β2 0.0197 0.0198 0.0198

Yes Finley τ 2 1.3198 1.3065 1.2957

σ2 0.4790 0.4781 0.4771

a 1.6274 1.5046 1.0210

Time (sec) 2137.31 3508.68 5715.41

β1 0.0240 0.0238 0.0231

β2 0.0167 0.0171 0.0169

No Diggle τ 2 1.9809 1.6201 1.4306

σ2 2.3586 1.7062 1.4614

a 1.5726 1.5436 1.5450

Time (sec) 386.75 716.07 1329.59

β1 0.0281 0.0280 0.0281

β2 0.0198 0.0198 0.0198

Yes Diggle τ 2 1.2539 1.2284 1.2326

σ2 0.4621 0.4606 0.4622

a 2.4861 1.8332 1.1605

Time (sec) 1888.33 2841.502 4334.72
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5.2 Simulation experiment: Contaminated data

The same 100 replicates from subsection 5.1 was considered for data contamination. In each

replicated dataset, 7 points were contaminated to be outlying observations. The contamina-

tion was performed by adding a random increment to 7 random selected points. Figure 5.2

(a) presents the spatial domain considered in this study and the outlier locations.

In this simulation different grid choices and corrections for the variance are investigated.

In particular, for the knot set selection we considered the following proposals as discussed in

subsection 4.2.

i) Random: 20, 40, 60 points randomly selected from the 100 locations. The same locations

were used for both processes (λ(s) and ω(s));

ii) Proposal 1: 20. 40, 60 points selected. In each scenarium half points were used in the

variance process prediction and the other half for the ω process;

iii) Proposal 2: A pilot estimate of the variance σ̂2

λ̂i
was used to select half locations with

the larger variances to be in the variance process prediction;

iv) Proposal 3: Similar to proposal 2, however, half points in the variance prediction set

of knots were selected to have smaller variances.

v) Diggle: The same considered in the Gaussian case.

The prior distributions are the same as in the Gaussian simulation study. To complete

the Bayesian model v ∼ GIG(0, c1, c2). As follows it is presented the Mean Squared Error

for the model parameters computed over the 100 replicates. We compared the estimated

parameters with the estimates obtained for the Non-Gaussian model using the complete

dataset, which would be the best estimates we could obtain from data.

The results are presented in tables 3 and 4. The tables present also the rate of right

outlier detection for each proposal. Note in table 3 that the MSE for β1 and β2 using the

random or Diggle’s proposal are very similar while the MSE for τ 2 using Diggle’s proposal

17



was much larger. Opposed to what was observed in the Gaussian study, the MSE for the

range parameter was smaller for the Diggle’s proposal with 20 knots, and larger for 40 and

60 knots which might be explained by the influence of λ in the range estimation.

Table 4 presents the results for proposals 1 and 2. Note that proposal 1 has larger MSE

than the random proposal except for the range parameter when m = 20. For m = 40 and

m = 50 the proposal 1 has the best MSE results. Proposal 2 compares favorably with the

Diggle’s proposal, however, it has a worse preformance than the random and proposal 1

choices.

The rate of right outlier detection was very similar in all proposals and knot set sizes. The

rates were high, close to 95%, and are smaller only for points which are in a neighbourhood

of outlying observations.

In summary, proposal 1 has the best performance in the knot set selection. This is

probably due to the fact that this proposal includes different points in the two knot sets

used for variance and process predictions. Regarding the knot set size, 20 locations was too

small and MSE were quite large indicating that robustifying the model implies that larger

knot sets are required for parameter estimation.
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Figure 2: Contaminated data experiment. (a) Spatial domain for data simulation. Grey

circles represent the contaminated data locations. (b) Rate of outlier detection.

Table 3: Relative MSE for random and Diggle’s proposals, computational time for parameter

estimation and rate of outlier correct detection.

Random Diggle

Parameter 20 40 60 20 40 60

β1 0.0052 0.0087 0.0098 0.0225 0.0173 0.0140

β2 0.0029 0.0023 0.0016 0.0051 0.0051 0.0036

τ2 9.5431 3.9891 1.7654 18.8581 12.9365 9.3495

range 5.0925 0.2102 0.4163 1.9724 1.1146 1.4246

Time (Sec.) 1187.55 1840.68 3363.50 1281.24 2378.65 3338.64

Rate 0.94 0.97 0.96 0.93 0.93 0.93
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Table 4: MSE for proposals 1 and 2.

Proposta 1 Proposta 2

Parameter 20 40 50 20 40 60

β1 0.0069 0.0048 0.0027 0.0128 0.0131 0.0056

β2 0.0045 0.0013 0.0017 0.0034 0.0037 0.0029

τ2 10.8164 2.3155 1.0308 13.3828 5.5007 2.7252

range 0.8214 0.1716 0.2259 7.8679 0.7032 1.5482

Time (Sec.) 1418.06 2346.96 2866.23 1269.08 2192.50 3353.57

Rate 0.94 0.97 0.97 0.95 0.95 0.96

6 Conclusions

This work aims to robustify predictive approximations for Gaussian processes which are

usually highly influenced by the presence of outiliers in the observed data. Indeed, if the

chosen set of knots used in the approximation contains outliers the approximation for the

parent process might not represent reality.

We have proposed the use of two different sets of knots, one for the Gaussian process

approximation and another one for the variance process approximation. This approach has

improved the approximation performance as illustrated in our simulated examples. Proposals

1 and 2 compares favorably with the Diggle’s proposal for the knot set selection.

Furthermore, the rates of outlier detection are very large close to 95%. Thus, the model

is able to robustify the parent process approximation and also allows for outlier detection.

The proposed approximation has limitations which are inherent of predictive approxi-

mations such as oversmoothing. This is not corrected by this approach. However, nearest

neighbor processes might be considered for this purpose and also in this context the mixture

ideas would be usufel to obtain better representations of the original process. This is topic

of future research.
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Appendix A: Algorithms

Posterior simulation

For the Non-Gaussian predictive process, the mixing latent variables λ(si), i = 1, . . . , n

are sampled in the MCMC algorithm using independent proposals as suggested in Palacios

and Steel (2006).

1. Sampling from posterior distribution of λ(si):

P (ln(λ∗(i)) | ln(λ∗(−i)), Z(i)β,Wi, τ2, v) ∝ (24)

exp

{
−1

2

(
ln(λ̃(i))

TDiag(s−1(i) )ln(λ̃(i))− 2ln(λ̃(i))
TDiag(s−1(i) )m(i)

)}
exp

{
−1

2

(
ln(λ(i))

∗TC−1(i) ln(λ(i))
∗ − 2ln(λ(i))

∗TC−1(i)M(i)

)}
,

with

M(i) =− v

2
1(i) +R∗12R

∗−1
22 [ln(λ(−i))

∗ +
v

2
1(−i)] (25)

C(i) =v(R∗11 −R∗12R∗−122 R∗21)

and

si =4log

(
1 + ηiδ(ηi) + η2

[ηi + δ(ηi)]2

)
mi =log

(
W̃ 2
i

τ 2
1 + ηiδ(ηi) + η2

[ηi + δ(ηi)]4

)
, with,

ηi =τ−1(Zi −X
′

iβ)sign(W̃i)

δ(ηi) =
φ(ηi)

(Φηi)

where φ and Φ are the density and cumulative distribution functions from the standard

Gaussian, respectively.
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Appendix B: Proofs of main results

Proof of proposition 3.1

As follows, we drop θ from the notation for clearer exposition of results.

Cov(ω̃(s), ω̃(s
′
)) = Cov

(
cT (s)C∗−1ω∗, cT (s

′
)C∗−1ω∗

)
= cT (s)C∗−1V ar(ω∗)C∗−1c(s

′
)

= cT (s; )C∗−1c(s
′
)

Cov(ln(λ̃(s)), ln(λ̃(s
′
))) =

= Cov
(ν

2

[
RT (s)R∗−11m − 1n

]
+RT (s)R∗−1ln(λ∗),

ν

2

[
RT (s

′
)R∗−11m − 1n

]
+RT (s

′
)R∗−1ln(λ∗)

)
= Cov(RT (s)R∗−1ln(λ∗), RT (s

′
)R∗−1ln(λ∗))

= RT (s)R∗−1V ar(ln(λ∗))R∗−1R(s
′
)

= νRT (s)R∗−1R(s
′
)

Proof of proposition 3.2

V (ωiλ
−1/2
i ) = V (ωi)E(λ−1i ) = σ2exp {ν}

V (ω̃iλ̃
−1/2
i ) = V (ω̃i)E(λ̃−1i ) = σ2RT (si, s

∗) R∗−1R(si, s
∗)E(λ̃−1i )

and, E(λ̃−1i ) = E(exp{−lnλ̃i}) = Mt=1(−lnλ̃i), where Mt is the moments generating func-

tion of the variavel −lnλ̃i, which has a normal distribution with mean ν/2 and variance

νRT (si, s
∗)R∗−1R(si, s

∗). Then, using the properties of the log-normal distribution, we have

that

V (ω̃iλ̃
−1/2
i ) = σ2RT (si, s

∗) R∗−1R(si, s
∗)exp

{ν
2

[1 +RT (si, s
∗)R∗−1R(si, s

∗)]
}
.
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