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1 Introduction

The aim of this work is to compare both theoretically and in practice two ex-
ploratory methods whose aim is apparently the same, applied to a two-way con-
tingency table: to represent both rows and column levels on the same graphical
(reduced dimensional) space, in order to help interpretability. As interpretabil-
ity we mean that the relations that exist in the table may be seen graphically in
terms of both absolute and relative position of the points-levels. The methods
are Correspondence Analysis (SCA, Benzécri et al., 1973-82; Greenacre, 1983)
and Taxicab Correspondence Analysis (TCA, Choulakian, 2006) with their ex-
tensions to multiple tables Multiple Correspondence Analysis (MCA, Benzécri
et al., 1973-82; Greenacre, 1983) and Taxicab Multiple Correspondence Analysis
(TMCA, Choulakian, 2008).

In the following, let N = (nij) an r × c contingency table, with n = n.. its
grand total, that is the number of units, P = (pij) = (nij/n) the corresponding
matrix of relative frequencies, r = (p1., ..., pr.)

′ the vector of row marginal pro-
file c = (p.1, ..., p.c)

′ the vector of column marginal profile, and Dr = diag(r),
Dc = diag(c) the corresponding diagonal matrices. In the following, we concen-
trate on matrix P , since n, the number of units, in all formulas is a scale factor
and is relevant only in the statistical tests. It is well known that the matrix rc′

represents the matrix of independence among the crossing characters, so that we
may be only interested to study, and thus to graphically represent, the matrix
of deviations from independence D = P − rc′.

For this purpose, we must get pairs of unit vectors of coordinates (cαr , c
α
c ), for

the levels of the characters by row and column, respectively, with α = 1, . . . , s =
min(r, c)− 1, with the requirement of orthogonality. As the graphical represen-
tation aims at outlining these deviations, we may wish that these coordinates
represent deviations and for that the additive model of data reconstruction is
adopted, that is

dij = pij − pi.p.j = pi.p.j

s∑
α=1

ιαcr
α
i cc

α
j
′ (1)
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with the conditions ∑
ij

(pij − pi.p.j) = 0

∑
i

pi.cr
α
i =

∑
j

p.jcc
α
j = 0 ∀α

∑
ik

pi.pk.cr
α
i cr

α
k =

∑
jh

p.jp.hcc
α
j cc

α
h = δij ∀α

(2)

The (2) are ordinary identification conditions on the deviations from expectation
and on standardized coordinates. Essentially, the rationale of additive models
is to decompose the table into independent additive unit-rank components, P =
rc′ +

∑
α Lα that here will be named layers, each layer

Lα = ια pi. p.j cr
α
i cc

α
j
′

representing an independent component of the deviation from the independence
of the original table. Should the coordinates of both rows and columns be cor-
related with some other character, one may imagine to attribute to its influence
the different levels of the characters crossed in the table.

2 The two methods

The two methods under examination adopt two different metrics in their spaces
of representation. Consider two points A and B, whose coordinates are A =
(a1, a2, . . . , an) and B = (b1, b2, . . . , bn), and a vector v, whose components are
v = (v1, v2, . . . , vn). We define the following metrics:

• L2 metrics, also known as Euclidean, in which the distance between two
points A and B is given by d2(A,B) =

√∑n
i=1(ai − bi)2 and the induced

L2 norm is thus ‖ v ‖2=
√∑n

i=1(vi)2;
• L1 metrics, also known as Manhattan, City block, or Taxicab, in which the

distance between two points A and B is given by d1(A,B) =
∑n
i=1 |ai−bi|

and the induced norm is thus ‖ v ‖1=
∑n
i=1 |vi|;

• L∞ metrics, in which the distance between two points A and B is given
by d∞(A,B) = maxi∈(1,n) |ai− bi| and the induced norm is thus ‖ v ‖∞=
maxi∈(1,n) |vi|.

According to the first two metrics, two Correspondence Analyses are defined,
in order to study a contingency data table:

1. Simple Correspondence Analysis (SCA, Benzécri et al., 1973-82; Greenacre,
1983), based on L2 metrics and the Generalized Singular Value Decompo-
sition (GSVD Greenacre, 1983; Abdi, 2007);

2. Taxicab Correspondence Analysis (TCA, Choulakian, 2006), based on L1

metrics, and the Taxicab Singular Value Decomposition (TSVD, Choulakian,
2004).
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2.1 Singular Value Decompositions

We may ground our further discussion on the well known Singular Value De-
composition (SVD, Greenacre, 1983; Abdi, 2007) theorem, that states

Theorem 1 (Singular Value Decomposition) Any real matrix X may be
decomposed as X = UΛ1/2V ′, with Λ the diagonal matrix of the real non-
negative eigenvalues of XX ′, U the orthogonal matrix of the corresponding
eigenvectors, and V the matrix of eigenvectors of X ′X (with the same eigenval-
ues), with both constraints U ′U = I and V ′V = I.

This theorem corresponds to the reconstruction formula of an r-rank matrix

xij =

r∑
α=1

√
λα uiα vjα

on which the Eckart and Young (1936) theorem is based:

Theorem 2 (Eckart and Young) The s-rank reconstruction of any real ma-
trix X, with s < r, the rank of X, once its singular values are sorted in decreas-
ing order,

xij ≈
s∑

α=1

√
λα uiα vjα (3)

is the best one in the least-squares sense.

? proposes to build the SVD solution through a recursive optimization process.
Indeed, it consists in finding the first vectors u1 and v1 principal component of
a matrix X as the solution of the equivalent optimization problems

max ‖ Xu ‖2, subject to ‖ u ‖2= 1;

max ‖ X ′v ‖2, subject to ‖ v ‖2= 1.

The solution gives

λ1 = max
u

‖ Xu ‖2
‖ u ‖2

= max
v

‖ X ′v ‖2
‖ v ‖2

= max
u,v

v′Xu

‖ u ‖2‖ v ‖2

which is the largest singular value of X. The complete solution results by
recursively applying the optimization problem on the residuals. Thus, the re-
construction formula holds:

X =

min(r,c)∑
α=1

λαvαu
′
α

and it results ∑
α

λ2α = Tr(X ′X).
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Note that, if we consider the principal coordinates

fα = Xuα, with v′αfα =‖ fα ‖2= λα

gα = X ′vα, with u′αgα =‖ gα ‖2= λα

the reconstruction formula becomes

X =

min(r,c)∑
α=1

1

λα
fαg

′
α

Correspondence analysis requires a special metrics, thus we shall refer to
Generalized Singular Value Decomposition (GSVD, Greenacre, 1983; Abdi, 2007).
For a given matrix X, this involves using two positive definite square matri-
ces expressing constraints imposed on both rows and columns of X respec-
tively. If Mr and Mc are such matrices, the GSV D aims at decomposing
X as X = UΛ1/2V ′, under the orthogonality constraints U ′MrU = I and
V ′McV = I. We shall express these conditions by saying that U and V are
required to be Mr- and Mc-orthogonal, respectively.

Theorem 3 (Generalized Singular Value Decomposition) Given two real
positive definite matrices Mr and Mc, any real matrix X may be decomposed as
X = FΛ1/2G′, under constraints F ′MF = I and G′NG = I.

The solution is given by the SV D of the matrix X̃ = M
1/2
r XM

1/2
c = UΛ1/2V ′,

with U ′U = I, V ′V = I, F = M
−1/2
r U , and G = M

−1/2
c V. It results that

FF ′ = M−1r and GG′ = M−1c respectively, that is F ′MrF = I and G′McG = I:
thus, we say that F and G are Mr− and Mc−orthogonal, respectively.

Taxicab Singular Value Decomposition In analogy with what proposed
for SV D, Choulakian (2004) proposes a recursive method in the Taxicab metrics
too. The first vectors are the solution of the equivalent optimization problems

max ‖ Xu ‖1, subject to ‖ u ‖∞= 1;
max ‖ X ′v ‖1, subject to ‖ v ‖∞= 1.

The solution

λ1 = max
u

‖ Xu ‖1
‖ u ‖∞

= max
v

‖ X ′v ‖1
‖ v ‖∞

= max
u,v

v′Xu

‖ u ‖∞‖ v ‖∞

is a combinatorial problem described by ?. The complete solution results by
recursively applying the optimization problem on the residuals, but it may be
seen as a TSVD, Taxicab Singular Value Decomposition. The corresponding
principal coordinates are

fα = Xuα, with v′αfα =‖ fα ‖1= λα

gα = X ′vα, with u′αgα =‖ gα ‖1= λα
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In this case, since both uα and vα are essentially vectors of signs (uα =
sgn(gα) and vα = sgn(fα)), the reconstruction formula becomes:

X =

min(r,c)∑
α=1

1

λα
fαg

′
α

Note that in L1 metrics, the total inertia should be the sum of each layer’s
ones.

2.2 Simple Correspondence Analysis

Correspondence Analysis may be formulated according to different points of
view. We try to ground it on SVD. We know that the relations between rows and
columns of N are summarized by the χ2 statistics, that measures the departure
from the independence between rows and columns. Since the independence is
estimated by N0 = nP0 = nrc′, the departure from independence is estimated
by

χ2 = n φ2 = n
∑
i

∑
j

(pij − pi.p.j)2

pi.p.j
(4)

with (r− 1)× (c− 1) degrees of freedom. Note that N and its grand total n are
interesting only to evaluate the chi-square significance, so that interest may be
concentrated most on the matrix P . Note that, by simplifying (4), φ2 may be
computed directly as

φ2 =
∑ p2ij

pi.p.j
− 1. (5)

We may compute both in an alternative way: (5) may be written as

φ2 = trace(S′S)− 1 with S =
pij√
pi.p.j

and (4), may be written as

n trace(Ṡ′Ṡ) = n trace

((
pij − pi.p.j√

pi.p.j

)′(
pij − pi.p.j√

pi.p.j

))

that is, in matrix form

φ2 = trace
(
(P − rc′)′D−1r (P − rc′)D−1c

)
(6)

We refer here to the possibility to partition the chi-square into components.
Indeed, if we succeed in writing N as sum of independent tables, we may par-
tition the chi-square accordingly and check for significance of each component
independently. Our problem is to reduce the rank of P (and consequently of
N) without losing relevant information. Indeed, we may formalize the problem,
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considering a suitable reduced rank matrix P̂ that best approximates P in the
sense of the weighed least squares, that is minimizing the residuals:

R = n

r∑
i=1

c∑
j=1

(pij − p̂ij)2

pi.p.j
= n trace

(
(P − P̂ )′D−1r (P − P̂ )D−1c

)
(7)

where the weights are the inverse of the expected frequencies. Note that this
formulation allows to check for significance of the residuals, since R may be
tested as a chi-square with ??? degrees of freedom.

For this purpose, we may apply the SV D to P̃ = D
−1/2
r PD

−1/2
c = UΛ1/2V ′,

with U ′U = I, V ′V = I. This corresponds to apply GSV D to the table P
with the constraints given by the diagonal matrices D−1r and D−1c , that is,

by decomposing P− = D
1/2
r UΛ1/2V ′D

1/2
c = FΛ1/2G′, with F = D

1/2
r U , and

G = D
1/2
c V , with FF ′ = Dr and GG′ = Dc,, that is F and G Dr- and Dc-

orthogonal. Thus, the reconstruction formula may be well synthesized as

N = nP = nDrUΛ1/2V ′Dc = nFΛ1/2G′. (8)

with the best reduced rank approximations based on the Eckart-Young theorem:
for any q ≤ rank(P ) ≤ min (r, c) , the partial q-rank reconstruction formula (3)
becomes:

nij ≈ n̂ij,q = n p̂ij,q = n pi.p.j

(
q∑

α=1

√
λα uiα vjα

)
= n

(
q∑

α=1

√
λα fiα gjα

)
.

where the equality holds for q = rank(P ).

Thus, F andG provide factorsDr− andDc−orthogonal respectively, whereas
we are interested in getting coordinates whose weighed inertia sums to the

corresponding eigenvalue. To get this, we define Φ = D
−1/2
r UΛ1/2 and Ψ =

D
−1/2
c V Λ1/2, so that

Φ′DrΦ = Λ = Ψ′DcΨ. (9)

As F = DrΦΛ−1/2 and G = DcΨΛ−1/2, if we introduce these transformations
into (8) we get:

N = n P = n DrΦΛ−1/2Λ1/2Λ−1/2ΨDc = n DrΦΛ−1/2ΨDc. (10)

Consequently, the partial q-rank reconstruction formula becomes:

nij ≈ n̂ij,q = n p̂ij,q = n ricj

(
q∑

α=1

1√
λα

φiα ψjα

)
.

It is well known that the first eigenvalue equals 1 and the corresponding
eigenvectors are the marginals. Thus, one may write

nij ≈ n̂ij,q = n p̂ij,q = n ricj

(
1 +

q∑
α=2

1√
λα

φiα ψjα

)
.
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An alternative is to consider directly the deviation from the expectation under
independence D = P − rc′. This leads to the same reconstruction, that is

nij ≈ n̂ij,q = n p̂ij,q = n ricj

(
1 +

q−1∑
α=1

1√
λα

φiα ψjα

)
. (11)

It is customary to consider the layers’ inertia ι2α as a measure of their impor-
tance, so that they are usually sorted in decreasing inertia order. Indeed, on the
statistical point of view, since inertias along each dimension α equal φ2α = ι2α,
a partial chi-square may be associated χα

2 = nφ2α = nι2α that may be tested
against independence with df = (r + c− 2α− 1) (Kendall and Stuart, 1961;
Orlóci, 1978). Note in addition that, as inertias sum up to the table φ2, the
total chi-square results

χ2 = nφ2 = n
∑
α

φ2α = n
∑
α

ι2α.

It is possible to select layers that contain a significant deviation from the in-
dependence. Indeed, given a partial reconstruction of the original table limited
to the first r < s layers, the classical test for goodness of fit (Kendall and Stu-
art, 1961) may be applied, or more easily the Malinvaud (1987) test. The test
may be applied, as, for each α-dimensional partial reconstruction, the residuals
correspond to

Qα =
∑
ij

(nij − ñαij)2

ñαij
,

asymptotically chi-square-distributed with (r − α− 1) × (c− α− 1) degrees of
freedom. In the formula, ñαij is the cell value estimated by the α-dimensional
solution, and the table chi-square test results when α= 0 and ñ0ij =

ni· n·j
n··

is
the expected value under independence. Now, Malinvaud (1987) showed that,
by substituting the estimated cell values with the expected ones under indepen-
dence hypothesis, the formula may be approximated by

Q̃α =
∑
ij

(nij − ñαij)2

nricj
= χ2 −

α∑
β=1

χ2
β = n

s∑
γ=α+1

ι2γ ,

that may be more easily used to check for nullity of the residuals. Opposite
to the individual layer’s test above, Malinvaud’s is an overall one, that may be
used to reject the hypothesis of the residuals randomness.

2.3 Taxicab Correspondence Analysis

Taxicab Correspondence Analysis is defined as the Taxicab Singular Value De-
composition of the data table D = P − rc′, taking into account the table’s
profiles, respectively R = D−1r D for the rows and C = D−1c D for the columns.
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Unlike SCA, the solution is recursive, considering at each step the residuals from
the previous factors. This leads to the reconstruction formula

P = prp
′
c +

min(r,c)∑
α=2

1

λα
fα g′α.

since the first factor is shown to correspond to the independence, with λα the
L1-measure of dispersion along the α-th factor (note that λ1 = 1). Expressed
elementwise the formula becomes:

pij = pi.p.j +

min(r,c)∑
α=2

1

λα
fiα gjα.

Now, if we transform the coordinates Fiα = fiα
pi.

and Gjα = fiα
p.j

we get

nij = n ricj

1 +

min(r,c)∑
α=2

1

λα
Fiα Gjα

 . (12)

just as for SCA.

2.4 Multiple Correspondence Analysis and Taxicab

It is well known that MCA is defined as the SCA of an indicator matrix Z,
describing the levels of several nominal characters. Indeed, it may also be done
by applying SCA to the Burt’s matrix Z ′Z, a super-table that crosses all char-
acters producing the corresponding contingency tables. Unlike the L2 analysis,
Taxicab Multiple Correspondence Analysis (TMCA) produces different results
depending on which table the analysis is run.

3 An example: the Snee data

As an example, we take the Snee (1978) data table that crosses 592 students of
the University of Delaware according to the color of the eyes and of the hair,
both with 4 levels. The table N is thus:

Hair

Eyes Black Brown Red Blond Total

Dark Brown 68 119 26 7 220

Light Brown 15 54 14 10 93

Green 5 29 14 16 64

Blue 20 84 17 94 215

Total 108 286 71 127 592

We know that the table under the hypothesis of independence is given by the
product of the marginals r and c, that is:
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> r=apply(snee,1,sum); r

Dark Brown Light Brown Green Blue

220 93 64 215

> c=apply(snee,2,sum); c

Black Brown Red Blond

108 286 71 127

> r\%*\%t(c)/sum(snee)

Hair

Eyes Black Brown Red Blond Total

Dark Brown 40.13514 106.28378 26.385135 47.19595 220

Light Brown 16.96622 44.92905 11.153716 19.95101 93

Green 11.67568 30.91892 7.675676 13.72973 64

Blue 39.22297 103.86824 25.785473 46.12331 215

Total 108 286 71 127 592

We may apply CA from the R package FactoMineR.

library(FactoMineR)
cs<-CA(snee); summary(cs)
Call:
CA(snee)

Eigenvalues Dim.1 Dim.2 Dim.3
Variance 0.209 0.022 0.003
\% of var. 89.373 9.515 1.112
Cumul. \% 89.373 98.888 100.000

Rows Dim.1 ctr cos2 Dim.2 ctr cos2 Dim.3 ctr cos2
Dark Brown | -0.492 43.116 0.967 | -0.088 13.042 0.031 | 0.022 6.680 0.002 |
Light Brown | -0.213 3.401 0.542 | 0.167 19.804 0.336 | -0.101 61.086 0.121 |
Green | 0.162 1.355 0.176 | 0.339 55.910 0.773 | 0.088 31.925 0.052 |
Blue | 0.547 52.128 0.977 | -0.083 11.244 0.022 | -0.005 0.310 0.000 |

Columns Dim.1 ctr cos2 Dim.2 ctr cos2 Dim.3 ctr cos2
Black | -0.505 22.246 0.838 | -0.215 37.877 0.152 | 0.056 21.633 0.010 |
Brown | -0.148 5.086 0.864 | 0.033 2.319 0.042 | -0.049 44.284 0.094 |
Red | -0.130 0.964 0.133 | 0.320 55.131 0.812 | 0.083 31.913 0.055 |
Blond | 0.835 71.704 0.993 | -0.070 4.673 0.007 | 0.016 2.171 0.000 |

In the following are reported the statistics concerning the significance of the
table and of the eigenvectors:

[1] "Partition of data table chi-square."

[1] "Number of rows = " "4"

[1] "Number of columns = " "4"

[1] "Grand total = " "592"

[1] "Maximum dimension = " "3"

[1] "Degrees of freedom = " "9"

[1] "Trace (sum of eig.)= " "0.233597705449338"

[1] "Eigenvalues > 0.0 = " "3"

[1] "Total chi-square = " "138.289841626008"

[1] "Probability = " "0"

[1] "Test value = " "Inf"

N eig % Cum% CorC Chi df p-val v-test Res df p-val v-test

[1,] 1 0.208772652 0.89372732 0.8937273 0.45691646 123.593410 5 0.000000000 Inf 1.469643e+01 4 0.005374079 2.5507818

[2,] 2 0.022226615 0.09514911 1.7874546 0.14908593 13.158156 3 0.004306773 2.6270232 1.538276e+00 1 0.214874599 0.7896209

[3,] 3 0.002598439 0.01112356 1.8826038 0.05097489 1.538276 1 0.214874599 0.7896209 4.884981e-15 0 0.000000000 Inf

It results that the table is significant and so are the first two eigenvectors. Note
also that the first factor canonical correlation is .45, a medium value.
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Here, the coordinates are such that their weighed average
∑
i pi.cαi =

∑
j p.jcαj

is zero and the sum of squares equals the corresponding eigenvalue:
∑
i pi.c

2
αi =∑

j p.jc
2
αj = λα . Indeed:

> sum(cs$row$coord[,1]*r) [1] 1.00614e-16 > sum(cs$row$coord[,1]^2*r) [1] 0.2087727
> sum(cs$row$coord[,2]*r) [1] 2.428613e-17 > sum(cs$row$coord[,2]^2*r) [1] 0.02222661
> sum(cs$row$coord[,3]*r) [1] -1.431147e-17 > sum(cs$row$coord[,3]^2*r) [1] 0.002598439
> sum(cs$col$coord[,1]*c) [1] -1.734723e-17 > sum(cs$col$coord[,1]^2*c) [1] 0.2087727
> sum(cs$col$coord[,2]*c) [1] -6.418477e-17 > sum(cs$col$coord[,2]^2*c) [1] 0.02222661
> sum(cs$col$coord[,3]*c) [1] 3.339343e-17 > sum(cs$col$coord[,3]^2*c) [1] 0.002598439

Now, applying the reconstruction formula (11) we get the independence table
and the three following layers that sum up to the table:

L0 = n*r%*%t(c)
rownames(L0) = rownames(st); L0

L0 Black Brown Red Blond
Dark Brown 40.13514 106.28378 26.385135 47.19595
Light Brown 16.96622 44.92905 11.153716 19.95101
Green 11.67568 30.91892 7.675676 13.72973
Blue 39.22297 103.86824 25.785473 46.12331

L1 = L0 * (cs$row$coord[,1] %*% t(cs$col$coord[,1])) / sqrt(cs$eig[1,1]); L1

L1 Black Brown Red Blond
Dark Brown 21.812583 16.972159 3.681074 -42.465815
Light Brown 3.983090 3.099203 0.672183 -7.754476
Green -2.085516 -1.622720 -0.351950 4.060186
Blue -23.710157 -18.448642 -4.001307 46.160106

L2 = L0 * (cs$row$coord[,2] %*% t(cs$col$coord[,2])) / sqrt(cs$eig[2,1]); L2

L2 Black Brown Red Blond
Dark Brown 5.107757 -2.056825 -4.996358 1.945426
Light Brown -4.092195 1.647872 4.002945 -1.558622
Green -5.703893 2.296881 5.579493 -2.172481
Blue 4.688331 -1.887928 -4.586080 1.785677

L3 = L0 * (cs$row$coord[,3] %*% t(cs$col$coord[,3])) / sqrt(cs$eig[3,1]); L3

L3 Black Brown Red Blond
Dark Brown 0.9445252 -2.1991170 0.9301488 0.32444307
Light Brown -1.8571111 4.3238705 -1.8288444 -0.63791503
Green 1.1137334 -2.5930807 1.0967815 0.38256584
Blue -0.2011475 0.4683273 -0.1980859 -0.06909388

> L0+L1
Black Brown Red Blond

Dark Brown 61.94772 123.25594 30.066209 4.73013
Light Brown 20.94931 48.02826 11.825899 12.19654
Green 9.59016 29.29620 7.323726 17.78992
Blue 15.51282 85.41960 21.784166 92.28342

> L0+L1+L2
Black Brown Red Blond

Dark Brown 67.055475 121.19912 25.06985 6.675557
Light Brown 16.857111 49.67613 15.82884 10.637915
Green 3.886267 31.59308 12.90322 15.617434
Blue 20.201148 83.53167 17.19809 94.069094

> L0+L1+L2+L3
Black Brown Red Blond

Dark Brown 68 119 26 7
Light Brown 15 54 14 10
Green 5 29 14 16
Blue 20 84 17 94
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We may apply the TCA through the R package TCA to the same table and
we obtain:

library(TCA)
Ts=TCA(snee,Naxes=3,Graph=TRUE)
Ts

$VectMax
Axe_1 Axe_2 Axe_3

0.33883081 0.08519358 0.03510355

$A
Axe_1 Axe_2 Axe_3

Dark Brown -0.135797115 -0.02400496 0.008775888
Light Brown -0.033618289 0.02400496 -0.008775888
Green 0.007669832 0.01859184 0.008775888
Blue 0.161745572 -0.01859184 -0.008775888

$B
Axe_1 Axe_2 Axe_3

Black -0.087495435 -4.259679e-02 -6.938894e-18
Brown -0.073605278 1.288852e-02 -1.755178e-02
Red -0.008314691 2.970827e-02 1.755178e-02
Blond 0.169415404 -1.821460e-17 1.416520e-17

$F
Axe_1 Axe_2 Axe_3

Dark Brown -0.36541769 -0.06459515 0.02361512
Light Brown -0.21400029 0.15280574 -0.05586372
Green 0.07094595 0.17197448 0.08117697
Blue 0.44536455 -0.05119240 -0.02416431

$G
Axe_1 Axe_2 Axe_3

Black -0.47960460 -2.334935e-01 -3.803542e-17
Brown -0.15235778 2.667834e-02 -3.633095e-02
Red -0.06932813 2.477084e-01 1.463472e-01
Blond 0.78971590 -8.490584e-17 6.602989e-17

The matrices F and G contain the coordinates that are centered and whose
L1-norm equals the one in V ectMax:

> sum(r%*%sr[,1]) [1] -4.263256e-14 > sum(r%*%abs(sr[,1]))/sum(r) [1] 0.3388308
> sum(r%*%sr[,2]) [1] -8.881784e-15 > sum(r%*%abs(sr[,2]))/sum(r) [1] 0.08519358
> sum(r%*%sr[,3]) [1] 8.881784e-15 > sum(r%*%abs(sr[,3]))/sum(r) [1] 0.03510355
> sum(c%*%sc[,1]) [1] -1.421085e-14 > sum(c%*%abs(sc[,1]))/sum(c) [1] 0.3388308
> sum(c%*%sc[,2]) [1] -2.49939e-14 > sum(c%*%abs(sc[,2]))/sum(c) [1] 0.08519358
> sum(c%*%sc[,3]) [1] 1.016215e-14 > sum(c%*%abs(sc[,3]))/sum(c) [1] 0.03510355

As well, we apply here the reconstruction formula ?? and we obtain the three
following layers that sum up to the table:

ss = Ts$VectMax; ss # L1 inertias
sr = Ts$F; sr # row coordinates
sc = Ts$G; sc # col coordinates

LT1=L0*((sr[,1] %*% t(sc[,1])) / (ss[1])); LT1
L0+LT1
snee-(L0+LT1)
LT2=L0*((sr[,2] %*% t(sc[,2])) / (ss[2])); LT2
L0+LT1+LT2
snee-(L0+LT1+LT2)
LT3=L0*((sr[,3] %*% t(sc[,3])) / (ss[3])); LT3
L0+LT1+LT2+LT3
snee-(L0+LT1+LT2+LT3)

> ss = Ts$VectMax; ss # singular values or eigenvalues?
Axe_1 Axe_2 Axe_3
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0.33883081 0.08519358 0.03510355
>
> sr = Ts$F; sr # row coordinates

Axe_1 Axe_2 Axe_3
Dark Brown -0.36541769 -0.06459515 0.02361512
Light Brown -0.21400029 0.15280574 -0.05586372
Green 0.07094595 0.17197448 0.08117697
Blue 0.44536455 -0.05119240 -0.02416431
>
> sc = Ts$G; sc # col coordinates

Axe_1 Axe_2 Axe_3
Black -0.47960460 -2.334935e-01 -3.803542e-17
Brown -0.15235778 2.667834e-02 -3.633095e-02
Red -0.06932813 2.477084e-01 1.463472e-01
Blond 0.78971590 -8.490584e-17 6.602989e-17

> LT1=L0*((sr[,1] %*% t(sc[,1])) / (ss[1])); LT1
Black Brown Red Blond

Dark Brown 20.759398 17.4637825 1.972766 -40.195946
Light Brown 5.139251 4.3233797 0.488383 -9.951014
Green -1.172492 -0.9863558 -0.111422 2.270270
Blue -24.726156 -20.8008063 -2.349727 47.876689
>
> L0+LT1

Black Brown Red Blond
Dark Brown 60.89453 123.74757 28.357901 7
Light Brown 22.10547 49.25243 11.642099 10
Green 10.50318 29.93256 7.564254 16
Blue 14.49682 83.06744 23.435746 94
>
> snee-(L0+LT1)

Black Brown Red Blond
Dark Brown 7.105467 -4.7475663 -2.357901 1.421085e-14
Light Brown -7.105467 4.7475663 2.357901 -1.776357e-15
Green -5.503183 -0.9325631 6.435746 0.000000e+00
Blue 5.503183 0.9325631 -6.435746 0.000000e+00
>
> LT2=L0*((sr[,2] %*% t(sc[,2])) / (ss[2])); LT2

Black Brown Red Blond
Dark Brown 7.105467 -2.149903 -4.955564 3.038332e-15
Light Brown -7.105467 2.149903 4.955564 -3.038332e-15
Green -5.503183 1.665100 3.838083 -2.353188e-15
Blue 5.503183 -1.665100 -3.838083 2.353188e-15
>
> L0+LT1+LT2

Black Brown Red Blond
Dark Brown 68 121.59766 23.40234 7
Light Brown 15 51.40234 16.59766 10
Green 5 31.59766 11.40234 16
Blue 20 81.40234 19.59766 94
>
> snee-(L0+LT1+LT2)

Black Brown Red Blond
Dark Brown -2.842171e-14 -2.597663 2.597663 1.154632e-14
Light Brown -3.552714e-15 2.597663 -2.597663 1.776357e-15
Green -3.552714e-15 -2.597663 2.597663 1.776357e-15
Blue -7.105427e-15 2.597663 -2.597663 0.000000e+00
>
> LT3=L0*((sr[,3] %*% t(sc[,3])) / (ss[3])); LT3

Black Brown Red Blond
Dark Brown -1.026956e-15 -2.597663 2.597663 2.096449e-15
Light Brown 1.026956e-15 2.597663 -2.597663 -2.096449e-15
Green -1.026956e-15 -2.597663 2.597663 2.096449e-15
Blue 1.026956e-15 2.597663 -2.597663 -2.096449e-15
>
> L0+LT1+LT2+LT3

Black Brown Red Blond
Dark Brown 68 119 26 7
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Light Brown 15 54 14 10
Green 5 29 14 16
Blue 20 84 17 94
>
> snee-(L0+LT1+LT2+LT3)

Black Brown Red Blond
Dark Brown -2.842171e-14 0 -1.065814e-14 9.769963e-15
Light Brown -5.329071e-15 0 -3.552714e-15 3.552714e-15
Green -2.664535e-15 0 0.000000e+00 0.000000e+00
Blue -7.105427e-15 0 0.000000e+00 0.000000e+00

In Figure 1 are shown the scatter plots of both characters labels on the planes
spanned by the first two factors of SCA (Figure 1 left and right, respectively).

Figure 1: The scatter plot of both hair and eye colours, according to Snee (1978),
on the first factor plane issued by FactoMineR’s CA correspondence analysis
method (left) and that issued by TCA taxicab method (right).

4 Another example: the “Palavras” data

We consider a three-way data table taken from Nardy (2007) and used already
the authors to study MCA and its improvements (Camiz and Gomes, 2013).
Nardy (2007) study concerns the architecture of grammar proposed in the Dis-
tributed Morphology framework (Halle and Marantz, 1993, 1994) to analyze
the internal structure of words in Brazilian publications. In particular, that
work studies the writers’ control over the degree of complexity of their wording,
according to the type of texts they are producing. Four types of texts were
distinguished: 1) books for children (in the following labeled T Child); 2) gos-
sip, fashion, local news (review, T Revi); 3) editorials, articles about science for
laymen (Divulgation, T Divu); and 4) abstracts of academic articles (Summary,
T Summ). 2000 word-tokens were extracted (500 from each text type), avoid-
ing repetitions; as well, conjugation or declination were not taken into account,
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because their cause of variation does not affect the word’s meaning. The tokens
were analyzed according to their grammatical kind, say kind of words (W Verb,
W Noun, W Adj, the latter for adjective), and the number of internal layers
(Two-, 2-Syl, Three-, 3-Syl, four and more layers, 4-Syl), as a measure of the
word’s complexity. The syntactic criteria for the word decomposition to count
the internal layers are discussed by Nardy (2007): in practice, starting from the
root, a full word is obtained by adding some endings to the root, that allow
to categorize it as a noun, a verb, or an adjective. In this way, the full word
is understood as such. Since from a noun a verb may derive, and a noun or
an adjective from a verb, etc. several endings may be added, thus raising the
number of layers that sum up to a word. As an example, consider three Por-
tuguese words: the first, rosa is a noun (rose), with only two layers: the root ros
and the noun ending a; the second, furar is a verb (to make a hole) composed
by the root fur, the noun categorizer a, and the verb categorizer r; the third,
salinização is a noun (salinization) composed by five layers.

Table 1: The contingency three-way data table of “palavras” taken from Nardy
(2007), referring to 2000 words characterized by type of text, type of word, and
number of levels.

Type of Type of Words Names Verbs Adjectives
Text N. of Levels

2 Sylabes 203 167 63
Childish 3 Sylabes 26 6 32

4 Sylabes 0 1 2

2 Sylabes 218 126 41
Review 3 Sylabes 51 4 27

4 Sylabes 15 3 11

2 Sylabes 207 118 74
Divulgation 3 Sylabes 51 6 29

4 Sylabes 15 1 5

2 Sylabes 160 72 63
Summary 3 Sylabes 75 7 61

4 Sylabes 32 4 74

The run of MCA through the R package FactoMineR gave the following
summary results:

Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 Dim 6 Dim 7
Variance 0.490 0.364 0.343 0.330 0.308 0.273 0.225
% of var. 20.982 15.599 14.718 14.142 13.216 11.692 9.651
Cumulative % of var. 20.982 36.581 51.298 65.440 78.656 90.349 100.000

$coord
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Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 Dim 6 Dim 7
2 Syl -0.43305968 -0.03500517 0.02636409 0.07305786 -0.05149101 -0.04231701 -0.3514408994
3 Syl 1.24048516 0.57792833 -0.81985485 -0.77794032 0.21565077 -0.25507680 1.0351841330
4 Syl 1.67791415 -1.44951598 2.36799168 1.60410742 -0.02667821 1.41271789 1.2671202660
W Adj 1.01578986 0.95780556 0.16006550 0.12807384 0.86127594 0.56831548 -0.7573681475
W Noun 0.07644207 -0.58334686 -0.37067078 -0.17214659 -0.60408843 0.14575379 0.0001114993
W Verb -1.00837810 0.38930532 0.62362725 0.24454848 0.51268721 -0.77473985 0.6350788951
T Child -0.69339914 0.96932279 0.34421092 -0.43930458 -0.69046958 0.84512588 0.2777684178
T Divu -0.11108040 -0.03983846 -1.05991655 1.30785136 0.27384193 0.05255584 0.1642967135
T Revi -0.20863375 -1.01679529 0.12744457 -0.92294327 1.03020161 0.14425407 -0.0683108809
T Summ 1.01684456 0.07997456 0.60441729 0.03144450 -0.61106270 -1.04559481 -0.3777834318
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Figure 2: The scatter plot of levels of Nardy (2007) palavras data, on the first
factor plane issued by running Multiple Correspondence Analysis.

In Figure 2 the pattern of the levels of the three characters is shown on the first
factor plane. Note that only the first factor is significant, according to the Ben
Ammou and Saporta (1998, 2003) test.

In the following the results of the run on the same data of TCA, by using
the indicator matrix and the Burt’s table, respectively. As expected, the results
are different.

> library(TCA)
> palIT=TCA(palI, Naxes=7, Graph=T); # MTCA With applying TCA to the Indicator matrix
> palIT$VectMax

Axe_1 Axe_2 Axe_3 Axe_4 Axe_5 Axe_6 Axe_7
0.5281647 0.4607483 0.4347083 0.4074407 0.3833644 0.2948703 0.1373551
>
> palIT$G

Axe_1 Axe_2 Axe_3 Axe_4 Axe_5 Axe_6 Axe_7
2 Syl -0.3113333 -0.2746721 -0.1564882 -0.1037305 -0.08484848 -0.10364365 -0.01486527
3 Syl 0.9686667 0.8498418 0.4963487 0.5180395 0.21688606 0.30988068 -0.51945198
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4 Syl 0.9512035 0.8549878 0.4467209 -0.3311890 0.41556304 0.35844200 1.92275028
W Noun 0.2223799 -0.5586211 0.5066939 -0.2024872 -0.15426005 0.08159994 -0.02846000
W Verb -0.9080971 0.5166481 -0.5773901 0.1950716 0.18280768 0.77542357 0.02909552
W Adj 0.5405185 0.7457273 -0.5467425 0.2610118 0.15807842 -1.12330526 0.03468563
T Child -0.7380000 0.1762183 0.4276635 0.8895575 -1.06898968 -0.20212999 0.22476288
T Revi -0.5586452 0.1232286 0.6454322 -0.7830649 1.14645117 -0.28542125 -0.21147045
T Divu 0.5555968 -0.7484442 -0.5868348 0.7313428 0.57455876 0.13989026 0.10364560
T Summ 0.7328434 0.4608077 -0.4759592 -0.8563012 -0.65235275 0.34507925 -0.12035495

> palBT=TCA(Burt, Naxes=7, Graph=T);
> palBT$VectMax

Axe_1 Axe_2 Axe_3 Axe_4 Axe_5 Axe_6 Axe_7
0.37105233 0.31613791 0.26083520 0.24865565 0.19230116 0.17480348 0.07949698

Axe_1 Axe_2 Axe_3 Axe_4 Axe_5 Axe_6 Axe_7
2 Syl -0.2326332 -0.1344975 -0.1296314 -0.1054135 -0.02477847 -0.02892970 -0.01433928
3 Syl 0.7072222 0.4191175 0.4189056 0.3321633 0.25224655 0.23263568 -0.23126395
4 Syl 0.7657788 0.4087712 0.3443630 0.3081762 -0.50555231 -0.38492626 0.95933607
W Noun 0.1839883 -0.3579042 0.2371689 -0.2028474 0.03557934 0.04154009 0.02058974
W Verb -0.6816537 0.3361150 -0.2733233 0.2042174 0.21824299 0.25480609 0.12629706
W Adj 0.3641481 0.4716989 -0.2522624 0.2509870 -0.34689858 -0.40501585 -0.20074996
T Child -0.4683333 0.3793935 0.3298188 -0.3413051 0.25752073 -0.34968865 -0.04336199
T Revi -0.3552366 -0.3214431 0.3464812 0.4533583 -0.41066625 0.17613085 -0.04371168
T Divu 0.3172846 -0.4125387 -0.4458319 0.2927228 0.40255031 -0.17265000 0.04284782
T Summ 0.5016426 0.3584008 -0.2232393 -0.4062870 -0.25855495 0.35109302 0.04353614

Figure 3: The scatter plot of levels of Nardy (2007) palavras data, on the first
factor plane issued by running the indicator matrix with TCA (Multiple Taxicab
Correspondence Analysis) (left) and by running the Burt’s matrix (right).

In Figure 3 the patterns of the levels on the first factor plane issued by run-
ning the indicator matrix with TCA (Multiple Taxicab Correspondence Analy-
sis) (left) and by running the Burt’s matrix (right) are shown.
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