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Abstract

A stochastic volatility in mean model with correlated errors using the generalized hyper-

bolic skew Student-t (GH-ST) distribution provides a robust alternative to the parameter es-

timation for daily stock returns in the absence of normality. An efficient Markov chain Monte

Carlo (MCMC) sampling algorithm is developed for parameter estimation. The Bayesian

predictive information criterion (BPIC) is used to assess the fit of the proposed model. The

proposed method is applied to an analysis of the daily stock return data from the São Paulo

Stock, Mercantile & Futures Exchange index (IBOVESPA). The empirical results reveal that

the stochastic volatility in mean model with correlated errors and GH-ST distribution leads

to a significant improvement in model fit for the IBOVESPA data over the usual normal

model.

Keywords: Feedback and leverage effect, GH skew Student-t distribution, Markov chain

Monte Carlo, non-Gaussian and nonlinear state space models, stochastic volatility in mean.

1 Introduction

Stochastic volatility (SV) models were introduced in the financial literature to describe time-

varying volatilities (Taylor, 1982; 1986). Although the basic SV model offers great flexibility in

modeling data with time-varying variances, it can suffer from a lack of robustness in the presence

of extreme outlying observations (see, e.g., Liesenfeld and Jung, 2000; Abanto-Valle et al., 2010,
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among others) or skewness of the returns. To deal with this problem, Abanto-Valle et al. (2014)

propose a new stochastic volatility model based on a generalized skew-Student-t distribution for

stock returns, which allows a parsimonious, flexible treatment of the skewness and heavy tails

in the conditional distribution of the returns.

However, the volatility of daily stock returns has been estimated with SV models, but the

results have relied on an extensive pre-modeling of these series to avoid the problem of simulta-

neous estimation of the mean and variance. To remedy this problem, Koopman and Uspensky

(2002) introduced the SV in mean (SVM) by incorporating the unobserved volatility as an ex-

planatory variable in the mean equation of the returns. They used the simulated maximum

likelihood method for parameter estimation and provided an empirical justification that the

volatility coefficient in the mean equation is related to the feedback effect, which implies that

an increase in the current level of volatility causes agents to increase their forecasts of future

volatility and therefore to raise their future required returns. It has also long been recognized in

stock markets that there is a negative correlation between today’s return and tomorrow’s volatil-

ity. This phenomenon is called “leverage effect” or “asymmetry”. The asymmetric stochastic

volatility model is well known to describe these phenomena for stock returns. Markov chain

Monte Carlo (MCMC) methods have been used for parameter estimation of SV models with

leverage effect. For example, Omori et al. (2007) and Omori and Watanabe (2008) used an ef-

ficient mixture sampler and a block sampler for correlated errors, respectively.

In this article, we propose to enhance the robustness of the specification of the innovation

returns in SVM models by introducing scale Generalized Hyperbolic skew Student-t distribution

with correlated mean and variance errors. The resulting class of models takes into account the

asymmetric effect, heavy-tailedness, the feedback, and leverage effects. We refer to this gen-

eralization as the SVML-GH-ST model. The flexibility of the SVML-GH-ST model can also

capture time varying features in the mean of the returns and heavy tails simultaneously. The

estimation of such intricate models is not straightforward, since volatility now appears in both

the mean and the variance equations with correlated innovation errors, hence intensive compu-

tational methods are needed. Inference in this new SVML-GH-ST model is performed under the

Bayesian paradigm via MCMC methods, which permits obtaining the posterior distribution of
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parameters via simulation, starting from reasonable prior assumptions on the parameters. We

simulate the log-volatilities and the shape parameters by using the block sampler for correlated

errors (Omori and Watanabe, 2008) and Metropolis-Hastings algorithms, respectively.

The rest of the paper is structured as follows. Section 2 outlines the SVML-GH-ST model

as well as the Bayesian estimation procedure using MCMC methods. Section 3 illustrates our

proposed method using simulated data. In Section 4, the proposed class of models is applied to

the IBOVESPA daily returns and model comparison is provided among the competing SVML

models. Finally, We conclude the paper with some concluding remarks and suggestions for

future developments in Section 5.

2 The asymmetric heavy-tailed stochastic volatility in mean

model with leverage effect

The basic SV in mean model with leverage effect is defined by

yt = β0 + β1yt−1 + β2e
ht + e

ht
2 ϵt, (1a)

ht+1 = α+ ϕht + σηηt, (1b)ϵt

ηt

 ∼ N2

[0

0,

1 ρ

ρ 1

]
, (1c)

where yt and ht are, respectively, the compounded return and the log-volatility at time t. We

assume that |ϕ| < 1, i.e., that the log-volatility process is stationary and that the initial value

h1 ∼ N ( α
1−ϕ ,

(1−ρ2)σ2
η

1−ϕ2 ). The parameter ρ measures the correlation between ϵt and ηt. When

ρ < 0, this indicates the so-called leverage effect, a drop in the return followed by an increase in

the volatility. Empirical evidence can be found in Ghysels et al. (1996), Harvey and Shephard

(1996), Bollerslev and Zhou (2005), Omori et al. (2007) and Nakajima and Omori (2012).

For a joint model of the asymmetric heavy-tailedness, the “feedback” and leverage effects, we

replace the normal random variable ϵt in (1a) by a random variable from the GH skew Student’s

t-distribution, denoted by ωt , which can be written in the form of the normal variance-mean
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mixture as

ωt = µω + δzt +
√
ztϵt (2)

where ϵt ∼ N (0, 1) and zt ∼ IG(ν2 ,
ν
2 ), where N (., .) and G(., .) indicate the normal and inverse

gamma distributions respectively. We assume that µω = −δµz and µz = E[zt] = ν/(ν−2), such

that E[ωt] = 0

Using the variance-mean mixture representation of the GH skew Student’s t-distribution de-

fined by equation (2), the stochastic volatility in mean model with asymmetric heavy-tailedness

and leverage effect can be written hierarchically as:

yt = β0 + β1yt−1 + β2e
ht + e

ht
2 {δ(zt − µz) +

√
ztϵt}, (3a)

ht+1 = α+ ϕht + σηηt, (3b)ϵt

ηt

 ∼ N2

[0

0,

1 ρ

ρ 1

]
, (3c)

zt ∼ IG(ν
2
,
ν

2
). (3d)

The model defined for equations (3a)-(3d), will be denoted by SVML-GH-ST. In this setup,

equations (3a),(3b) and (3c) with δ = 0 and zt = 1 ∀t = 1, . . . , T , we have the SVM model with

leverage effect and normal distribution (SVML-N). Equations (3a)-(3d) with δ = 0 define the

SVM model with leverage effect and Student-t distribution (SVML-T)(see Abanto-Valle et al.,

2011, for details).

Equations (3a)-(3d), can be written in an alternative way as yt

ht+1

∣∣∣∣θ, zt, ht, yt−1 ∼ N
(β0 + β1yt−1 + β2e

ht + e
ht
2 δ(zt − µz)

α+ ϕht

 ,

 zte
ht φλ

−1/2
t eht/2

φ
√
zte

ht/2 τ2 + φ2

).
(4)

Then, yt|θ, zt, ht, ht+1, yt−1 follows a normal distribution with mean and variance given by

µt = β0 + β1yt−1 + β2e
ht + e

ht
2 δ(zt − µz) +

φ

φ2 + τ2
√
zte

ht
2 (ht+1 − α− ϕht) (5)

Vt =
τ2

τ2 + φ2
zte

ht , (6)
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respectively. The last density will be useful in the derivations of the block sampler given in the

next section.

2.1 Parameter estimation via MCMC

Let θ = (β0, β1, β2, α, ϕ, τ
2, φ, ν)′ be the full parameter vector of the entire class of SVML-GH-ST

models, where ν is the parameter vector associated with the mixture distribution, τ =
√

1− ρ2ση

and φ = ρση, h1:T = (h1, h1, . . . , hT )
′ be the vector of the log volatilities, z1:T = (z1, . . . , zT )

′ be

the mixing variables and y0:T = (y0, . . . , yT )
′ be the information available up to time T . Using

the data augmentation principle, we have that the joint posterior density of parameters and

latent unobservable variables can be written as

p(θ,h1:T , z1:T | y0:T ) ∝
[ T∏
t=1

p(yt, ht+1 | zt, ht, yt−1,θ)p(zt | ν)
]
p(h1 | θ)p(θ) (7)

where p(yt, ht+1 | zt, ht, yt−1,θ) is given by equation (4) and p(θ) is the prior distribution. To

make Bayesian analysis feasible for parameter estimation in the SVML-SMN class of models, we

draw random samples from the posterior distribution of (θ,h1:T , z1:T ) given y0:T using MCMC

simulation methods. The sampling scheme is described by Algorithm 1.

Algorithm 1

1. Set i = 0 and get starting values for the parameters θ(i) and the latent quantities z
(i)
1:T and

h
(i)
1:T .

2. Generate θ(i) in turn from its full conditional distribution, given y1:T , h
(i−1)
1:T and z

(i−1)
1:T .

3. Draw z
(i)
1:T ∼ p(z1:T | θ(i),h

(i−1)
1:T ,y0:T ).

4. Generate h1:T by blocks as:

i) For l = 1, . . . ,K, the knot positions are generated as kl, the floor of [T×{(l+ul)/(K+

2)}], where the u′ls are independent realizations of the uniform random variable on

the interval (0,1).
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ii) For l = 1, . . . ,K, generate hkl−1+1:kl−1 jointly conditional on ykl−1:kl−1, θ
(i), z

(i)
kl−1+1:kl−1,

h
(i−1)
kl−1

and h
(i−1)
kl

.

iii) For l = 1, . . . ,K, draw h
(i)
kl

conditional on y1:T , θ
(i), h

(i)
kl−1 and h

(i)
kl+1.

5. Set i = i+ 1 and return to 2 until convergence is achieved.

The prior distribution of parameters in the SVML–GH-ST are set as: β0 ∼ N (β̄0, σ
2
β0
), β1 ∼

N(−1,1)(β̄1, σ
2
β1
), β2 ∼ N (β̄2, σ

2
β2
), α | τ2 ∼ N (α0, τ

2/q0), φ | τ2 ∼ N (φ0, τ
2/p0), ϕ ∼

N(−1,1)(ϕ0, s
2
ϕ), τ2 ∼ IG(aτ/2, Sτ/2) and ν ∼ G(aν , bν), where aν , bν , α0, φ0, ϕ0, s2ϕ, aτ ,

Sτ , p0 and q0 are known hyper parameters.

As described by Algorithm 1, the Gibbs sampler requires sampling parameters and latent

variables from their full conditionals. Sampling the log-volatilities h1:T in Step 4, due to the

nonlinear setup of the observational equation (3a), is the most difficult task. An efficient strategy

is to sample from the conditional posterior distribution of h1:T by dividing it into several blocks

and sampling each block given the other blocks. This idea, called the block sampler or multi-

move sampler, is developed by Shephard and Pitt (1997) and Watanabe and Omori (2004) in

the context of state space modeling. They showed that the sampler can produce efficient draws

from the target conditional posterior distribution in comparison with a single-move sampler that

primitively samples one state, say ht, at a time given the others, hs (s ̸= t). For the SV model

with leverage, Omori and Watanabe (2008) developed the associated multi-move sampler and

showed that it produces efficient samples. In the next subsection, we extend their method to

sampling h1:T in the SVML-SMN class of models. Details on the full conditionals of θ and the

latent variable λ1:T are given in Appendix A. Some of them are easy to simulate from.

2.2 A block sampler algorithm

In order to simulate h1:T = (h1, . . . , hT )
′ in the SVML-SMN class of models, we consider a

two-step process: first, we simulate h1 conditional on h2:T , next h2:T conditional on h1. To

sample the vector h2:T , we develop a multi-move block algorithm. In our block sampler, we

divide it into K +1 blocks, hkl−1+1:kl−1 = (hkl−1+1, . . . , hkl−1)
′ for l = 1, . . . ,K +1, with k0 = 1

and kK+1 = T , where kl − 1 − kl−1 ≥ 2 is the size of the l−th block. We sample the block
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of disturbances ηkl−1:kl−2 = (ηkl−1
, . . . , ηkl−2)

′ given the end conditions hkl−1
and hkl instead of

hkl−1+1:kl−1 = (hkl−1+1, . . . , hkl−1)
′. In order to facilitate the exposition, we omit the dependence

on θ and suppose that kl−1 = t and kl = t + k + 1 for the l−th block, such that t + k < T .

Then ηt:t+k−1 = (ηt, . . . , ηt+k−1)
′ are sampled at once from their full conditional distribution

f(ηt:t+k−1|ht, ht+k+1,yt:t+k, zt+1:t+k)
1, which without the constant terms is expressed in log

scale as

log f(ηt:t+k−1|ht, ht+k+1,yt:t+k, zt+1:t+k)
.
= −

t+k−1∑
s=t

η2s
2

+
t+k∑
s=t

ls

− 1

2σ2
η

(ht+k+1 − α− ϕht+k)
2I(t+ k < T ), (8)

where I(t + k < T ) is an indicator variable. Excluding the constant terms ls denotes the

conditional distribution of ys given hs and hs+1 for s < T , which is normal with mean µs and

variance Vs, given by equations (5) and (6) respectively. We define

L =

t+k∑
s=t

ls −
(ht+k+1 − α− ϕht+k)

2

2σ2
η

I(t+ k < T )

and dt+1:t+k = (dt+1, . . . , dt+k)
′, where ds and Q are given by equations (B.1) and (B.2) (see

Appendix B for details).

As −1
2

∑t+k−1
s=t η2s + L in (8) does not have closed form, we use the Metropolis-Hastings

acceptance-rejection algorithm (Chib, 1995) to sample from. To obtain the proposal density, we

are going to form an approximated linear state space model that mimics (8), from which sampling

is easy. Applying a second-order Taylor series expansion to L around the mode η̂t:t+k−1, we

1For the last block, we have yT | yT−1, hT ∼ N (β0 + β1yT−1 + β2e
hT + ehT δ(zT − µz), zT e

hT ).
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have

log f(ηt:t+k−1|ht, ht+k+1,yt+1:t+k, zt+1:t+k)

≈ const− 1
2

∑t+k
r=t+1 η

2
r + L̂+ ∂L

∂η′
t:t+k−1

∣∣∣∣
ηt:t+k−1=η̂t:t+k−1

(ηt:t+k−1 − η̂t:t+k−1)

+1
2(ηt:t+k−1 − η̂t:t+k−1)

′E( ∂2L
∂ηt:t+k−1∂η′

t:t+k−1
)

∣∣∣∣
ηt:t+k−1=η̂t:t+k−1

(ηt:t+k−1 − η̂t:t+k−1)

= const− 1
2

∑t+k
r=t+1 η

2
r + L̂+ d̂′

t+1:t+k(ht+1:t+k − ĥt+1:t+k)

−1
2(ht+1:t+k − ĥt+1:t+k)

′Q̂(ht+1:t+k − ĥt+1:t+k)

= const + log f∗(ηt:t+k−1|ht, ht+k+1,θ,yt+1:t+k, zt+1:t+k), (9)

where d̂t+1:t+k, L̂ and Q̂ denote dt+1:t+k, L and Q evaluated at ht+1:t+k = ĥt+1:t+k. The

expectations are taken with respect to ys’s conditional on hs’s. We use an information matrix

for Q because we require that Q is everywhere strictly positive definite. It can be shown

that the proposal density f∗(ηt:t+k−1|ht, ht+k+1,θ,yt+1:t+k, zt+1:t+k) is the posterior density of

ηt:t+k−1 for a linear Gaussian state space model given by equations (10) and (11) below (see

Omori and Watanabe, 2008, for details). The mode η̂t:t+k−1 can be found by repeating the

following algorithm until convergence.

Algorithm 2

1. Initialize η̂t:t+k−1 and calculate ĥt+1:t+k using (3b).

2. Evaluate d̂s, M̂s and N̂s using equations (B.1), (B.3) and (B.4) respectively.

3. Compute Gs, Js and bs, for s = t+ 2, . . . , t+ k, recursively.

Gs = M̂s − N̂2
sG

−1
s−1, Gt+1 = M̂t+1,

Js = K−1
s−1N̂s, Jt+1 = 0, Jt+k+1 = 0,

bs = d̂s − JsK
−1
t−1bs−1 bt+1 = d̂t+1,

where Ks =
√
Gs.
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4. Define the auxiliary variables ŷs = γ̂s +G−1
s bs, where

γ̂s = ĥs +K−1
s Js+1ĥs+1, s = t+ 1, . . . , t+ k.

5. Consider the linear Gaussian state-space model

ŷs = cs + Zshs +Hsξs, s = t+ 1, . . . , t+ k, (10)

hs+1 = α+ ϕhs + Lsξs, s = t, t+ 1, . . . , t+ k, (11)

where ξs ∼ N (0, I2), cs = K−1
s Js+1α, Zs = 1 + K−1

s Js+1ϕ, Hs = K−1
s [1, Js+1ση] and

Ls = [0, ση].

Apply the Kalman filter and a disturbance smoother (Koopman, 1993) to the linear Gaus-

sian state space model in equations (10) and (11) and obtain the posterior mean of ηt:t+k−1

(ht:t+k) and set η̂t:t+k=1 (ĥt:t+k) to this value.

6. Return to Step 2 and repeat the procedure until achieving convergence.

Applying the de Jong and Shephard simulation smoother (de Jong and Shephard, 1995) to the

model defined by equations (10) and (11) with the auxiliary variables ŷt+1:t+k defined in step 4 of

Algorithm 2 enables us to sample ηt+1:t+k from the density f∗. Since f is not bounded by f∗, we

use the Metropolis-Hastings acceptance-rejection algorithm to sample from f as recommended

by Chib (1995). In the SVML-N case, we use the same procedure with λt = 1 for t = 1, . . . , T .

In the MCMC sampling procedure, we select the expansion block ĥt+1:t+k in Algorithm 2 as

follows: the current sample of ηt:t+k=1 (ht+1:t+k) may be taken as an initial value of the η̂t:t+k=1

(ĥt+1:t+k) in Step 1. Once an initial expansion block ĥt+1:t+k is selected, we can calculate

the auxiliary ŷt+1:t+k variables in Step 4. Then, applying the Kalman filter and a disturbance

smoother to the linear Gaussian state space model consisting of equations (10) and (11) with

the artificial ŷt+1:t+k yields the mean of ht+1:t+k conditional on ĥt+1:t+k in the linear Gaussian

state space model, which is used as the next ĥt+1:t+k. By repeating the procedure until the

smoothed estimates converge, we obtain the posterior mode of ht+1:t+k. This is equivalent to

the method of scoring to maximize the logarithm of the conditional posterior density. Although,
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we have just noted that iterating the procedure achieves the mode, this will slow our simulation

algorithm if we have to iterate this procedure until full convergence. Instead we suggest using

only five iterations of this procedure to provide a reasonably good sequence ĥt+1:t+k instead of

an optimal one.

Finally, we describe the updating procedure of the knot conditions hkl , for l = 2, . . . ,K. As

the conditional density p(hkl | hkl−1, hkl+1) does not have a closed form, we use the Metropolis-

Hastings algorithm with proposal density N (
α(1−ϕ)+ϕ(hkl−1+hkl+1)

1+ϕ2 ,
σ2
η

1+ϕ2 ). Let hpkl and h
(i−1)
kl

denote the proposal value and the previous iteration value. Thus, the acceptance probability

is given by αMH = min{1,
Q(hp

kl
)

Q(h
(i−1)
kl

)
}, where Q(hkl) is the product of the conditional densities

ykl−1 | zkl−1, ykl−2, hkl−1, hkl ∼ N (µkl−1, Vkl−1) and ykl | zkl , ykl−1, hkl+1, hkl ∼ N (µkl , Vkl), with

µs and Vs are defined by equations (5) and (6) respectively, for s = kl − 1 and kl.
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3 Numerical illustration with artificial dataset

In order to asses the performance of the MCMC algorithms described in the previous section, we

present results based on a simulated dataset. All the calculations were performed running stand

alone code developed by the authors using the Scythe statistical library (Pemstein et al., 2011),

which is available for free download at http://scythe.wustl.edu. We simulated a dataset of

2000 observations of the SVM-L-GH-SST distribution using β0 = 0.25, β1 = 0.03, β3 = −0.2,

α = −0.008, ϕ = 0.95, σ2 = 0.0225, ρ = −0.35 e ν = 10, which correspond to typical values

found in daily series of returns. Figure 1 shows the raw data and the histograms of the simulated

dataset.

We set the prior distributions as: β0 ∼ N (0, 100), β1 ∼ N(−1,1)(0.1, 100), β2 ∼ N (−0.1, 100),

α|τ2 ∼ N (0, τ2/0.002), ϕ|τ2 ∼ N(−1,1)(0.95, 100), τ
2 ∼ IG(2.5, 0.025), φ|τ2 ∼ N (−0.3, τ2/0.005),

δ ∼ N (0, 1) and ν ∼ G(12, 0.5), where N (., .), N(a,b)(., .), G(., .) and IG(., .) indicate the nor-

mal, the truncated normal, the gamma and the inverse gamma distributions respectively. The

priors’s means for β1 and ϕ, are respectively, 0.0032 and 0.0003 and their variances, 0.3328 and

0.3329. In both cases, the priors are equivalent to the uniform distribution on interval (−1, 1),

which gives zero mean and variance of 0.3333. Thus, it is clear that the priors considered for β1

and ϕ are non-informative.

The number of blocks, K, in the block sampler was set equal to 30, so that each block

contained 66 h′ts on average. We conducted the MCMC simulation for 50000 iterations. The

first 10000 draws were discarded as a burn-in period, and then the next 40000 were recorded.

In order to reduce the autocorrelation between successive values of the simulated chain, only

every 10th values of the chain were stored. With the resulting 4000 we calculated the posterior

means, the 95% intervals and the convergence diagnostic (CD) statistics proposed by Geweke

(1992) for all the parameters.

The proposed algorithm is evaluated in terms of how well it estimates the true parameter

values. From Table 1 and Figure 2, it can be seen that the estimated results for the parameters

appear quite reasonable, because all the 95% credibility intervals include true values. According
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Figure 3: SVML-GH-ST, simulated dataset. Autocorrelation function (acf) for the parameters

obtained from the MCMC output.
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Figure 4: SVML-GH-ST, simulated dataset. True values(solid line) and posterior smoothed

mean (dotted line) of e
ht
2 .

to the CD values, the null hypothesis that the sequence of 4000 draws is stationary was accepted

at the 5% level for all the parameters in all the models considered here. The inefficiency factor

is defined by 1 +
∑∞

s=1 ρs where ρs is the sample autocorrelation at lag s. It measures how well

the MCMC chain mixes (see, e.g, Kim et al., 1998). It is the estimated ratio of the numerical

variance of the posterior sample mean to the variance of the sample mean from uncorrelated

draws. When the inefficiency factor is equal to m, we need to draw MCMC samples m times

as many as the number of uncorrelated samples. From Table 1, we found that our algorithm

produces a good mixing of the MCMC chain. This fact is confirmed by Figure 3, where the the

autocorrelation function (acf) of the parameters shows a faster decay.
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Table 1: Simulated dataset: summary results for tge SVML-GH-ST model.

Parmater True

value

Posterior

mean

95% CI IF CD

β0 0.2500 0.2810 (0.1220, 0.4650) 6.26 −0.12

β1 0.0300 0.0260 (−0.0170, 0.0680) 1.28 0.95

β2 −0.2000 −0.2500 (−0.4450,−0.0700) 5.38 0.01

α −0.0080 −0.0160 (−0.0340,−0.0030) 10.36 −0.95

ϕ 0.9500 0.9210 (0.8680, 0.9610) 10.67 −1.01

σ2 0.0225 0.0330 (0.0160, 0.0550) 21.83 0.96

δ −0.5000 −0.7680 (−1.6100,−0.3400) 21.31 −0.32

ρ 0.3500 −0.2350 (−0.4270,−0.0420) 7.02 0.52

ν 10.0000 12.4430 (8.2330, 19.5520) 20.02 0.15

In Figure 4, the smoothed mean calculated from the MCMC output (dotted line) and true

values (solid line) of e
ht
2 are shown. They show that the estimated values follow the behavior of

the true volatilities.

4 Empirical Application

This section analyzes the daily closing prices of the IBOVESPA. The IBOVESPA is an index

of about 50 stocks that are traded on the São Paulo Stock, Mercantile & Futures Exchange.

The index is composed of a theoretical portfolio with the stocks that accounted for 80% of the

volume traded in the last 12 months and that were traded on at least 80% of the trading days. It

is revised quarterly, to keep it representative of the volume traded. On average, the components

of the IBOVESPA represent 70% of all the stock value traded. The dataset was obtained from

the Yahoo finance web site, available to download at “http://finance.yahoo.com”. The period

of analysis is January 5, 1998 - October 3, 2005, which yields 1917 observations. Throughout,

we work with the compounded return expressed as a percentage, yt = 100(logPt − logPt−1),

where Pt is the closing price on day t.

The compounded IBOVESPA returns are plotted in Figure 5 as a time series plot and also

as a histogram. The mean and standard deviation of returns are 0.06 and 2.34 respectively. As

can be easily seen in Figure 5, the returns are slightly skew (0.83) with heavy tails. From Table
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Table 2: Summary statistics for the IBOVESPA returns.

Média D.p. Minimo Máximo Assimetria Curtose

0.06 2.34 −17.21 28.83 0.83 19.18

2, note also that the returns have a large range (minimum, -17.21 and maximum, 28.83). Some

extreme observations, explained by turbulence in financial markets that occurred by August 1998

and January 1999 (the Russian and Brazilian exchange rate crises, respectively), contribute to

the large kurtosis (19.18) of the IBOVESPA returns. As a result, the IBOVESPA returns likely

depart from the underlying normality assumption.
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Figure 5: Compounded IBOVESPA returns from January 5, 1998 to September 3, 2005. The

left panel shows the plot of the raw series and the right panel the histogram of returns.

We fitted the SVML-N, SVML-T and SVML-GH-ST. In all cases, we simulated the ht’s in a

multi-move fashion with stochastic knots based on the method described in Section 2.1. We set

the prior distributions of the common parameters as: β0 ∼ N (0, 100), β1 ∼ N(−1,1)(0.1, 100),

β2 ∼ N (−0.1, 100), ϕ ∼ N(−1,1)(0.95, 100), τ
2 ∼ IG(2.5, 0.025), α | τ2 ∼ N (0, τ2/0.002) and

φ | τ2 ∼ N (−0.3, τ2/0.005). The prior distributions on the shape parameter was chosen as:
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ν ∼ G(12, 0.8) for the SVML-T and the SVML-GH-ST models, respectively. For the SVML-

GH-ST, we set δ ∼ N (0, 100). The initial values of the parameters were randomly generated

from the prior distributions. We set all the log-volatilities, ht, to be zero. Finally the initial z1:T

were generated from the prior p(zt | ν).

For the block sampler algorithm, we set the number of blocks K to be 30 in such a way

that each block contained 66 h′ts on average. For the SVML-N, SVML-T and the SVML-GH-

ST models, we conducted the MCMC simulation for 50000 iterations. In all the cases, the first

10000 draws were discarded as a burn-in period. As before, in order to reduce the autocorrelation

between successive values of the simulated chain, only every 10th values of the chain were stored.

With the resulting 4000 values, we calculated the posterior means, the 95% credible intervals

and the convergence diagnostic (CD) statistics (Geweke, 1992). Table 3 summarizes the results.

According to the CD values, the null hypothesis that the sequence of 4000 draws is stationary

was accepted at the 5% level for all the parameters in all the models considered here. From

Table 3 and Figure 7, we found that our algorithm produces a good mixing of the MCMC chain.

Table 3 shows that the posterior mean and 95% interval of ϕ. For all the models, the pos-

terior means of ϕ are above 0.93, showing higher persistence, as expected. We found that the

persistence of the SVML-T and the SVML-GH-ST are slightly different from that the SVML-

N. The posterior mean of σ2
η is smaller in the SVML-T and SVML-GH-ST than the SVML-N

model, indicating that the volatilities of the SVML-T and SVML-GH-ST are less variable than

the equivalent SVML-N model.

The posterior means together with the posterior 95% intervals of the three parameters, which

govern the mean process for each of the three models, are reported in Table 3. In all cases the

posterior mean of β0 is always positive and statistically significant for each one of the models

fitted. The posterior mean of β1 is positive and similar to the first-order autocorrelation (not

reported here). Since the 95% posterior interval contains zero, this coefficient might be not

significant. The β2 parameter, which measures both the ex ante relationship between returns

and volatility and the volatility feedback effect, has a negative posterior mean for all the mod-

els. Although the posterior credibility interval of β2 barely contains zero for all the models,

its posterior distribution is primarily located in the negative range, as shown in Table 4. This
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Table 3: Estimation results for the IBOVESPA returns. First row: Posterior mean. Second

row: Posterior 95% credible interval in parentheses. Third row: CD statistics. Fourth row:

Inefficiency factors.

Parâmetro SVML-N SVML-T SVML-GH-ST

0.1409 0.1801 0.1510

β0 (0.0031,0.2820) (0.0269,0.3388) (0.0180,0.2920)

0.61 -1.67 -1 38

1.33 2.34 2.43

0.0299 0.0242 0.023

β1 (-0.0562,0.0239) (-0.0219,0.0682) (-0.0220,0.0690)

-0.18 -0.18 -1.13

1.49 1.60 1.91

-0.0179 -0.0343 -0.026

β2 (-0.0559,0.0193) (-0.0894,0.0160) (-0.0700,0.0140)

0.69 0.66 1.21

1.27 3.02 2.26

0.0713 0.0407 0.049

α (0.0271, 0.1196) (0.0147,0.0758) (0.0210,0.0850)

1.47 -1.49 1.65

23.55 28.31 20.05

0.9368 0.9579 0.9510

ϕ (0.8940,0.9765) (0.9184,0.9855) (0.9150,0.9800)

-1.33 1.47 -1.68

25.29 36.05 25.00

0.0708 0.0426 0.0550

σ2
η (0.0250,0.1214) (0.0146,0.0818) (0.0240,0.0940)

1.31 -1.46 1.74

28.74 44.37 28.43

-0.3112 -0.3445 -0.3500

ρ (-0.4677,-0.1774) (-0.5319,-0.1779) (-0.4490,-0.2060)

1.36 -1.75 -0.83

11.13 21.96 9.62

– 10.9988 18.7150

ν – (6.9690,16.9087) (10.3000,29.5600)

– 1.32 0.16

– 26.25 23.75

– – -0.3810

δ – – (-1.2200,0.1600)

– – -1.79

– – 10.2218



Table 4: IBOVESPA dataset: P (β2 < 0) estimated from the MCMC output.

SVML-N SVML-T. SVML-GH-ST

P (β2 < 0) 0.8295 0.9055 0.8948
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Figure 6: IBOVESPA dataset. Histograms and estimated densities from the MCMC output

for the SVML-GH-ST. The solid line indicates the posterior mean and the dotted line the 95%

credible interval
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Figure 7: IBOVESPA dataset. Autocorrelation function (acf) for the parameters obtained from

the MCMC output.
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result confirms previous results in the literature and indicates that when investors expect higher

persistent levels of volatility in the future, they require compensation for this in the form higher

expected returns.

As expected for all the models considered here, the posterior means of ρ, the correlation

coefficient between shocks to return at time t and shocks to volatility at time t+ 1, are always

negative and the 95% posterior credibility intervals do not contain zero. This result indicates the

parameter is statistically significant. Hence, we may conclude there is a strong and significant

“leverage effect” for the IBOVESPA returns dataset.

We found that the posterior mean of δ is -0.381 which indicates the returns are slightly asym-

metric. We found that the 95% credible interval contains zero, but from Figure 6, its posterior

distribution is concentrated in the negative range.

The magnitude of the tail fatness is measured by the shape parameter ν in the SVML-T

and SVML-GH-ST models. The posterior means of ν are almost 11 and 19 in the SVML-T and

SVML-GH-ST respectively. This difference can explained by the δ, the extra asymmetry param-

eter which is considered in the specification of the SVML-GH-ST model. These results seem to

indicate that the measurement errors of the stock returns are better explained by heavy-tailed

distributions.

Now, we compare the volatilities estimates. In Figure 8, we plot the smoothed mean of e
ht
2 .

The posterior smoothed mean of e
ht
2 of the SVML-T, SVML-GH-ST show smoother movements

than that from the SVML-N model (solid line). Extreme returns, such a during the Brazilian

exchange rate crises in January 1999, make the differences clear. The models with heavy tails ac-

commodate possible outliers in a somewhat different way by inflating the variance e
ht
2 by z

1
2
t e

ht
2 .

This can have a substantial impact, for instance, on the valuation of derivative instruments and

several strategic or tactical asset allocation topics.

To assess the goodness of the estimated models, we calculate the Bayesian predictive infor-

mation criteria, BPIC (Ando, 2006; 2007). The BPIC criterion is defined as

BPIC = −2Eθ|y1:T
[log{p(y1:T | θ)}] + 2T b̂, (12)
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Figure 8: IBOVESPA dataset. Posterior smoothed mean (dotted line) of e
ht
2 , SVML-GH-ST

(solid line), SVML-T (dotted line) , SVML-N (tiny line).
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where b̂ is given by

b̂ ≈ 1

T

{
Eθ|y1:T

[log{p(y1:T | θ)p(θ)}]− log[p(y1:T | θ̂)p(θ̂)] + tr{J−1
T (θ̂)IT (θ̂)}+ 0.5q

}
.(13)

Here q is the dimension of θ, Eθ|y1:T
[.] denotes the expectation with respect to the posterior

distribution, θ̂ is the posterior mode, and

IT (θ̂) =
1

T

T∑
t=1

(
∂ηT (yt,θ)

∂θ

∂ηT (yt,θ)

∂θ′

)∣∣∣∣
θ=

ˆθ
,

JT (θ̂) =
1

T

T∑
t=1

(
∂2ηT (yt,θ)

∂θ∂θ′

)∣∣∣∣
θ=

ˆθ
,

with ηT (yt,θ) = log p(yt | y1:t−1,θ) + log p(θ)/T.

In the SVML class of models, the log-likelihood function, log p(y1:T | θ), is estimated using

the auxiliary particle filter (see, e.g., Pitt and Shephard, 1999; Omori et al., 2007) with 10000

particles. Table 5 shows the BPIC. According with the BPIC criterion the SVML-GH-ST model

is relatively better among all the considered models, suggesting that the IBOVESPA return data

demonstrate sufficient departure from underlying normality assumptions.

Table 5: IBOVESPA dataset. Bayesian predictive information criteria (BPIC)

Modelo BPIC Ranking

SVML-N 8084.6 3

SVML-T 8081.8 2

SVML-GH-ST 8075.4 1

5 Conclusions

This article presented a Bayesian implementation of a robust alternative for estimation in the

stochastic volatility in mean model with correlated errors, as an extension of the model proposed
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by Koopman and Uspensky (2002) and Abanto-Valle et al. (2011), via MCMC methods. The

SVML enabled us to investigate the dynamic relationship between returns and their time-varying

volatility. The Gaussian assumption of the mean innovation was replaced by univariate thick-

tailed processes, known as the variance-mean mixture of the normal distribution. Under a

Bayesian perspective, we constructed an algorithm based on Markov chain Monte Carlo (MCMC)

simulation methods to estimate all the parameters and latent quantities in our proposed SVML-

GH-ST model. We illustrated our methods through an empirical application of the IBOVESPA

return series, which showed that the SVML-GH-ST model provides better fit than the SVML-N

and SVML-T model in terms of parameter estimates, interpretation and robustness aspects.

The β2 estimate, which measures both the ex ante relationship between returns and volatility

and the volatility feedback effect, was found to be negative. The results are in line with those of

French et al. (1987), who found a similar relationship between unexpected volatility dynamics

and returns, and confirm the hypothesis that investors require higher expected returns when

unanticipated increases in future volatility are highly persistent. This is consistent with our

findings of higher values of ϕ combined with larger negative values for the in-mean parameter.

On the other hand, since the posterior mean and 95% posterior credibility interval contains only

negative values, we can conclude that there is a strong and significant “leverage effect” for the

IVOBESPA returns dataset.

Our SVML-GH-ST models showed considerable flexibility to accommodate outliers, but their

robustness aspects could be seriously affected by the prior of the ν and δ parameters. In this set-

up, for example, it would be possible to study different objective priors for form parameter in the

GH-ST distributions in the same spirit of the works of Fonseca et al. (2008) and Salazar et al.

(2009). Nevertheless, a deeper investigation of this modification is beyond the scope of the

present paper, but provides stimulating topics for further research.

Appendix A: The Full conditionals

In this appendix, we describe the full conditional distributions for the parameters and the mixing

latent variables z1:T of the SVML-GH-ST model.
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Full conditional distribution of β0, β1 and β2

Let mt and Vt be defined by

mt =


√
zte

ht
2

φ
τ2+φ2 (ht+1 − α− ϕht), t < T,

0, t = T,

Vt =


zte

ht τ2

τ2+φ2 , t < T,

zte
ht , t = T,

For parameters β0, β1 and β2, we set the prior distributions as: β0 ∼ N (β̄0, σ
2
β0
), β1 ∼

N(−1,1)(β̄1, σ
2
β1
), β2 ∼ N (β̄2, σ

2
β2
). Then, the full conditionals are given by

β0 | y0:T ,h1:T ,λ1:T , β1, β2 ∼ N (
bβ0

aβ0

,
1

aβ0

), (A.1)

β1 | y0:T ,h1:T ,λ1:T , β0, β1 ∼ N (
bβ1

aβ1

,
1

aβ1

)I|β2|<1, (A.2)

β2 | y0:T ,h1:T ,λ1:T , β0, β1 ∼ N (
bβ2

aβ2

,
1

aβ2

), (A.3)

where aβ0 =
∑T

t=1
1
Vt
+ 1

σ2
β0

, bβ0 =
∑T

t=1
wt
Vt
+ β̄0

σ2
β0

, aβ1 =
∑T

t=1
y2t−1

Vt
+ 1

σ2
β1

, bβ1 =
∑T

t=1
utyt−1

Vt
+ β̄1

σ2
β1

,

aβ2 =
∑T

t=1
e2ht
Vt

+ 1
σ2
β2

, bβ2 =
∑T

t=1
rteht
Vt

+ β̄2

σ2
β2

, wt = yt − β1yt−1 − β2e
ht − e

ht
2 δ(zt − µz) −mt,

ut = yt − β0 − β2e
ht − e

ht
2 δ(zt −µz)−mt, rt = yt − β0 − β1yt−1 − e

ht
2 δ(zt −µz)−mt and I|β2|<1,

an indicator variable.

Full conditional distribution of α, ϕ, φ, δ and τ 2

We assume the following prior distributions: α | τ2 ∼ N (α0, τ
2/q0), φ | τ2 ∼ N (φ0, τ

2/p0),

ϕ ∼ N(−1,1)(ϕ0, s
2
ϕ), δ ∼ N (δ0, s

2
δ), τ

2 ∼ GI(aτ/2, Sτ/2), where α0, φ0, ϕ0, s
2
ϕ, δ0, s

2
δ , aτ , Sτ , p0

and q0 are known hyper parameters.

After some simple but tedious algebra, we have

α | . ∼ N (
Bα

Aα
,
τ2

Aα
), (A.4)

φ | . ∼ N (
Bφ

Aφ
,
τ2

Aφ
), (A.5)

δ | . ∼ N (
Bδ

Aδ
,
1

Aδ
), (A.6)

where Aα = q0+
1+ϕ
1−ϕ +T − 1, Bα = α0q0+(1+ϕ)h1+

∑T−1
t=1 kt, kt = ht+1−ϕht−φgtz

− 1
2

t e−
ht
2 ,

Aφ = p0 +
∑T−1

t=1 g2t zt
−1e−ht , Bφ = φ0p0 +

∑T−1
t=1 ctgtz

− 1
2

t e−
ht
2 , Aδ = − φ

τ2
∑T−1

t=1
1√
zt
(zt −

25



µz) (ht+1 − α− ϕht)(
φ2+τ2

τ2

)∑T−1
t=1

1
zteht/2

(zt−µz)
(
yt − β0 − β1yt−1 − β2e

ht
)
, Bδ =

(
φ2+τ2

τ2

)∑T−1
t=1

(
1
zt
(zt − µz)

2
)
+

1
zn
(zn − µz)

2 + 1
s2δ
, ct = ht+1 − α − ϕht and gt = yt − β0 − β1yt−1 − β2e

ht − e
ht
2 δ(zt − µz). In a

similar way, the conditional posterior of ϕ is given by

p(ϕ | .) ∝ Q(ϕ) exp

{
−

Aϕ

2

(
ϕ−

Bϕ

Aϕ

)2}
, (A.7)

where

Q(ϕ) =
√

1− ϕ2 exp{−1− ϕ2

2τ2
(h1 −

α

1− ϕ
)2},

lt = ht+1 − α − φ(yt − β0 − β1yt−1 − β2e
ht)λ

1
2
t e

−ht
2 , Aϕ = 1

s2ϕ
+

∑T−1
t=1

h2
t

τ2
, Bϕ = ϕ0

s2ϕ
+

∑T−1
t=1

ltht
τ2

and I|ϕ|<1 is an indicator variable. As p(ϕ | h1:T , α, σ
2
η) in (A.7) does not have closed form, we

sample from it by using the Metropolis-Hastings algorithm with truncated N(−1,1)(
bϕ
aϕ
,
σ2
η

aϕ
) as

the proposal density. The conditional posterior of τ2 is IG(T1
2 , M1

2 ), where T1 = aτ + T + 2 and

M1 = (1− ϕ2)(h1 − α
1−ϕ)

2 +
∑T−1

t=1 (ct − φz
− 1

2
t e−

ht
2 gt)

2 + p0(φ− φ0)
2 + q0(α− α0)

2 + Sτ . Once

τ2 and φ are sampled, respectively, from their conditional posteriors, we can calculate ρ and σ2
η

through σ2
η = τ2 + φ2 and ρ = φ/ση.

Full conditional of zt and ν

The full conditional of zt is

p(zt|.) ∝ Q(zt)
(γ
ϑ

)λ zλ−1

2Kλ(γ, ϑ)
exp

{
−1

2

(
ϑ2z−1 + γ2z

)}
where the values of λ, ϑ and γ are the parameters of a distribution GIG(λ, ϑ, γ) whose values

are given by

λ = −ν + 1

2

γ2 = δ2
φ2 + τ2

τ2

ϑ2 =
φ2 + τ2

τ2
e−ht

(
yt − β0 − β1yt−1 − β2e

ht + µze
ht/2δ

)2
+

ν

2
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We sample zt by the Metropolis-Hastings algorithm. We use GIG(λ, ϑ, γ) as the proposal

distrisbution such that z∗t and z
(i−1)
t are the proposal value and previous iteration value respec-

tively. Thus, the acceptance probability is given by αMH = min{1, Q(z∗t )

Q(z
(i−1)
t )

} where

Q(zt) = exp

{
φ

τ2

[
z
−1/2
t e−ht/2(ht+1 − α− ϕht)

(
yt − β0 − β1yt−1 − β2e

ht + µze
ht/2δ

)
−

− z
1/2
t δ(ht+1 − α− ϕht)

]
I{t<n}

}
We assume the prior distribution of ν as G(aν , bν)I4<ν≥40. Then, the full conditional of ν is

p(ν | z1:T ) ∝
ν
2

Tν
2

Γ
(
ν
2

)T exp

{
−

T∑
t=1

1

2Vt

[
yt − β0 − β1yt−1 − β2e

ht − e
ht
2 δ

(
zt −

ν

ν − 2

)
−mt

]2

−ν

2

T∑
t=1

[
1

zt
+ log zt

]}
νaν−1 exp{−bνν}I4<ν≥40. (A.8)

We sample ν by the Metropolis-Hastings acceptance-rejection algorithm (Tierney, 1994; Chib,

1995). Let ν∗ denote the mode (or approximate mode) of p(ν | z1:T ), and let ℓ(ν) = log p(ν |

z1:T ). We use the proposal density N(4,40)(µν , σ
2
ν), where µν = ν∗ − ℓ′(ν∗)/ℓ′′(ν∗) and σ2

ν =

−1/ℓ′′(ν∗). ℓ′(ν∗) and ℓ′′(ν∗) are the first and second derivatives of ℓ(ν) evaluated at ν = ν∗.

Appendix B: Some derivations of the block sampler

First, we define

ds =
∂L

∂hs
= −1

2
+

(ys − µs)
2

2Vs
+

(ys − µs)

Vs

∂µs

∂hs
+

(ys−1 − µs−1)

Vs−1

∂µs−1

∂hs

− ϕ
(hs+1 − α− ϕhs)

σ2
η

I(t+ k < T ), s = t+ 1, . . . , t+ k, (B.1)

and

Q =



Mt+1 Nt+2 0 . . . 0

Nt+2 Mt+2 Nt+3 . . . 0

0 Nt+3 Mt+3
. . .

...
...

. . .
. . .

. . . Nt+k

0 . . . 0 Nt+k Mt+k


(B.2)
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where

Ms = −E

[
∂2L

∂h2s

]
=

1

2
+

1

Vs

(
∂µs

∂hs

)2

+
1

Vs−1

(
∂µs−1

∂hs

)2

+
ϕ2

σ2
η

I(t+ k < T ), s = t+ 1, . . . , t+ k, (B.3)

Ns = −E

[
∂2L

∂hs∂hs−1

]
=

1

Vs−1

∂µs−1

∂hs−1

∂µs−1

∂hs
, s = 2, . . . , T, (B.4)

with Nt+1 = 0. Next, we define

∂µs

∂hs
=


β2e

hs + 1
2e

hs
2 δ(zs − µz) +

φ
φ2+τ2

√
zse

hs
2

[
(hs+1−α−ϕhs)

2 − ϕ
]
, s = 1, . . . , T − 1,

β2e
hs + 1

2e
hs
2 δ(zs − µz), s = T,

(B.5)

∂µs−1

∂hs
=


0, s = 1,

φ
φ2+τ2

√
zs−1e

hs−1
2 , s = 2, . . . , T.

(B.6)
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