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Abstract

State space mixed models (SSMM) for binary time series were the inverse link function

is modeled to be a cumulative distribution function of a new class of asymmetric links is

introduced. The resulting class consider the power of the normal, power logistic and power

cloglog distributions and it include the probit, logit, cloglog and loglog links as a particular

cases. We showed that these links are potentially useful in order to choose alternative

candidate links. They are flexible in fitting skewness in the response curve using a free

shape parameter. Markov chain Monte Carlo (MCMC) methods for Bayesian analysis of

SSMM with these power links are implemented using the JAGS package, a freely available

software. The flexibility of the proposed links is illustrated to measure effects of deep brain

stimulation (DBS) on attention of a macaque monkey performing a reaction-time task (Smith

et al., 2009). Empirical results showed that the links introduced fits better compared to the

more commly-used probit and logit inverse links.

Keywords: Binary time series, cloglog link, logit link, Markov chain Monte Carlo, power

distribution, probit link, state space models.

1 Introduction

Binary responses can be described by generalized linear models (McCullagh and Nelder, 1989).

However, if serial correlation is present as is the case in time series or if the observations are
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overdispersed, these models may not be adequate, and several alternate approaches can be taken.

Extensions such as generalized linear state space models address those problems and are treated

in a paper by West et al. (1985) in a conjugate Bayesian setting. They have been subject to

further research by Fahrmeir (1992), Song (2000), Carlin and Polson (1992), Czado and Song

(2008) and Abanto-Valle and Dey (2014) among others.

In modeling binary time series data, the choice of the link function is a critical issue. Dif-

ferent choices of the link function lead to different models. In the context of binary regression

problems symmetric links are widely used in the literature (Albert and Chib, 1993; Basu and

Mukhopadhyay, 2000a;b). However, as Chen et al. (1999) have argued, when the probability of

a given binary response approaches to 0 at a different rate than it approaches 1, symmetric link

functions may not be as successful in fitting binary data. For example, if the link function is

misspecified, there can be substantial bias in the mean response estimates (Czado and Santner,

1992). To deal with this problem, asymmetric links have been considered in the literature.

There are lots of research done to include skewness into the link function. For example,

Stukel (1988) proposed a two-parameter class of generalized logistic models, Kim et al. (2008)

used the skewed generalized t-link, and Bazán et al. (2010) adopted the skewed probit links and

some variants with different parameterizations. More recently Bazán et al. (2014) introduced

the power normal (PN) link. By introducing a power parameter, the PN link achieves great

flexibility in both positive and negative directions in a symmetric fashion.

It is also worth noting that binary state space mixed models (BSSMM) with probit link

have been considered by Czado and Song (2008) who carried out an MCMC estimation. Re-

cently, Abanto-Valle and Dey (2014) extended the model of Czado and Song (2008) using certain

scale mixtures of Gaussians for the inverse link function. The estimation of these models is not

straightforward because the latent states are included in the distribution function. Efficient

MCMC algorithms were developed using the threshold approach of Albert and Chib (1993).

In this paper, we propose a new class of links functions to binary regression models based

in the inverse of skewed distributions obtained by exponentiation. An extension of usual links

as logit, probit, cloglog and loglog to a class of power links which include these links as partic-

ular cases. Thus, correspondents BSSMM-power-logit, BSSMM-power-probit, BSSMM-power-
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cloglog and BSSMM-power-loglog are proposed. We then fit the models under a Bayesian

paradigm using MCMC methods, which allows estimation of tthe posterior distribution of pa-

rameters based on reasonable prior assumptions.

While there are a growing number of increasingly sophisticated and complex sampling

schemes being developed that allow efficient convergence, we make use here of a free off-the-

shelf software package, JAGS (Plummer, 2003) running inside R, using the rjags package. The

rjags package provides an interface from R to the JAGS library for Bayesian data analysis usign

Markov Chain Monte Carlo (MCMC) to generate a sequence of dependent samples from the

posterior distribution of the parameters. JAGS makes use of a single-move sampler, which,

compared with a multi-move sampler, is likelt to generate posterior samples which are more

highly correlated . This dependency can be reduced by running a longer Markov chain and

thinning the samples. The gain in efficiency by using complex sampling schemes is to some

extent is outweighed by the ease of implementation in JAGS.

The remainder of this paper is organized as follows. Section 2 introduces the new class of

links considering Power distributions. Section 3 outlines the setup of the BSSMM models for

the flexible link functions proposed as well as the corresponding Bayesian estimation procedure

using MCMC methods. Section 4 is devoted to the application and model comparison of all the

models proposed with alternativer models in the literature using a real data set. Finally, some

concluding remarks and suggestions for future developments are given in Section 5.

2 The power distributions and alternative links functions

We first introduce some notation that will be used throughout the paper, then propose the power

distribution which include the power normal (PN) distribution (Gupta and Gupta, 2008) and

describe some related properties of this distribution.

A univariate random variable X is said to follow a Power distribution, X ∼ P(µ, σ2, λ), with

location, scale and shape parameters given by −∞ < µ < ∞, σ2 > 0 and λ > 0 respectively, if
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the density of this distribution has the form

gp(x | µ, σ2, λ) =
λ

σ
h

(
x− µ

σ

)[
H

(
x− µ

σ

)]λ−1
, (1)

where h(.) and H(.) are, respectively, the probability density function (pdf) and the cumulative

distribution function (cdf) of of a continuous univariate distribution supported on the whole real

line < −∞,∞ > named baseline distribution.

If λ = 1, the density of X in (1) reduces to the density of the h(µ, σ2). The standard Power

distribution is obtained from equation (1) with µ = 0 and σ2 = 1. It is denoted by Z ∼ P(λ).

Its corresponding pdf and cdf are given by

fp(z | λ) = λh(z)[H(z)]λ−1, (2)

Fp(z) = [H(z)]λ. (3)

2.1 Some power distributions

2.1.1 The power normal distributions

A univariate random variable X is said to follow a Power Normal distribution, X ∼ PN (µ, σ2, λ)

if the density of this distribution has the form

gPN (x | µ, σ2, λ) =
λ

σ
ϕ

(
x− µ

σ

)[
Φ

(
x− µ

σ

)]λ−1
, (4)

where ϕ(.) and Φ(.) are, respectively, the probability density function (pdf) and the cumulative

distribution function (cdf) of the standard normal distribution.

If λ = 1, the density of X in (4) reduces to the density of the N(µ, σ2). Specifically the cdf

and pdf of the standard power normal distribution are given respectively by

FPN (z;λ) = (Φ(z))λ, fPN (z;λ) = λ
e−

1
2
z2

√
2π

(Φ(z))λ−1 .

This distribution was studied by (Gupta and Gupta, 2008).
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2.1.2 The power logistic distributions

A univariate random variable X is said to follow a Power Logistic distribution, X ∼ PL(µ, σ2, λ)

if the density of this distribution has the form

gPL(x | µ, σ2, λ) =
λ

σ
l

(
x− µ

σ

)[
L

(
x− µ

σ

)]λ−1
, (5)

where l(.) and L(.) are, respectively, the probability density function (pdf) and the cumulative

distribution function (cdf) of the standard logistic distribution. If λ = 1, the density of X in

(5) reduces to the density of the L(µ, σ2). Specifically the cdf and pdf of the standard power

logistic distribution are given respectively by

FPL(z;λ) =
1

(1 + exp(−z))λ
≡ (1 + exp(−z))−λ, fPL(z;λ) =

λ exp(−x)

(1 + exp(−x))λ+1
.

This distribution is named generalized logistic of type I (Johnson et al., 1995) and has also

been called the skew-logistic distribution.

2.1.3 The power cloglog distributions

A univariate random variableX is said to follow a Power Cloglog distribution,X ∼ PCLL(µ, σ2, λ)

if the density of this distribution has the form

gCLL(x | µ, σ2, λ) =
λ

σ
cll

(
x− µ

σ

)[
CLL

(
x− µ

σ

)]λ−1
, (6)

where cll(.) and CLL(.) are, respectively, the probability density function (pdf) and the cumu-

lative distribution function (cdf) of the standard complement of Gumbel or extreme (minimum)

value distribution named here as cloglog distribution and defined as cll(.) = exp(.− exp(.)) and

CLL(.) = 1− exp(− exp(.))

If λ = 1, the density of X in (6) reduces to the density of the CLL(µ, σ2). Specifically the

cdf and pdf of the standard power cloglog distribution are given respectively by

FPCLL(z;λ) = [1− exp(− exp(z)]λ , fPCLL(z;λ) = λ exp(z − exp(z)) [1− exp(− exp(z))]λ−1 .
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2.1.4 The power loglog distributions

A univariate random variable X is said to follow a Power loglog distribution, X ∼ PLL(µ, σ2, λ)

if the density of this distribution has the form

gLL(x | µ, σ2, λ) =
λ

σ
ll

(
x− µ

σ

)[
LL

(
x− µ

σ

)]λ−1
, (7)

where ll(.) and LL(.) are, respectively, the probability density function (pdf) and the cumu-

lative distribution function (cdf) of the standard Gumbel or extreme (maximum) value dis-

tribution named here as loglog distribution and defined as ll(.) = exp(−. − exp(−.)) and

LL(.) = exp(− exp(−.)).

If λ = 1, the density of X in (7) reduces to the density of the LL(µ, σ2). Specifically the cdf

and pdf of the standard power loglog distribution are given respectively by

FPLL(z;λ) = [exp(− exp(−z))]λ , fPLL(z;λ) = λ exp(−z − exp(−z)) [exp(− exp(−z))]λ−1 .

2.2 Alternative links functions

Usual links functions in binary regression models are probit, logit, cloglog and loglog, which are

based in the cdf of known distributions. As displayed in Figure 1, logit and probit are symmetric

links but cloglog and loglog are asymmetric links.

Considering the cdf of Power distributions defined above, alternative links functions to known

link function in the literature can be proposed. As example, the Figure 2 displays the cdf fuctions

of the Power distributions for various values of λ. In this case when λ = 1 usual links probit,

logit, cloglog and loglog are retrieved but when λ ̸= 1 news and flexible links are obtained. In

this case, λ is a structural parameter associated with the choice of the link function, controling

the skewness and will be estimated since the data.

6



−4 −2 0 2 4

0.0
0.2

0.4
0.6

0.8
1.0

linear predictor

pr
ob

ab
ilit

y
logit
probit
cloglog
loglog

Figure 1: Usual links functions based in the cdf of known distributions.
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Figure 2: plot of inverse of links functions based in the cdf of Power distributions considering

different values of λ. green line (λ = −0.5), black line (λ = 1), and blue line (λ = 2).
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3 Binary response state space mixed models with skewed links

3.1 Model setup

Let Y1:T = (Y1, . . . , YT )
′ denote T independent binary observations and let xt denote a k × 1

vector of covariates. We assume that

Yt ∼ Ber(πt) t = 1, . . . , T (8)

πt = P (Yt = 1 | θt,xt,β) = Fp(x
′
tβ + θt) (9)

θt = δθt−1 + τηt, (10)

where, F (x) = Fp(x), represents the cdf at x for the standard power distribution with un-

known shape parameter λ defined in (3). Considering the distributions defined above, we name

the eigth possible models as BSSMM-P-PROBIT, BSSMM-P-LOGIT, BSSMM-P-LOGLOG

and BSSMM-P-CLOGLOG, BSSMM-PROBIT, BSSMM-LOGIT and BSSMM-LOGLOG and

BSMM-CLOGLOG, where “P” indicates the power version of the model. We assume that ηt are

independent and normally distributed with mean zero and unit variance, | δ |< 1, i.e., the latent

state process is stationary and θ0 ∼ N (0, τ2

1−δ2
). The latent state, θt, represents time-specific

effects in the observed process. Using the Bayesian paradigm, MCMC methods are employed to

compute posteriors in the next subsection.

3.2 Inference procedure

We estimate the model defined by equations (8)-(10) using Monte Carlo Markov Chain (MCMC).

The number of parameters required varies between choice of link model. The model depends

on a parameter vector Ψ, where Ψ = (β′, δ, τ2, ω)′ to power distributions with ω = log λ and on

Ψ = (β′, δ, τ2)′ in the PROBIT, LOGIT, LOGLOG and CLOGLOG model cases, respectively.

Let θ0:T = (θ0, θ1, . . . , θT )
′ constitute the latent states. The Bayesian approach for estimating

the model treats θ0:T as latent parameters themselves and updates them in each step of MCMC.

The joint posterior density of parameters and latent variables can be written as

p(θ0:T ,Ψ | y1:T ) ∝ p(Y1:T | θ0:T ,Ψ,y1:T )p(θ0:T | Ψ)p(Ψ), (11)
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where

p(Y1:T | θ0:T ,Ψ) =

T∏
t=1

{πYt
t (1− πt)

1−Yt} (12)

p(θ0:T | Ψ) = ϕ(θ0 | 0,
τ2

1− δ2
)

T∏
t=1

ϕ(θt | δθt−1, τ
2), (13)

where πt is given by equation (9) and ϕ(x | µ, σ2) denotes the normal density with mean µ and

variance σ2 evaluated at x and p(Ψ) indicates the prior distribution. The prior distributions of

Ψ can be written as

pP (Ψ) = p(β)p(δ)p(τ2)p(ω).

The prior distributions for individual parameters are set as: β ∼ Nk(β0,Σ0), δ ∼ N(−1,1)(δ0, σ
2
δ ),

τ2 ∼ IG(n0
2 , T0

2 ), ξ ∼ U(−u0, u0), ω ∼ N (ω0,W0), where Nk(., .), N(a,b)(., .),U(a, b), IG(., .),

G(., .) denote the k−variate normal, the truncated normal on interval (a, b), the uniform distri-

bution on interval (a, b), the inverse gamma distribution and the gamma distribution respectively.

When PROBIT, LOGIT, LOGLOG and CLOGLOG are considered, prior specification to ω is

not required.

We can evaluate Equation (11) using standard Markov Chain Monte Carlo methods in JAGS

(Plummer, 2003). Implementation in this software merely requires specifying the model setup

in equations (8)-(10), as well as priors for the unknown parameters, p(Ψ).

4 Case study: Deep brain stimulation on attention reaction

time

To illustrate the technique applied to binary responses, we consider binary responses from a

monkey performing the attention paradigm described in Shah et al. (2009) and Smith et al.

(2009). The task consists of making a saccade to a visual target, a (variable length) period of

fixation on the target, detection of a change in target color and then a bar release. Sustained

attention is required becauseto receive a reward, the animal must release the bar within a brief

time window cued by the change in target color (see Smith et al., 2009, for a more detailed
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description of the experiment). The behavioral data set for this experiment is composed of a

time series of binary observations with a 1 (0) corresponding to reward being delivered (not

delivered) at each trial, respectively. The goal of the experiment is to determine whether declin-

ing performance as a result of fatigue can be corrected by application of deep brain stimulation

(DBS) resulting in previous levels of performance. In this specific data set, the monkey per-

formed 1250 trials. Stimulation was applied during 4 periods across trials 300-364, 498-598,

700-799 and 1000-1099, indicated by shaded gray regions in Figures 3 and 4. Dividing the re-

sults into periods when stimulation is applied (“ON”) and not applied (“OFF”), there are 240

correct responses out of 367 trials during the ON periods and 501 correct responses from 883

trials during the off periods. Out of 1250 observations, 741 (or 59.28%) are correct responses.

For this dataset we fit the BSSMM-PROBIT, BSSMM-LOGIT, BSMM-LOGLOG, BSSMM-

CLOGLOG and their correspondents power versions: BSSMM-P-PROBIT, BSSMM-P-LOGIT,

BSSMM-P-LOGLOG, BSSMM-P-CLOGLOG including BSSMM-GEV, where πt is modeled by

πt = P (Yt = 1 | θt) = F (θt).

As before, F (.) represents the cdf associated with the corresponding link functions in non power

and power models, where θt is the arousal state of the macaque monkey at time t. We set

the priors as δ ∼ N(−1,1)(0.96, 10
3), τ2 ∼ IG(0.01, 0.01). For the power models, we assume

ω ∼ N (0, 106). For each case, we conducted the MCMC simulation for 900,000 iterations. In

all the cases, the first 100000 draws were discarded as a burn-in period. In order to reduce the

autocorrelation between successive values of the simulated chain, thinning was performed i.e.

only every 100th value of the chain was stored. With the resulting 8000 values, we calculated the

posterior means and the 95% credibility intervals (CI). The MCMC output of all the parameters

passed the convergence test of Geweke (1992) and Heidelberger and Welch (1983), available for

free with the CODA package with the R software.

From Table 1, we found that for all the models considered here, the posterior means of δ

are close to 1, showing higher persistence of the autoregressive parameter for states variables

and thus in binary time series. The posterior means of τ2 are between 0.0064 and 0.0246. Some

comments about the λ parameter.
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Table 1: Parameter estimation results for monkey performance data set. First row: Posterior

mean. Second row: Posterior 95% credibility intervals interval in parentheses.

Model

PROBIT LOGIT LOGLOG CLOGLOG

0.9949 0.9953 0.9958 0.9959

δ (0.9865,0.9994) (0.9877,0.9995) (0.9893,0.9995) (0.9886,0.9997)

0.0097 0.0246 0.0124 0.0115

τ2 (0.0043,0.0190) (0.0108,0.0487) (0.0052,0.0252) (0.0044,0.0239)

Model

P-PROBIT P-LOGIT P-LOGLOG P-CLOGLOG

0.9959 0.9978 0.9963 0.9965

δ (0.9889,0.9996) (0.9938,0.9998) (0.9877,0.9997) (0.9900,0.9997)

0.0092 0.0150 0.0125 0.0064

τ2 (0.0035,0.0196) (0.0061,0.0309) (0.0053,0.0260) (0.0022,0.0156)

1.1773 3.6086 1.6498 2.5262

λ (0.4754,2.9163) (1.4030,7.2880) (0.2090,6.4051) (0.9524,6.2985)

To compare the goodness of the estimated models, we calculate the Watanabe-Akaike infor-

mation criterion, WAIC (Watanabe, 2010; 2013; Gelman et al., 2014), to compare models using

different link functions. The WAIC is defined as

WAIC = −2(lppd− pWAIC), (14)

where lppd means the log pointwise predictive density defined by

lppd =
T∑
t=1

log

∫
p(yt | Ψ,θ0:T )p(θ0:T | y1:T )dΨdθ0:T (15)

and

pWAIC = 2

T∑
t=1

logEΨ,θ0:T |y1:T
[p(yt | Ψ,θ0:t)]−EΨ,θ0:T |y1:T

[log p(yt | Ψ,θ0:t)]. (16)

To compute both measures, the lppd and the pWAIC , in practice we can evaluate it using the

MCMC output. We label it as Ψs and θs
0:T , s = 1, . . . , S. So approximated versions obtained

for computation are given by
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ˆlppd =

T∑
t=1

log

(
1

S

S∑
s=1

p(yt | Ψ,θt)

)

pWAIC = 2

T∑
t=1

(
log

(
1

S

S∑
s=1

p(yt | Ψ,θt)

)
− 1

S

S∑
s=1

log p(yt | Ψ, θt)

)
.

The minimum value of the WAIC gives the best fit. In this context, pWAIC is a measure of model

complexity. Table 2 summarizes the WAIC and pWAIC for our eigth models. The WAIC selects

the BSSMM-P-LOGLOG as the best model for the monkey performance data set, although

BSSMM-LOGLOG is close as well. This confirms our observation that the data supports a

positively skewed link function.

Table 2: Monkey performance data set. DIC: deviance information criterion, pD: effective

number of parameters.

Model WAIC pWAIC Rank

BSSMM-PROBIT 1418.3 39.13 5

BSSMM-LOGIT 1421.2 38.01 6

BSSMM-LOGLOG 1412.3 34.79 2

BSSMM-CLOGLOG 1426.5 42.56 8

BSSMM-P-PROBIT 1417.8 38.94 4

BSSMM-P-LOGIT 1414.1 34.89 3

BSSMM-P-LOGLOG 1411.8 34.88 1

BSSMM-P-CLOGLOG 1421.9 44.16 7

Figure 3 shows the posterior smoothed mean for the states θt for each one of the four models

classified as the better models by the WAIC criterion. Different line types and colors indicate

the posterior smoothed mean for the four fitted models respectively. All the estimates follow a

similar pattern, but there are expressive differences between the estimates.

As before, in Figure 4, we plot the posterior smoothed mean for the probability of a correct

response computed using the four fitted models, the better models according to the WAIC crite-
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Figure 3: Estimation results for the monkey performance data set. Posterior smoothed mean of

θt.

rion. In this case the estimated probability is less constrained and tracks the data independently

of the stimulation-ON/OFF information. In all the cases, on average the response curve lies

around the 0.75 level but decreases are observed at the end of the first stimulation-ON period

around trial 375, at the end of the 4th OFF period around trial 950 and for the remainder

of the experiment from trial 1100 onwards, with some slight differences starting around 1150.

All the models are able to account for stimulation effect. The results indicate that stimulation

has a positive influence on the performance. However, they show that the performance does

not improve during the first stimulation period. Overall, however, all the models results high-

light an abrupt step-like decline in performance towards the end of the experiment, around trial

950, which undergoes a significant increase during the final stimulation period before a final

significant drop to zero. All the results are consistent with Smith et al. (2009).

5 Conclusions

In this paper we have proposed three flexible classes of state space mixed models for longitudinal

binary data using power distributions as extensions of Czado and Song (2008) and Abanto-Valle

and Dey (2014). In this setup, the parameters controling the skewness are estimated along with
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Figure 4: Estimation results for the monkey performance data set. Posterior smoothed mean of

πt.

model fitting. The flexibility in links is important to avoid link misspecification. An attractive

aspect of the model is that it can be easily implemented, under a Bayesian perspective, via

MCMC by using JAGS. We illustrated the methods through an empirical application with

the monkey performance data set. WAIC measure is used it for model comparison. Empirical

findings show that the BSSMM with power links are extremely robust in model fitting no matter

the data favors left skewed, symmetric or right skewed links.

This article makes certain contributions, but several extensions are still possible. First, we

focus on binary observations, but the setup can be extended to binomial and ordinal data.

Langrock (2011) has shown that methods which are well-known for hidden Markov models

(HMMs) can be applied in order to perform a fast and accurate numerical integration for the

likelihood function in general state space models in order to get maximum likelihood-based

estimators. Nevertheless, a deeper investigation of those modifications in the context of BSSM

models is beyond the scope of the present paper, but provides stimulating topics for future

research.
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