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This article proposes a modelling approach for handling spatial heterogeneity
present in the study of the geographical pattern of deaths due to cerebrovascular
disease. The framework involves a point pattern analysis with components
exhibiting spatial variation. Preliminary studies indicate that mortality of this
disease and the effect of relevant covariates do not exhibit uniform geographic
distribution. Our model extends [23] by allowing for spatial variation of the
effect of non-spatial covariates. A number of relative risk indicators are derived
by comparing different covariate levels, different geographic locations or both.
The methodology is applied to the study of the geographical death pattern of
cerebrovascular deaths in the city of Rio de Janeiro. The results compare well
against existing alternatives, including fixed covariate effects. Our model is able
to capture and highlight important data information that would not be noticed
otherwise, providing information that is required for appropriate health decision
making.

1 Introduction

Geo-referenced data is very common in the work of researchers from many
areas such as Ecology, Geography, Seismology and Epidemiology. The desire
to investigate connections between the point pattern and covariates that are
possibly associated with the event of interest arises naturally.

Whatever the area, the most frequent question typically asked are: is there a
spatial pattern governing the occurrence of the event of interest? Are there any
variables that affect this pattern variation? For example, a cardiologist may be
interested in the effect of individual (sex, age, etc) and non-individual (location-
related) factors may have in the pattern of cerebrovascular deaths. This would
allow him/her, for instance, to design plans of action to intervene where larger
death risks are observed. Note that larger risks may be associated with a given
combination of individual and non-individual factors.

Models for these types of data are usually built with point pattern processes.
A good survey of its probabilistic properties is given by [7] where estimation
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based on observed point patterns is described in [9]. The latter approach was
initiated with exploratory methods based on distances, such as the Ripley’s F ,
G and K functions. These methods did not specify likelihoods, which made
hard to compare different alternatives. Likelihood-based methods include (non-
)homogeneous Poisson processes, Cox processes and log-Gaussian Cox processes.

[4] suggested an important class of hierarchical models along these lines, with
the introduction of covariate effects. Many papers follow this route presenting
variations and/or extensions. [23] and [10] incorporate spatial effects and indi-
vidual covariates. They showed the importance of the inclusion of non-spatial
covariates, by adding their effect to the intensity rate in a standard log-linear
fashion. They assumed the effects of the covariates to be fixed over space. This
can be appropriate in many practical situations but may not be realistic assump-
tion for datasets exhibiting large spatial heterogeneity. This leads naturally to
the quest for point pattern models that allow for spatial variation not only of
the baseline intensity rate but also of the effects of the covariates.

Thus, the purpose of this work is to propose a point pattern model that allow
for the spatial variation of the regression coefficients. The regressors may be
spatial, non-spatial or even an interaction between these two sets of variables.
Gaussian processes (GP) are the main tool to accommodate spatial variations,
by ensuring that this variation is smooth over space. Inference will be performed
under the Bayesian point of view.

Disease epidemiology is one of the main areas of application of point pattern
studies. Knowledge of the geographical distribution of the disease may have
an important effect over its understanding and control. Chronic diseases are
the main cause of deaths worldwide. The scene is even more worrying when
underdeveloped countries are considered. According to [21], 80% of deaths in
these countries are attributed to chronic diseases. Cardiovascular diseases are
the largest cause of deaths and cerebrovascular diseases (CVD, hereafter) play
a central role among them. Brazil has the largest CVD deaths rate in Latin
America [25] and if the Caribbean is included, only Guiana, Jamaica and Haiti
have larger death rates [21].

The epidemiologic literature indicates that the CVD death pattern does
not exhibit uniform geographic distribution even in developed countries such as
Canada [20] and USA [28]. These studies also show that this distribution does
not seem to be related to classic risk factors, such as arterial hypertension and
smoking [17].

There are a number of studies indicating the relevance of covariate infor-
mation in the CVD deaths pattern. A large scale review of studies published
between 1960 and 1993 conducted by [16] showed that individuals at lower
strata in the social scale have higher death rates. [19] showed negative cor-
relation between socioeconomic factors and cardiovascular diseases. [18] also
showed negative correlation between mortality and socioeconomic levels, spe-
cially schooling. [22] also indicate that socioeconomic inequalities in Brazil play
an important role in the mortality pattern of CVD in Brazil.

Our interest lies in understanding and explaining the CVD deaths pattern
in the city of Rio de Janeiro. The database contains the location of the homes
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of Rio de Janeiro inhabitants that had CVD indicated as primary death cause
in their death certificates. Our analysis involves the sample of 18,237 individ-
ual deaths with complete individual records. Figure 1 presents the residential
location of these deaths. The figure is visually dominated by the population de-
mographics and any sensible analysis must incorporate that information. Also,
it is worth recalling that the population distribution over the city is influenced
by topography and, more importantly, by the social stratification, with wealthi-
est inhabitants occupying the southernmost part of the city, facing the Atlantic
Ocean.
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Figure 1: Residential locations of CVD deaths between 2002 and 2007 in the
city of Rio de Janeiro. The city is divided in 33 administrative regions (RA)
(shown in thick lines) and 160 boroughs (thin lines). The numbers of the RA´s
that will be discussed in the sequel are also shown (in blue).

Modeling the spatial distribution of CVD deaths is important for implemen-
tation of efficient policy making strategies. Individual-specific covariates such
as age, schooling and marital status are known to intervene and must be con-
sidered. We are also interested in the understanding and quantification of the
impact the socio-cultural background has on this mortality pattern. An obvi-
ous first step in this process is the standardization alluded above to ensure fair
comparisons. This operation ensures the effect of the population size is removed
from the risk analysis.

The city of Rio de Janeiro has a well-known socioeconomic disparity between
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its regions. Thus, a very heterogeneous spatial distribution of mortality is to be
expected; regions with lower-strata individuals may present larger death rates
and the death pattern of these regions may differ from the death pattern of
wealthier regions. This may be explained by observed and also by unobserved
factors. In summary, this problem may induce geographic heterogeneity of the
explanatory processes of the response, requiring models that are flexible enough
to capture this spatial variation.

The availability of geo-referenced data with the precise spatial location (home
address) of the event of interest (CVD individual death) calls for a study of point
patterns. Connections with explanatory variables that may be associated with
the outcome of interest must also be established. This would allow the identifi-
cation of effects that these conditions may have on CVD deaths.

Section 2 describes the hierarchical formulation of the model. A number of
inference procedures, such as relative risk evaluation, are also discussed in this
section. Section 3 describes the main results of the data analysis. Section 4
concludes the paper with some directions for further work.

2 Modeling point patterns with space-varying
regression coefficients

Spatial point pattern processes are useful models for the statistical analysis of
geo-referenced observed point patterns. They are stochastic processes denoted
X = {X(s) : s ∈ S}, where S ⊆ <d, d > 0 and

X(s) =

{
1, if the event of interest occurred in s.
0, otherwise,

The most common point pattern process is the (non-homogeneous) Poisson
process with intensity function denoted by Λ(·) = {Λ(s) : s ∈ S}. The notation
used here will be

X ∼ PP (Λ(·)) .

When d = 2, X is a spatial process on the plane. A realization of X can
be unequivocally identified with a occurrence set {s1, . . . , sn}, si ∈ S, ∀i and
n ≥ 0, where all observed events take place.

[4] proposed a point process model where the only relevant covariates are
related to the locations, denoted by z(s). However, many areas of application
of point process possess covariates associated with the individuals, denoted by
v. Models for this more general scenario were proposed by [23], where effects of
all covariates are fixed over space.

Assume that a p1-dimensional vector of spatial covariates z(s) = (z1(s),
. . . , zp1(s))

′, a p2-dimensional vector of individual covariates v = (v1, . . . , vp2)
′

and a p3-dimensional vector of interaction between individual and spatial co-
variates are considered. Consider a collection {Xv(s) : v ∈ V} of Poisson point
patterns and a corresponding collection Λ(·) = {Λv(s) : s ∈ S and v ∈ V} of
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intensity functions, where S ⊆ <d and V is the space of all individual covariate
configurations. The likelihood is given by

L(Λ(·)) =
∏
v∈V

L(Λv(·)), where L(Λv(·)) =

nv∏
i=1

Λv(sv,i) exp

{
−
∫
S

Λv(s)ds

}
,

(1)
where sv,i is the location of the ith event, for i = 1, . . . , nv, and nv is the number
of events observed for the configuration v of the individual covariate.

2.1 Space-varying effects

It is well known that locations in Rio de Janeiro are associated with different
socio-economic backgrounds. It is reasonable to expect that death patterns may
be affected by this variation and thus it is recommended that effects are allowed
to change over space. For example, some poorer locations may exhibit younger
death patterns than other regions. This reasoning may be extended to other
individual characteristics to address similar questions of interest to cardiologists;
eg, is marital status more effective in protecting against CVD deaths in poorer
regions? These questions of interest can only be appropriately answered by
assuming interaction between the effects of covariates and space. Thus, point
pattern models with spatially-varying effects of covariates must be considered.

The full model formulation is given by

Xv ∼ PP (Λv(·)),∀ v ∈ V, (2)

Λv(s) = r(s,v)λ(s,v),∀s ∈ S and v ∈ V, (3)

log λ(s,v) = v′α(s) + z(s)′β + (v � z(s))′δ(s) + w(s), (4)

αl(·) ∼ GP (µαl , ταl , ργαl ), l = 1, . . . , p2, (5)

δl(·) ∼ GP (µδl , τδl , ργδl ), l = 1, . . . , p3, (6)

w(·) ∼ GP (µw, τw, ργw). (7)

Equations (2)-(7) define a generalization of log-Gaussian Cox process, ob-
tained after allowing effects of all components involving individual covariates
to vary over space. [23] model is obtained as the special case where regression
coefficients α(·) and δ(·) are fixed and do not vary over space.

Here, the coefficients α(·) and δ(·) and the intercept w(·) are allowed to vary
over space according to isotropic Gaussian processes. This is in line with stan-
dard GP assumptions for the intercept of log-Gaussian Cox processes, when no
covariates are present. A process Y (·), defined in S, is said to be isotropic Gaus-
sian if ∀n > 1 and any set of locations {s1, . . . , sn} ∈ S, (Y (s1), . . . , Y (sm))′ ∼
N(µ1, τ−1Rγ), denoted Y (·) ∼ GP (µ, τ, ργ), in which Rγ is a correlation ma-
trix with elements Ri,j = ργ(||si − sj ||) defined through a correlation function
ργ , depending on si and sj only through their distance, for i, j = 1, . . . ,m. The
correlation function usually decays monotonically with distance to reflect larger
correlation between neighboring locations, thus ensuring smoothness of the spa-
tial variation of the coefficients. The model above assumes independent GP for
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each coefficient for parsimony but interactions between them can be easily built
in [15].

The model is completed with prior distributions for the hyperparameters
and the coefficients that are fixed over space. These coefficients are attributed
Gaussian priors with suitably defined means and covariance matrices. Note that
the intensity assumes a multiplicative decomposition of the intensity function
with r(s,v) representing a known offset, usually required for standardization.
Typical examples of offset are population size or populational density, used in
our study. This is required to ensure that comparisons will be made at individual
levels, as required for meaningful interpretation of results.

Inference means providing results about the values of the parameters and
their transformations. One of the most important parameter transformations
are given by relative risks. These are vital for comparing death rates between
different locations, between different covariate configurations and different com-
binations of locations and covariate configurations.

2.2 Relative risks

Quantification of risk is one of the objectives of a point pattern study. In
health studies, it is a fundamental tool. Variables such as age, sex and marital
status of the deceased individuals are considered in our study. Questions of
interest include: does location matter for CVD deaths rates of older married
males? how much more likely to die from CVD are older married males in a
given location than single older females from the same location?

Relative risks allow for the quantification of these comparisons. Thus, the
relative risk between a given individual in location s1 and covariate configuration
v1 and another individual in location s2 and covariate configuration v2 is

RR(s1, s2) =
λ(s1,v1)

λ(s2,v2)
=

exp {z(s1)β + v′1α(s1) + (v1 � z(s1))′δ(s1) + w(s1)}
exp {z(s2)β + v′2α(s2) + (v2 � z(s2))′δ(s2) + w(s2)}

.

(8)

Note that populational densities are removed from risk evaluations to ensure
comparisons at the level of the individuals.

Special cases of (8) are obtained if comparisons are made within locations,
ie, for individuals with different covariate configurations (v1 6= v2) but same
locations (s1 = s2). Further simplification in the comparison is obtained if
it is additionally assumed that covariate configurations differ only in the lth
covariate, l = 1, . . . , p2. If vl is a binary variable with vl = 1 indicating presence
and vl = 0 indicating absence of the factor, the relative risk becomes

RR(s) = eαl(s). (9)

Analogously, if vl is a continuous regressor, an increase of m units in this co-
variate will result in a multiplicative effect of emαl(s) in the expected number
of CVD deaths in this location.
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2.3 Discretizing log-Gaussian Cox processes

The likelihood function for model (2)-(7) is given in compact form in (1). It
depends on the uncountable random functions α(·), δ(·) and w(·). This poses a
difficult problem to handle. Exact solutions are only available in limited cases
and even then, they depend on a number of issues. Some of these issues are
associated with the dimension of the number of occurrences, which in our cases
is fairly large (O(104)).

Thus, alternatives must be sought. Reasonable options may be obtained
through approximations at the modeling level. [27] assumed that the region of

interest S can be partitioned into sub-regions {S1, . . . , SN} satisfying
⋃N
k=1 Sk =

S and Sk ∩ Sk′ = ∅, for k 6= k′, and Sk has centroid located at s∗k, k = 1, . . . , N
where

α(s) = α[k], δ(s) = δ[k] and w(s) = w[k],∀s ∈ Sk, k = 1, . . . , N.

Assuming further that r(s,vj) = rk,j ,∀s ∈ Sk, enforces homogeneity of the
intensity rate within the regions and

λ(s,vj) = λk,j = exp{v′jα[k]+z
′
[k]β+(vj�z[k])′δ[k]+w[k]},∀s ∈ Sk, k = 1, . . . , N,

(10)
where j = 1, . . . , J and J = #V is the cardinality of the observed covariate
space V.

The integral in (1) can be rewritten as∫
S

r(s,vj)λ(s,vj)ds =

N∑
k=1

rk,jλk,j |Sk|, (11)

where |Sk| is the volume of the kth sub-region, for k = 1, ..., N .
The spatial discretization of the intensity above can also be found elsewhere.

[13] used it to make inference in point processes over time. Similar approaches
for the spatial domain may also be found in [6], for example. If interest lies in
the effect of a covariate at the region level rather than at a specific location, the
discretization does not cause any limitation in the results. [32] showed that the
posterior distributions of the intensities are well approximated and converge to
the posterior distribution of the exact, continuously-varying intensity when the
volumes of the sub-regions tend to 0.

The aim of our analysis here is the understanding of the spatial distribution
of the mortality over the city and the way that auxiliary information can be
used to describe this pattern. This knowledge is required for efficient policy
making by the health officials in the central administration of the city. Decision
in this case is rarely, if ever, taken at a point level. Thus, the assumption of
homogeneity of the mortality within sub-regions does not seem to affect the main
goals of the analysis. Of course, the number and the sizes of the homogeneous
sub-regions must be appropriately chosen to ensure as much fidelity to the data
variation as possible. Natural candidates for this partition for the specific case
of this analysis are the partition into 33 RA’s and the finer partition into 160
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boroughs. The RA structure is used for policy making by the health authorities
in the city of Rio de Janeiro, but comparisons with results at the borough level
will also be made.

2.4 Inference

The vector of coefficients of non-spatial covariates will be denoted α =
(α′[1], . . . ,α

′
[N ])

′, where α[k] = (α1[k], . . . , αp2[k])
′, k = 1, . . . , N . Similarly,

δ = (δ′[1], . . . , δ
′
[N ])

′, where δ[k] = (δ1[k], . . . , δp3[k])
′, k = 1, . . . , N and w =

(w[1], . . . , w[N ])
′. Different prior distributions could now be used for these model

components. An example is the conditional autoregressive (CAR) prior of [5].
However, the GP prior is kept to retain characteristics of the continuum model
and enable easy change of sub-region structure. We have retained the point pat-
tern approach over the areal data for the same reason, despite the similarities
between them.

Thus, application of the likelihood (1) in model (2)-(7) with discretizations
(10) and (11) leads to the full likelihood

L(α,β, δ,w) =

J∏
j=1

nj∏
i=1

ri,j exp{v′jα[i] + z
′
[i]β + (vj � z[i])′δ[i] + w[i]}

× exp

{
−

N∑
k=1

rk,j exp{v′jα[k] + z
′
[k]β + (vj � z[k])′δ[k] + w[k]}|Sk|

}

∝ exp


J∑
j=1

nj∑
i=1

v′jα[i] + z
′
[i]β + (vj � z[i])′δ[i] + w[i]

−
J∑
j=1

N∑
k=1

rk,j |Sk| exp{v′jα[k] + z
′
[k]β + (vj � z[k])′δ[k] + w[k]}

 .

(12)

The main objective here is to perform inference about the likelihood param-
eters (α,β, δ,w). Additionally, one may also be interested in the hyperparame-
ters (µ, τ ,γ) associated with the GP priors for the likelihood parameters, where
µ = (µα1 , . . . , µαp2 , µδ1 , . . . , µδp3 , µw)′, τ = (τα1 , . . . , ταp2 , τδ1 , . . . , τδp3 , τw)′ and
γ = (γα1

, . . . , γαp2 , γδ1 , . . . , γδp3 , γw)′.
The prior independence assumption for regression coefficients leads to the

prior distribution

π(α,β, δ,w,µ, τ ,γ) = π(α, δ,w|µ, τ ,γ) π(β)π(µ)π(τ )π(γ). (13)

The corresponding posterior distribution is

p(α,β, δ,w,µ, τ ,γ|{s}ni=1) ∝L(α,β, δ,w; {s}ni=1)π(β)

× π(α, δ,w|µ, τ ,γ)π(µ)π(τ )π(γ), (14)
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where L(α,β, δ,w; {s}ni=1) is the full likelihood in (12) and n =
∑
j nj is the

total number of events observed for all covariate configurations.
The posterior distribution (14) is the basis for inference about all model

unknowns, and for their transformations, specially relative risks presented in
Sub-section 2.2. The prior distribution for the likelihood parameters is given
in (5)-(6)-(7). Whatever the prior used for the hyperparameters, the posterior
distribution will not be the tractable analytically and approximations will be
required. There are a few methods available for this approximation. We have
opted for MCMC methods [14].

3 Results

This section presents the results of the analysis of the CVD data in the city
of Rio de Janeiro with model (2)-(7) discretized according to the RA struc-
ture. Previous studies suggested the relevance of individual and socioeconomic
(location-related) variables. Indication of socioeconomic status is location-
driven and is provided by the human development index (HDI) compiled by
the United Nations [31]. This index is a summary of human development of a
given location by weighing its health, education and wealth indicators, is only
available at the RA level, and is denoted here by z. Individual-specific covari-
ates are: v1, age at death, v2, schooling indicator (1, for individuals with 8 or
more years of education and 0, otherwise), v3, gender (0 = female, 1 = male),
and an interaction term between schooling and marital status with indicators

v4 =

{
1, if individual lives alone and had adequate education (v2 = 1),
0, otherwise,

v5 =

{
1, if individual does not live alone and did not have adequate education (v2 = 0),
0, otherwise,

and

v6 =

{
1, if individual does not live alone and had adequate education (v2 = 1),
0, otherwise,

and reference category given by individuals that live alone and did not have
adequate education. Thus, v = (v1, v2, v3, v4, v5, v6)

′ is the vector of individ-
ual covariates and the number of different configurations of these variables is
J = #V = 136. More details about this study may be found in [12].

In this model, α1 measures the effect of age, α2 measures the effect of
schooling, α3 measures the effect of gender and (α4, α5, α6) measure the effect
of the iteraction between marital status and schooling with the same GP prior
parameters, where αl = (αl[1], . . . , αl[33])

′, l = 1, . . . , 6. The other likelihood
parameters are β, measuring the effect of HDI, and w, measuring the remaining
spatial effect. If the socio-economic factor HDI were able to capture the spatial
heterogeneity, then the spatially-varying intercept w would be irrelevant and
there would not be any spatial variation of the other regression coefficients.

The hyperparameters were given reasonably vague prior distributions: µx ∼
N(0, 100), x = α1, . . . , α4, w, τx ∼ G(1, 0.01), x = α1, . . . , α4, w and β ∼ N(0, 100).
The exponential correlation function ρ(||si − sj ||; γ) = exp{−||si − sj ||/γ} was
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used with ||si − sj || representing distance between locations si and sj and γ is
the range parameter. Following [11], the prior for the range parameters were
γx ∼ G(1, 0.3/med(ds)), where med(ds) is the median of the distances between
the 33 regions, for x = α1, . . . , α4, w.

The offsets rk,j were taken populational density, given by

rk,j =
nk,j
|Sk|

, k = 1, . . . , 33 and j = 1, . . . , 136,

where nk,j is the population size for configuration j in region k and |Sk| is the
area of region k. Obtaining the counts nk,j is not an easy task. It requires
knowledge of the population sizes of the regions for all 136 configurations. The
time span of the data is evenly placed between 2000 and 2010, years where official
national censuses were carried out in Brazil. Thus, simple averages between the
2 censuses counts were used to represent the population sizes. Note that offsets
rk,j , k = 1, . . . , 160 and j = 1, . . . , 136 must be calculated for each regional
partition.

The fit of the above model showed weak identification of the range param-
eters γ. This well-known difficulty of spatial models was reported in many
papers with a single Gaussian process, including [23]. They suggested instead
to fix the ranges at the median of the distances. This problem is even more
pronounced in models where there is a collection of latent Gaussian processes.
Their suggestion did not imply significant changes in the resulting posterior dis-
tribution for the likelihood parameters in our analyses but stabilized results for
the hyperparameters and was thus followed here.

Results were obtained via MCMC methods implemented in Winbugs [26].
Convergence was ascertained by using 2 chains with different starting values.
Correlation between successive chain draws was alleviated by thinning at every
100 iterations, after a burn-in period of 5,000 draws. The resulting sample
consisted on 2,000 draws.

Figure 2 shows the results for the main effect coefficients under both parti-
tions for the space-varying (SVC) model. The age coefficients are consistently
positive, indicating that intensity of CVD deaths increases with age, as expected.
It is well known that age is a risk factor for cardiovascular diseases. The strength
of this association significantly changes across the city. The largest age coeffi-
cients are encountered in the southerly, wealthiest regions (4, 5, 6 and 24) of
the city. Thus, larger differences of CVD deaths intensities between older and
younger people in these regions are found in these regions than in other regions.
The socioeconomic variation across the city is highlighted by noticing that the
smaller difference between ages is observed in RA 29, the slum-town Complexo
do Alemão. The largest range of the credibility interval is observed at region
21, due to the scarcity of information (smaller population size) in this region.

The remaining individual covariates also exhibit noticeable spatial variation.
In the RA partition, some regional effects are significant while others are not.
The variations exhibited by these coefficients across regions is a compelling
evidence in favor of allowing them to vary over space. The results show a
protective effect of adequate education and being female, as expected. The
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results obtained with the borough partition are basically in the same direction.
The only notable discrepancies between posterior means under the different
partitions are the age effects of regions 20 (Ilha do Governador), an island, and
29 (Complexo do Alemão).

The main difference between RA and borough results are the larger uncer-
tainty bounds of the latter. This is to be expected: parameters that would share
the same information at the RA level must now split it between boroughs. As
a result, the schooling and gender effects still vary over space but here virtually
all 95% credibility intervals include 0. Thus, these important effects become
basically irrelevant, under the borough partition.

A summary that can be drawn here is that the borough granulation produces
too many details that data is not able to inform about whereas a standard
model, with fixed effects, unnecessarily removes important variation, needed
for appropriately addressing the spatial variability present in the data. The
DIC values [30] reinforce this point with smaller values for the model with RA
partition (16.300) as opposed to larger values for the fixed effect (FE) model
(17.260) and the borough partition (37.820). The results from the interaction
covariates are not shown for conciseness.

The effect of age over CVD deaths intensity can also be assessed through
relative risks RR(k) = e10α1[k] , k = 1, . . . , 33, associated with an increase in
death intensity after an increase of 10 years of age. Inference for these risks
is summarized in Figure 3. They range between an increase around 50% for
Complexo do Alemão to around 270% for wealthier regions. Among the many
possible risks comparisons, we have decided to single out a few within region
comparisons. If one compares having adequate schooling against not having it,
the median relative risk for RA 18 is 0.41 with [0.36, 0.47] as 95% credibility
interval while for RA 6 the median risk is 0.77 and the 95% limits are [0.63, 0.94].
These results indicate that there is a significant difference between the relative
risks of these regions, with adequate schooling being more far less protective in
the poorer RA 18. In the end of this scale, slum-towns regions do not exhibit
relative risks that are significantly different from 1.

Further risk comparisons can be made with relative risks between regions
for the more protective (against CVD deaths) covariate configuration. Figure
4 summarizes the results for comparisons of all regions against the wealthiest
region 6. Relative risks range from 1 to 14 and increase as one moves north-
wardly, toward poorer regions. The highest relative risks were observed for the
isolated, small regions consisting of slum-towns, where poor quality of life seems
to be reflected into substantially higher risks. These regions however show the
largest credibility intervals. So, the risks must be quantified with caution but
they are definitely higher in these regions. On the other hand, the credibility
intervals for the risks against the other wealthy regions (4, 5 and 24) include 0,
indicating similarity of risks.

The effect of the socioeconomic background, represented in the model by
HDI, revealed a strong detrimental effect in death intensity with posterior me-
dian of −10 and 95% credibility intervals given by [−10.2,−9.7] in SVC model.
Regions with better quality of life (higher HDI) have a much reduced CVD
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deaths rate, when compared against less priviledged regions (low HDI). The rel-
ative risk between two RA’s with a difference of 0.05 in the HDI is 1.65 and the
95% credibility intervals given by [1.62, 1.67], showing an average 65% increase
in death risk after a 0.05 decrease in HDI.

Figure 5 presents a summary of the space-varying intercept w. Recall that
w is responsible for capturing the remaining spatial variation, that was not
captured by the covariates. The spatial variation of w is still significant, despite
the competition for handling spatial variation by the regression coefficients of
this model. It seems that spatial heterogeneity is captured partly by the spatial
variation of the regression coefficients and partly by this intercept.

Figures 6 and 7 summarize posterior inference for the hyperparameters. The
mean for the age effect is concentrated around 0.082 and for gender effect around
0, as most variation is present in the estimated coefficients. These means are
a grand mean of these coefficients and are similar to the same estimated coeffi-
cients under the FE model. The estimated precisions provide an indication of
the magnitude of the spatial variation of the corresponding coefficient. They
seem to indicate that the intercepts w for the FE model vary on average twice
as much as the intercepts w for the SVC model. The larger magnitude of the
precision of the age coefficient is merely a consequence of the larger nominal
variation of this covariate when compared to the other individual variables,
that are binary indicators.

The results above indicated that the effects of some covariates do not exhibit
substantial spatial variation. Models with fixed effect for these covariates were
also considered. They did not produce any noticeable change in the results for
the other covariates, for the remaining hyperparameters nor for the fit criteria
used.

4 Conclusions

This work presents a hierarchical formulation to handle point patterns that
are subject to the effect of covariates with large spatial heterogeneity. This
heterogeneity is modeled with isotropic Gaussian processes to ensure smooth
variation of covariate coefficients over space.

The results showed the relevance of allowing also for spatial variation of the
effect of covariates. They confirmed hypotheses about the important impact
that socio-economic conditions may have over death rates but, more importantly
here, over the effect of the covariates. Being old in a wealthy neighborhood is
more protective against CVD deaths than being old in a poor neighborhood
and much more protective than being old in a slum-town. Age was found to
be the covariate with strongest spatial variation. The other covariates did not
show strong changes over the city regions. Quantification of these effects was
found to be more effectively reported to cardiologists through relative risks and
examples were provided. Many other relevant comparisons can be made and
used by health policy makers.

The data provided information about the model hyperparameters. Mean-
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ingful, concentrated posterior distributions were obtained after the specification
of vague prior distributions for them.

This work can be extended to additionally accommodate temporal hetero-
geneity in the intensity function [29]. It is well known that mortality patterns
are changing over time. Larger time spans (the database used covered a period
of only 6 years) may be required to identify significant demographic changes.

Finally, the analysis of datasets of these types could be improved from a
model formulation without discretization. This is currently an active area of re-
search; an example is provided in [1]. Note that once this is appropriately solved
one will be faced with handling highly dimensional covariance matrices associ-
ated with Gaussian processes. This is another important topic of immediate
practical relevance, with recent contributions from [3], [2], [8] and [24], to name
a few. The specific problem analysed here did not require these approaches but
they may well be useful for other problems with similar data structure.
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Figure 2: Posterior medians (red dots) and 95% credibility intervals (vertical
bars) for the age coefficient for the 160 boroughs in the SVC model. Also
represented in the figure are the median (red dashed line) and 95% credibility
interval (shaded area) of the SVC model by RA. The widths of the vertical
bars and dots increase with the total death counts of the boroughs to provide
an account of the information provided by each borough. top - age; middle -
schooling and botttom - gender
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Figure 3: Posterior medians (red dots) and 95% credibility intervals (vertical
bars) for the relative risk associated with a 10 year increase in age for the 33
RA’s in the SVC model. Also represented in the figure are the median (red
dashed line) and 95% credibility interval (shaded area) of the model with fixed
effects.
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Figure 4: Posterior medians for the relative risks between regions for the more
protective configuration: female, living with somebody, educated and young.
Comparison are made against the region with the highest HDI value in the city,
region 6, located in the southesterly corner of the map.
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Figure 5: Posterior medians (red dots) and 95% credibility intervals (vertical
bars) for the space-varying intercept w for the 33 RA’s.
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Figure 6: Posterior histograms for the means µ of the GP processes: top row
(from left to right) - age, schooling and gender; bottom row (from left to right) -
interaction of marital status and schooling, intercept w for the space-varying and
intercept w for FE model. The dashed lines indicate the vague prior densities
used in the analysis.
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Figure 7: Posterior histograms for the precisions τ of the GP processes: top
row (from left to right) - age, schooling and gender; bottom row (from left to
right) - interaction of marital status and schooling, intercept w for the space-
varying and intercept w for FE model. The dashed lines indicate the vague
prior densities used in the analysis.
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