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ABSTRACT

In this work we consider a non-homogenous Poisson model to study the behaviour

of the number of times that a pollutant’s concentration surpasses a given threshold of

interest. In order to account for the possible correlation between measurements in different

sites, a spatial dependence is imposed on the parameters of the Poisson intensity function.

Due to the nature of the region of interest, an anisotropic model is used. Estimation of

the parameters of the model is performed using the Bayesian point of view via Markov

chain Monte Carlo (MCMC) algorithms. We also consider prediction of the days in

which exceedances of the threshold might occur at sites where measurements cannot be

taken. This is obtained by spatial interpolation using the information provided by the

sites where measurements are available. The prediction procedure allows for estimation

of the behaviour of the mean function of the non-homogeneous Poisson process associated

with those sites. The models considered here are applied to ozone data obtained from the

monitoring network of Mexico City.

Key words: Spatial models; non-homogeneous Poisson models; anisotropic models;

Bayesian inference; MCMC methods; spatial interpolation.
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1 Introduction

Due to the serious impact that pollutants in general have on human health, it is a very

important issue to study their behaviour. Even though large cities are the ones most

affected by this problem, it is worth mentioning that high levels of pollution may also

occur in medium and small size cities. That depends on the car fleet, the presence

of polluting industries and/or agricultural sites, among other factors (see for instance

Linkens 2010).

Among the many pollutants that may affect human health we have ozone. It is well

known that for ozone concentration levels above 0.11 parts per million (0.11ppm) sen-

sitive parts of the population (e.g., elderly and newborn) may experience serious health

deterioration (see, for example, Bell et al. 2004, 2005; Cifuentes et al. 2001; Dockery et

al. 1992; Galizia and Kinney 1999; Gauderman et al. 2004; Gouveia and Fletcher 2000;

Martins et al. 2002; WHO 2006). Therefore, it is very important to be able to study,

understand and predict the behaviour of that particular pollutant.

Remark. Since we will be dealing only with ozone, from now on we are going to omit

the “ppm” unit of measure.

Depending on the type of questions that are sought to be answered, different method-

ologies may be used to study the behaviour of ozone as well as other pollutants. Among

the many studies analysing ozone pollution we have, for instance, Álvarez et al. (2005)

and Larsen et al. (1990), using Markov chain models to study the problem of estimating

the probability that the ozone concentration will belong to a certain interval some day into

the future, given the intervals where it belongs in the present and in the more recent past;

Achcar et al. (2008, 2011a), considering non-homogeneous Poisson process to study the
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problem of estimating the probability of having a certain number of ozone exceedances in

a given time interval of interest; Achcar et al. (2011b), using volatility models to analyse

the behaviour of ozone in Mexico City from the point of view of weekly average variability;

Villaseñor-Alva and González-Estrada (2010), using compound Poisson models to study

the behaviour of the maximum measurement in a cluster of ozone exceedances as well as

the length of this cluster; Loomis et al. (1996), using time series analysis to analyse the

relation of ozone exposure and mortality in Mexico City; Guardani et al. (2003), using

multivariate analysis to study the behaviour of ozone in different areas of a city with an

application to data from São Paulo, Brazil; Smith (1989) and Raftery (1989), using ex-

treme value theory in order to study the behaviour of the maximum ozone measurements;

and Javits (1980), using homogeneous Poisson models to estimate the probability that

ozone exceedances occur a certain number of times in a year, given the rate at which

they should occur in that one year period. However, in all those works only the temporal

aspect of the problem was taken into account.

It is important to point out that, in some cases, the location of a monitoring station

can also be of importance. As an example, we may have the case where the wind direction

may intervene. Hence, it is possible that stations along the wind’s path, may produce

measurements with similar behaviour, even though those stations might be far apart.

Therefore, it would also be interesting to include a spatial component in addition to the

temporal one. In that direction we have, for instance, Huerta and Sansó (2007), in which

a spatial dependence was assumed for the parameters of an extreme value distribution;

Huerta et al. (2004), where a linear model with spatial dependence is assumed for ozone

measurements. Those two works present applications to ozone data from the monitoring
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network of Mexico City, Mexico. In Szpiro et al. (2010), a spatio-temporal model is

used to study the variation of air pollution data with an application to nitrogen oxides

data from the city of Los Angeles, USA. Paez and Gamerman (2003), consider the space-

time effects in the concentration of pollutants and focus on data from the city of Rio de

Janeiro, Brazil. Another work related to the subject is that of Shaddick et al. (2013),

where spatial models are used to study nitrogen dioxide concentration in an area formed

by fifteen countries of the European Union. We also have Castro-Morales et al. (2013),

using a space model with spatial deformation to study the behaviour of sulfur dioxide in

the eastern part of the United States as well as the behaviour of the minimum temperature

in Rio de Janeiro, Brazil. In addition to those works we also have Sahu et al. (2007), where

space-time ozone modelling is used to assess trends in that pollutant’s concentration.

In the present work we also consider a spatio-temporal model to study the behaviour of

ozone in Mexico City. One of the interests here, resides in estimating the probability that

an environmental threshold is surpassed by the ozone concentration a certain number of

times in a time interval of interest. Even though this type of question has been analysed

extensively in the past using non-homogenous Poisson models (see, for instance, Achcar

et al. 2008, 2011a), the analysis then was performed considering only the temporal aspect

of the model. Furthermore, estimation of the parameters was made separately for each

region of the Metropolitan Area of Mexico City.

The novelty of this work is that a spatial component is included in addition to the

temporal one. Hence, the parameters of the non-homogeneous Poisson model depend on

the location of the monitoring sites as well as on the locations of those where measurements

are not available, but where we are interested in knowing the ozone behaviour there.
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Additionally, the presence of anisotropy is also allowed.

Another interest here, is to know the behaviour of ozone in specific locations repre-

senting sites of interest such as, a hospital or an area where it is under consideration to

be the location of a new hospital, and where measurements are not taken at present. In

relation to that, the interest resides in estimating the number of ozone exceedances of a

given threshold as well as the days in which they might occur.

Therefore, in order to analyse in full the problem considered here, in addition to non-

homogeneous Poisson models, we also assume a Gaussian process for the parameters of

the Poisson intensity function to allow for a correlation between any given pair of sites.

Since the prevailing wind direction in Mexico City is from northeast to southwest and

also from north to south, we also consider an anisotropic model for those correlations.

By doing so, we may have an idea of how measurements from one station may provide

information regarding measurements taken in a different station. That information may

be useful when we need to estimate the behaviour of ozone (or any other type of pollutant)

in sites where no monitoring stations are present. The Gaussian process representation

allows for information from sites where measurements are taken, to be carried over to

sites where it is not possible to have them. Thus, another useful information that can be

obtained here, concerns the behaviour of the mean number of exceedances in a site where

we may not observe the measurements directly.

This work is organised as follows. In Section 2 the description of the mathematical

setting is presented. The Bayesian formulation of the model is given in Section 3. In

Section 4 we apply the model, described in previous sections, to ozone data obtained

from the monitoring network of Mexico City. Finally, in Section 5, some comments about
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the results are given. In an Appendix, before the list of references, we present the posterior

density functions considered in the MCMC algorithm used to estimate the parameters of

the model.

2 Description of the mathematical model

The mathematical model used here may be described as follows. Assume that ozone

measurements are obtained from NO ≥ 1 monitoring stations. Also, assume that there

are NU ≥ 0 locations at which we cannot measure the ozone concentration directly (i.e.,

no monitoring stations are placed there). These locations are the ones where we would

like to estimate the probability that the ozone concentration surpasses a given threshold

a certain number of times in a given time interval as well as the mean number of ozone

exceedances of the threshold. In addition to that, we would also like to predict the days

in which those exceedances might occur.

Let Ki ≥ 0 indicate the number of times that the threshold of interest is surpassed

during the time interval [0, Ti), Ti > 0, in the site i of interest. Denote by Di =

{d1,i, d2,i, . . . , dKi,i} the set of those exceedance days.

Remarks. 1. Note that when we are considering sites where measurements are actually

taken, the values of Ki and the sets Di are known. However, when we are dealing with

sites where we are not able to take measurements, Ki and Di are unknown and need to

be predicted.

2. Even though we are allowing the value of Ti be different for different values of i,

in the application made here, we are taking them all equal. Hence, we have Ti = T ,

i = 1, 2, . . . , NO +NU
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Therefore, in the present case we have that the set of observed data is represented by

D(O) = {D(O)
1 ,D

(O)
2 , . . . ,D

(O)
NO
}. We are going to use the notation D(U) = {D(U)

1 ,D
(U)
2 , . . . ,

D
(U)
NU
} to indicate the set of exceedance days at locations where measurements may not

be taken. This set of days, need to be predicted.

In order to estimate the probabilities of interest, we assume that the number of ex-

ceedances in a given time interval [0, t), t ≥ 0, follows a non-homogeneous Poisson process

with rate and mean functions λ(t) > 0 and m(t) =
∫ t
0
λ(s) ds, t ≥ 0, respectively. We

allow for different non-homogeneous processes at different sites. Therefore, following in

that direction, let M
(i)
t ≥ 0, indicate the number of times that the ozone concentration

surpasses the threshold of interest at site i during the time interval [0, t), t ≥ 0. Hence,

we assume that M (i) = {M (i)
t : t ≥ 0} is a non-homogeneous Poisson process with rate

and mean functions indicated by λ(i)(t) and m(i)(t), respectively. Therefore, we have that

P (M (i)(t+ s)−M (i)(t) = k) =
[m(i)(t+ s)−m(i)(t)]k

k!

exp
(
−[m(i)(t+ s)−m(i)(t)]

)
, (1)

with k = 0, 1, . . . and t, s ≥ 0.

We assume that λ(i)(t), t ≥ 0, has a Weibull form with parameters αi and βi, i.e.,

λ(i)(t) = (αi/βi)(t/βi)
αi−1, giving m(i)(t) = (t/βi)

αi , t ≥ 0, αi, βi ∈ (0,∞). Hence, even

though the forms of the rate functions are the same, we allow the parameters to depend

on the particular sites. Thus, we indicate by (α
(O)
i , β

(O)
i ), i = 1, 2, . . . , NO, the parameters

of the rate functions that are related to the sites where measurements can be directly

taken, and we indicate by (α
(U)
j , β

(U)
j ), j = 1, 2, . . . , NU , the corresponding parameters

related to the sites where measurements cannot be taken directly.

Remark. This form of the rate function was used before to study the problem in the
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temporal framework only (Achcar et al. 2008, 2011a) and is commonly used in survival

analysis and reliability theory. Since in the present case we are also interested on the

number of ozone exceedances in a time interval of interest, and since in the temporal

framework, when studying the behaviour of ozone for any given region of Mexico City,

the rate function considered here proved to be suitable, we have decided to use it in the

present situation as well.

Therefore, the vector of parameters related to the Poisson rate functions are θ(O)

and θ(U), where θ(O) = ((α
(O)
i , β

(O)
i ); i = 1, 2, . . . , NO) and θ(U) = ((α

(U)
j , β

(U)
j ); j =

1, 2, . . . , NU), are the vectors of parameters related to the observable and unobservable

sites, respectively. Estimation of the parameters will be made using the Bayesian point

of view.

Remark. Even though there is a difference in the notation, when it comes to the

application of the results, the indices “O” and “U” will be dropped occasionally. The

cases of known and unknown data will be differentiated by the index associated to the

site.

3 A Bayesian formulation of the problem

In this section, we present the Bayesian formulation of the model considered here. The

distribution of interest is the posterior distribution of the vector of parameters. Note that

for a parameter θ its posterior distribution is given by P (θ |D) ∝ L(D |θ)P (θ), where

L(D |θ) is the likelihood function of the model and P (θ) is the prior distribution of θ.
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Here, we have that,

L(D(O) |θ(O),θ(U)) = L(D(O) |θ(O)) =

NO∏
i=1

L(D
(O)
i |θ

(O)) =

NO∏
i=1

L(D
(O)
i |α

(O)
i , β

(O)
i ),

where, since we have by hypothesis, a non-homogeneous Poisson model, it follows that

(Cox and Lewis 1966; and Lawless 1982)

L(D
(O)
i |α

(O)
i , β

(O)
i ) =

(
Ki∏
k=1

λ(i)(dk,i |θ(O))

)
exp

[
−m(i)(Ti |θ(O))

]
, (2)

where we use λ(i)(t |θ) and m(i)(t |θ) to make it explicit the dependence of the rate and

mean functions on the corresponding parameter θ. Given the Weibull assumption for the

rate function of the Poisson process, we have that,

L(D(O) |θ(O),θ(U)) =

NO∏
i=1

(α(O)
i

β
(O)
i

)Ki

e
−
(
Ti/β

(O)
i

)α(O)
i

 Ki∏
k=1

[
dk,i

β
(O)
i

]α(O)
i −1

 . (3)

Independent Gaussian processes are assumed to rule the spatial variation of the pa-

rameters α = (α
(O)
i , α

(U)
j ; i = 1, 2, . . . , NO, j = 1, 2, . . . , NU) and β = (β

(O)
i , β

(U)
j ; i =

1, 2, . . . , NO, j = 1, 2, . . . , NU) in their logarithmic scale. We assume prior independence

between α and β. We also assume that logα = (logα
(O)
i , logα

(U)
j ; i = 1, 2, . . . , NO, j =

1, 2, . . . , NU) and logβ = (log β
(O)
i , log β

(U)
j ; i = 1, 2, . . . , NO, j = 1, 2, . . . , NU) have as

prior distributions multivariate normal distributions with mean vectors

µα = (µα
(O)
i , µα

(U)
j ; i = 1, 2, . . . , NO, j = 1, 2, . . . , NU)

and

µβ = (µβ
(O)
i , µβ

(U)
j ; i = 1, 2, . . . , NO, j = 1, 2, . . . , NU),

10



and with variance-covariance matrices Σα and Σβ, respectively. (The forms of Σα and

Σβ will be specified later.) Let Σα =
(
ναij
)
i,j=1,2,...,NO+NU

and Σβ =
(
νβij

)
i,j=1,2,...,NO+NU

indicate the composition of those variance-covariance matrices. Hence,

ναij = Cov(log(αi), log(αj)), i, j = 1, 2, . . . , NO +NU .

Similar notation is used for νβij, i, j = 1, 2, . . . , NO +NU .

Let ‖si − sj‖ denote the Euclidean distance between sites i and j. Here, si indicates

the UTM coordinates of site i. Define

R =

 cosψa − sinψa

sinψa cosψa

 and X =

 1 0

0 ψ−1r

 ,

where ψa is the anisotropy angle and ψr > 1 is the anisotropy ratio (Cressie 1991; Diggle

and Ribeiro 2007; Schmidt and Rodŕıguez 2010). Consider the following matrix A = R×X

and define d(sk) = A × sk, with sk the UTM coordinates of the site k, i.e., d(sk) is the

vector of coordinates of the position of site k in the new space obtained by the rotation

matrix R and the deformation given by X.

Remark. The use of a rotation and deformation of the UTM coordinates, is in order

to allow for the possible influence of the wind directions and also to account for Mexico

City’s geographic configuration.

Consider the following forms for the variance-covariance between two parameters logα

related to sites i and j, i, j = 1, 2, . . . , NO +NU ,

ναij = σαi σαj exp (−φα ‖d(si)− d(sj)‖) , (4)

and between two parameters log β

νβij = σβi σβj exp (−φβ ‖d(si)− d(sj)‖) , (5)
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where φα and φβ are parameters that need to be estimated, and σαk and σβk are the

standard deviations of logαk and log βk, respectively, k = 1, 2, . . . , NO + NU . Let σα =

(σαi ; i = 1, 2, . . . , NO +NU) and σβ = (σβi ; i = 1, 2, . . . , NO +NU) indicate the vector of

those standard deviations.

Remark. Note that, if the interest is in estimating the correlation between each possible

pair of n sites, we could consider each of the

 n

2

 pairs as parameters to be estimated.

However, as the value of n increases, the number of parameters to be estimated also

increases, and rapidly. Hence, in an attempt to reduce that number of parameters, and

at the same time preserve the researcher’s belief in how the correlation coefficients might

behave, some models have been proposed. Among them, are the so-called isotropic and

anisotropic models. In an isotropic model, only the distance between two sites are consider

to contribute to the correlation coefficient between these two sites. In an anisotropic

model, besides the distance between those sites, the contribution of the angle between

them, with respect to some origin point, is also taken into account. Due to Mexico City’s

geographic configuration, the anisotropic version of the models seems to be a suitable one.

Therefore, the complete vector of parameters to be estimated in the present formu-

lation, consists of the parameters related to the spatial variation, parameters related to

the Poisson rate function at observed and unobserved sites, and also unknown measure-

ments at unobservable sites. These unknown quantities can be all stacked together in the

following vector of parameters

θ = (θ(O),θ(U),µα,µβ,σα,σβ, φα, φβ, ψa, ψr,D
(U)).

Consider the notation, α(O) = (α
(O)
i , i = 1, 2, . . . , NO), α(U) = (α

(U)
i , i = 1, 2, . . . , NU),
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µα(O)
= (µα

(O)
i , i = 1, 2, . . . , NO), µα(U)

= (µα
(U)
i , i = 1, 2, . . . , NU), and

Σα(O),α(O)

(ψa, ψr, φα,σα) =
(

Cov(α
(O)
i , α

(O)
j )
)
i,j=1,2,...,NO

Σα(U),α(U)

(ψa, ψr, φα,σα) =
(

Cov(α
(U)
i , α

(U)
j )
)
i,j=1,2,...,NU

Σα(O),α(U)

(ψa, ψr, φα,σα) =
(

Cov(α
(O)
i , α

(U)
j )
)
i=1,2,...,NO;j=1,2,...,NU

Σα(U),α(O)

(ψa, ψr, φα,σα) =
(

Cov(α
(U)
i , α

(O)
j )
)
i=1,2,...,NU ;j=1,2,...,NO

.

Therefore, the posterior distribution of the vector of parameters may be written as

P (θ |D(O)) ∝ L( D(O) |θ(O))P (α(O) |µα(O)

, φα, ψa, ψr,σα)

P (α(U) |α(O),µα, φα, ψa, ψr,σα)

P (β(O) |µβ(O)

, φβ, ψa, ψr,σβ)P (β(U) |β(O),µβ, φβ, ψa, ψr,σβ) (6)

P (µα)P (µβ)P (φα)P (φβ)P (ψa)P (ψr)P (σα)P (σβ)

P (D(U) |α(U),β(U)),

where L( D(O) |θ(O)) is given by (3),

P (α(O) |µα(O)

, φα, ψa, ψr,σα) ∝

∣∣∣Σα(O),α(O)
(ψa, ψr, φα,σα)

∣∣∣−1/2
|
∏NO

i=1 α
(O)
i |

(7)

exp

−
[
log(α(O))− µα(O)

]t (
Σα(O),α(O)

(ψa, ψr, φα,σα)
)−1 [

log(α(O))− µα(O)
]

2

 ,
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and

P (β(O) |µβ(O)

, φβ, ψa, ψr,σβ) ∝

∣∣∣Σβ(O),β(O)
(ψa, ψr, φβ,σβ)

∣∣∣−1/2
|
∏NO

i=1 β
(O)
i |

(8)

exp

−
[
log(β(O))− µβ(O)

)
]t (

Σβ(O),β(O)
(ψa, ψr, φβ,σβ)

)−1 [
log(β(O))− µβ(O)

)
]

2

 .

The parameters α(U) and β(U) corresponding to sites where data are not available, will

have distribution given by the respective conditional distributions given α(O) and β(O). In

that case we have that log(α(U)) will have a multivariate normal distribution with mean

vector µα(U)
and variance-covariance matrix Σ

α(U)

(ψa, ψr, φα,σα) given by

µα(U)

= µα(U)

+ Σα(U),α(O)

(ψa, ψr, φα,σα)
[
Σα(O),α(O)

(ψa, ψr, φα,σα)
]−1 (

logα(O) − µα(O)
)

(9)

and

Σ
α(U)

(ψa, ψr, φα,σ
(U)
α ) = Σα(U),α(U)

(ψa, ψr, φα,σα) (10)

−Σα(U),α(O)

(ψa, ψr, φα,σα)
[
Σα(O),α(O)

(ψa, ψr, φα,σα)
]−1

Σα(O),α(U)

(ψa, ψr, φα,σα)

The same methodology and similar notation are used in the case of β(U), but now using

β(U) instead of α(U).

We are going to assume that the components of µα and µβ are independent, and

that the prior distributions P (µα) and P (µβ) are the product of appropriate normal

distributions that will be specified when applying the model to the data.

Regarding the parameters φα and φβ, we take (see Schmidt and Rodŕıguez 2010) P (φ)

an inverse Gamma function IG(a, b), a > 2, i.e.,

P (φ) =
ba e−b/φ

Γ(a)φa+1
, φ > 0, (11)
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with possibly different hyperparameters when considering φα and φβ. We assume that

P (ψa) is a uniform distribution on (0, π) and that P (ψr) is a Pareto distribution with

hyperparameters (c, d), i.e.,

P (ψr) = c
dc

ψc+1
r

, ψr > d. (12)

Remarks. 1. In the present study we are going to consider σαi and σβi , i = 1, 2, . . . , NO+

NU , known and they will be kept fixed. Hence, the prior distributions P (σα) and P (σβ)

will assume value one for the given fixed vectors of values and they will be zero otherwise.

2. Since ψr > 1, we take d = 1. Note that the variance of the Pareto distribution

is finite for c > 2. That value will be specified later. In the case of the inverse Gamma

distribution, in order to have an infinite variance we may fix a > 2. Additionally, in order

to have the prior mean of φ such that the practical range (correlation = 0.05) is reached

at half of the maximum distance between sites, we consider (see Schmidt and Rodŕıguez

2010)

− log(0.05) =
φ max ‖d(s)− d(s′)‖

2
, (13)

where the maximum is over all pair of sites s and s′.

3. We would like to call attention to the fact that the hypothesis reflected in (13) is

specific to the mean of the prior distribution of φ. Also, note that the hyperparameters of

this prior distribution are such that we have an infinite variance. Therefore, even though

(13) might represent a restriction on the mean, the infinite variance allows for a wide

range of possibilities for the values that φ might assume.

Looking at the expression for the posterior distribution P (θ |D(O)), it is possible to

notice that it is analytically intractable and approximations must be sought. Hence,
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inference will be made using a sample obtained from the posterior distribution of the

parameters using a Gibbs sampling algorithm (Gamerman and Lopes 2006; Gelfand and

Smith 1990; Robert and Casella 1999; Smith and Roberts 1993).

The hyperparameters of the prior distributions that were not specified here, will be

when we apply the model to the data.

4 Application to ozone data from the monitoring net-

work of Mexico City

Here, we apply the model, described in previous sections, to the ozone data from the

monitoring network of the Metropolitan Area of Mexico City. The Metropolitan Area is

divided into five regions, Northeast (NE), Northwest (NW), Centre (CE), Southeast (SE)

and Southwest (SW), and monitoring stations are placed throughout the city. However,

not all of them measure ozone. Additionally, in 2011 some of the active stations that

measured ozone were disabled and others were added to the network. Hence, in order

to illustrate the application of the model presented here, we are going to consider only a

subset of stations that measure ozone and that are active nowadays.

The stations considered in the present study are: San Agust́ın (SAG) and Chapingo

(CHA) in the Northeast region of the city; ENEP-Acatlán (EAC) and Tlalneplantla (TLA)

in the Northwest region; Merced (MER) in the central region, UAM-Iztapalapa (UIZ) and

Tláhuac (TAH) in the Southeast region; and finally Pedregal (PED), Cuajimalpa (CUA)

and Coyoacán (COY) in the Southwest region of the city. Those stations were considered

as stations where the measurements are available, i.e., they will represent the sites where
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measurements are observable. We have also included the station Plateros (PLA) located

in the Southwest region, but for the sake of our prediction exercise, that station is going

to be considered a site where measurements are not available. The reason for choosing a

site in that region in particular, is that this region is where, in general, higher levels of

ozone occur. We will show results for a single site with unavailable data. Simultaneous

prediction for a collection of sites can be obtained in the same manner. The difference

being that we would have to sample α and β, in the case of unobservable sites, using a

multivariate normal distribution instead of a univariate one. The location of the stations

considered here, are shown in Figure 1.

Figure 1 about here.

The data considered in the present analysis are the daily maximum ozone measure-

ments obtained from 01 January 2005 to 31 December 2009. Measurements are taken

every minute at the monitoring station and the averaged hourly results are reported.

The daily maximum ozone measurement at a given station is the maximum of the 24-

h hourly averaged measurements. The averaged maximum daily ozone levels in stations

SAG, CHA, EAC, TLA, MER, UIZ, TAH, PED, CUA and COY, during the observational

period considered here were, respectively, 0.072, 0.075, 0.082, 0.077, 0.084, 0.09, 0.083,

0.099, 0.089, and 0.096, with respective standard deviations of 0.026, 0.024, 0.031, 0.029,

0.032, 0.031, 0.029, 0.037, 0.033, and 0.034.

Figures 2 and 3 present the plots of the daily maximum ozone level for all stations

where measurements are considered to be observable as well as the case of station PLA.

Figure 2 about here.
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Figure 3 about here.

It is possible to see from Figures 2 and 3, that even though in all stations there are

days in which low concentration levels are detected, in most of the cases we have high

ones (above 0.11ppm), specially when we consider stations located in region SW.

The threshold considered in the present work is 0.11, since that is the value specified

by the Mexican ozone standard (NOM 2002). During the observational period considered

here, this threshold was surpassed in 129, 116, 319, 223, 365, 492, 346, 708, 457 and

621 days in stations SAG, CHA, EAC, TLA, MER, UIZ, TAH, PED, CUA and COY,

respectively. Those values correspond to the respective values of K for those stations. We

also have that Ti = T = 1826, i = 1, 2, . . . , NO +NU . Additionally, NO = 10 and, for the

purpose of illustration, we are taking NU = 1, corresponding to the station PLA.

The prior distributions as well as the results obtained are described in the next three

subsections. In the first subsection, we present the prior distributions for each parameter

as well as their hyperparameters. In the second subsection, we present the values of the

estimated parameters of the rate functions of the non-homogeneous Poisson processes

for observable and unobservable sites as well as the estimated parameters present in the

spatial part of the model. In the third subsection, we present the predicted values of the

number of exceedances that might occur at site PLA as well as the estimated days when

exceedances may have occurred.

4.1 Prior distributions

The normal prior distribution of each component of the vector µα corresponding to the

stations where data are available, has mean -0.5 and variance 0.7. In the case of station
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PLA, the normal prior distribution of the component of µα corresponding to it, has mean

-3 and variance 0.5. In the case of the vector µβ, the normal prior distribution of each

component corresponding to stations where data are available has mean 1.6 and variance

one. In the case of station PLA, the normal prior distribution has mean -1.3 and variance

0.2.

Remarks. 1. The hyperparameters of the prior distributions of µα and µβ were

obtained using information provided by previous studies where only the temporal part

was taken into account (see Achcar et al. 2008, 2011a). In those works, the daily maximum

ozone measurements for each region of Mexico City were used. Also, in those works, even

thought the period of time considered might intercept part of the period of time considered

here, the data used before correspond to regional measurements obtained from stations

in a given region, and not data corresponding to each individual station in separate.

2. Note that we need to have the parameters α assuming values mostly in (0, 1) in

order to be compatible with the behaviour expected by the data, but we must also allow

for values larger than one.

The hyperparameters of the Pareto prior distribution of the parameter ψr are c = 3

and d = 1. The prior distribution of ψa is as specified in Section 3, i.e., it is a uniform

distribution on (0, π).

When taking into account the parameters φα and φβ, they will have as their prior

distributions, inverse Gamma distributions IG(2.5, bα) and IG(3, bβ), respectively, where

the hyperparameters bα and bβ are the solutions of the optimisation problem (13) corre-

sponding to each particular φ. The standard deviations, σα and σβ are given as follows.

In the case of components in logα, we have σαi = 0.73 for all values of i. The case of the
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components of logβ, the behaviour is more heterogeneous. Hence, σβ has value 0.33 in

the components corresponding to the stations EAC, SAG, CHA, MER, CUA, PED, COY

and PLA. In the case of the components corresponding the the stations TLA, TAH and

UIZ we have σβ equal to 0.22.

Remark. The difference in the values of the hyperparameters of the prior distributions

for different sites, is due to the fact that the information used to consider them was based

on the specific information of the region where the station is located. The selection of

those values was also based on the mean value and standard deviation of the parameters

related to the model where the maximum ozone measurements for each region were used.

In the case of the vector α(O) its prior distribution is a log-normal distribution with

parameters µα(O)
and Σα(O),α(O)

. Similar procedure is applied to the vector β(O), but now

using µβ(O)
and Σβ(O),β(O)

.

4.2 Estimation results

Estimation of the parameters is performed using a sample of size 5000 obtained with a

MCMC algorithm (described in the Appendix) consisting of five chains, after a burn-in

period of 30000 steps and with a sampling gap of 20.

The estimated mean values of the parameters α and β as well as their respective

standard deviations and 95% credible intervals are given in Table 1 for each station

considered.

Table 1 about here.

Looking at Table 1 we may see that when considering the parameter α, stations in

the same geographic region have similar behaviour. Furthermore, the α corresponding
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to stations in different regions may also present similar behaviour. It is possible to see

that, with the exception of station in regions NE and CE and also station PLA in region

SW, the value of the parameter α is in the interval (0.8, 0.84). In the case of stations

in regions NE and CE, the value is between 0.69 and 0.77. These values imply that the

rate at which ozone exceedances occur is decreasing in time. Hence, occurrence of ozone

exceedances of the threshold 0.11 is becoming less frequent.

Even though the values of α corresponding to stations in the same region are similar,

the value of β may be very different. The value of β related to station TLA is more than

twice the value of β related to station EAC. Therefore, the coefficient of the rate function

is more than twice larger in station EAC than in station TLA. (Note that λ̂(EAC)(t) =

0.69 t0.81 and that λ̂(TLA)(t) = 0.34 t0.84.) The values of α related to stations UIZ and

TAH (in region SE) are similar as are the values of β. Hence, their rate functions behave

in a similar way.

The different values of β implies that, even though exceedances rates are decreasing,

they decrease in different forms. The larger (smaller) the value of β, the smaller (larger)

the value of λ(·) for given fixed values of α and t ≥ 0. Therefore, the model considered

here, also capture the differences in the behaviour of different monitoring sites.

Table 2 presents the estimated means of the vectors µα and µβ as well as their re-

spective standard deviations and 95% credible intervals for all stations considered. In

all cases, the values of µα are negative and the values of µβ are in the interval (-0.81,

1.22). Even though the 95% credible intervals of the µα are very wide, we would like to

point out that the values of µα correspond to only one of the parameters of the mean

and variance of the log-normal distribution of the vector α. The extremes in the credible
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intervals provide a parameter that allows the sampling of suitable values of α. Since the

fit of the estimated accumulated mean to the data is good in all cases (see Figures 4, 5,

and 6), the width of the confidence interval seems not to have a significant influence on

the estimated values of α.

Table 2 about here.

The estimated mean values of ψr, ψa, φα, and φβ as well as their respective standard

deviations and 95% credible intervals are given in Table 3. The anisotropic angle ψa and

the anisotropic ratio ψ−1r are approximately π/2 and 0.84, respectively. That indicates

that there is a slight north-south deformation of the space where the stations are located

(when considering the transformed space). That corresponds to stations located in the

east-west direction in the original set of coordinates. Hence, monitoring sites in that

direction are more likely to have the parameters of the models influencing each other.

The influence of φα and φβ is minimal.

Table 3 about here.

Figures 4 and 5 show the estimated and observed accumulated means for each of

the monitoring stations considered here. (Here, the term accumulate mean means the

function m(·) - either estimated or observed - evaluated at each point in time where an

ozone exceedance occurred.) Figure 4 shows the plots for stations located in regions NW,

NE, and CE, and Figure 5 shows the equivalent plots for stations located in regions SE

and SW with the exception of the assumed non-observable station PLA. Figure 4 shows

an almost perfect fit of the estimated to the observed mean in almost all cases. The

exception being station MER located in region CE (last plot in the figure). In that case
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we may see that perhaps a model allowing the presence of a change-point or a different

rate function could be considered. Figure 5 shows a good fit of the estimated to the

observed accumulated mean. However, for stations CUA and COY, perhaps a model

either with a different rate function or with the presence of change-points could provide

a better fit.

Figure 4 about here.

Figure 5 about here.

4.3 Prediction results

Using the estimated parameters of the model, we may predict the number of exceedances

of the threshold of interest as well as the days in which they occur at any location. That is

performed as follows. Taking the estimated values of α and β for the rate function corre-

sponding to the site PLA, we substitute them in λ(PLA)(t) and, using the non-homogeneous

Poisson probability with respect to that rate function, we obtain a sample of size 5000 of

the number of exceedances KPLA.

The estimated value of K for site PLA is 504 with a standard deviation of 22.79 and

95% credible interval (459, 549). (Note that the actually observed value of K for site PLA

is 518.) The K estimated days where a surpassing of 0.11 may have occurred are then

obtained as follows. It is a well known fact (Cox and Lewis 1966) that, given a time interval

[0, T ] where there are K occurrences of events of a non-homogeneous Poisson process with

continuous mean function m(t), the times t1, t2, . . . , tK , when those events occurred are

distributed as order statistics of a sample with distribution F (t) = m(t)/m(T ), t ∈ [0, T ].
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Therefore, we just have to generate K values from F (·) (where in our case the parameters

α and β are replaced by their estimates) and order them in an increasing order. The

resulting values are the estimated days at which exceedances of the threshold of interest

may occur.

Figure 6 shows the plots of the accumulated means in the case of station PLA. Both

estimated accumulated means predict well the behaviour of the actual observed accumu-

lated mean.

Figure 6 about here.

Remark. In order to have the plot of the observed accumulated mean in the case of

the station PLA, we have used the real observed data.

4.4 Correlation coefficients

Associate stations EAC, TLA, SAG, CHA, MER, UIZ, TAH, PED, CUA, COY and

PLA with the natural numbers i = 1, 2, . . . , 11, respectively. Indicate by ρα and ρβ the

correlation matrices of α and β, respectively, obtained using the generated values for α

and β provided by the MCMC algorithm. Those matrices are given as follows (due to
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symmetry we only report the matrices in the upper triangle form).

ρα =



1.0 0.32 0.02 −0.014 0.13 0.045 0.009 0.14 0.19 0.104 −0.013

1.0 0.092 0.005 0.13 0.057 0.017 0.074 0.077 0.058 −0.007

1.0 0.13 0.13 0.091 0.036 0.029 0.015 0.068 −0.015

1.0 0.034 0.066 0.041 0.012 −0.002 0.007 0.0008

1.0 0.25 0.042 0.13 0.088 0.27 −0.026

1.0 0.15 0.112 0.037 0.207 0.012

1.0 0.078 0.006 0.089 −0.007

1.0 0.24 0.397 −0.04

1.0 0.15 −0.022

1.0 −0.023

1.0


and

ρβ =



1.0 0.15 −0.036 −0.035 0.062 −0.081 0.049 0.15 0.103 0.064 −0.0076

1.0 0.083 −0.046 −0.043 0.086 0.0061 0.157 0.023 −0.055 −0.071

1.0 −0.0003 0.061 0.136 0.047 −0.0013 0.049 0.013 0.024

1.0 −0.13 0.032 −0.028 −0.04 −0.049 0.011 0.0595

1.0 −0.071 0.096 0.11 0.038 0.155 −0.076

1.0 0.007 −0.011 0.138 0.099 −0.0082

1.0 −0.038 −0.026 0.103 −0.078

1.0 0.224 0.209 −0.149

1.0 0.133 −0.067

1.0 −0.036

1.0


Looking at the matrix ρα, which corresponds to the parameters of the Poisson model

that dictates how the rate function decreases/increases, we may see that with the ex-

ception of the stations CHA (in region NE) and UIZ (in region SE), the parameter α
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corresponding to the station PLA is negatively correlated with the parameters α of the

remaining stations. However, we may see that in all cases these correlation coefficients

are of order 10−2 or less. That can also be said about most of the correlation coefficients

related to stations other than PLA. Among the exceptions we have that the strongest

correlations are those between the parameters α related to the stations PED and COY

(value 0.397) both in region SW; stations TLA and EAC (value 0.32) both in region NW;

stations MER, in region CE, and station COY, in region SW (value 0.27); stations MER,

in region CE, and station UIZ, in region SE (value (0.25); stations PED and CUA (value

0.24) both in region SW; and stations UIZ, in region SE, and station COY, in region

SW (value 0.207). Looking at Figure 1, we may see that larger correlation coefficients

are present in stations sharing the same region and when in different regions, they are

either geographically close to each other or in the wind’s path. Similar analysis can be

performed for the parameters β.

5 Discussion

In this work, we have used a spatial model applied to the parameters of a non-homogeneous

Poisson process in order to study the behaviour of ozone in Mexico City. The aim was

to impose a spatial relationship among the parameters of the non-homogeneous Poisson

processes, which is used to count the number of times that a given threshold is surpassed

in a time interval of interest. Using that information, the aim was to infer the behaviour

of the process in sites where measurements could not be taken directly.

The methodology considered here, provides a mechanism for estimating the number

of times that an environmental threshold would be surpassed in a site where we are not
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able to measure a pollutant’s concentration. That is made using information provided by

sites where measurements are actually observable.

In order to estimate the parameters present in the model, we have used a Gibbs

sampling algorithm applied to their posterior distribution. We can observe by looking

at Figures 4, 5, and 6, that the fit provided by the estimated accumulated means to the

observed ones is, in general, good. Therefore, in this particular situation the methodology

considered here predicts well the behaviour of ozone in sites where measurements are not

available as well as describe well that behaviour at sites where measurements are available.

Remark. Note that even though in the model considered here, the data used correspond

to the exceedance of a threshold by the ozone concentration, when we analyse the fit of the

model to the observed data, we consider the accumulated means. This is made because

when the means fit well, then the values of the probability (1) which is used to predict

the number of exceedances (value of K) in a time interval (t, t + s) in a given site, and

the values of the one used to predicted exceedance days, dependent on the mean function.

Hence, if the fit between observed and estimated means is good, then the prediction of

the values of K and the surpassing days d1, d2, . . . , dK , have a large probability of being

good as well.

Looking at Figures 4, 5, and 6, it seems that the estimated means fit well the observed

ones. If one wants to see, in numerical terms, how well those fit are, then one could

obtain the mean and standard deviation of the absolute value of the differences between

the observed and estimated accumulated means. Hence, going in that direction, the

means of the differences are 7.9, 7.11, 11.47, 10.61, 25.02, 14.91, 3.23, 16.08, 17.69, 22.32,

and 20.43, in the cases of sites EAC, TLA, SAG, CHA, MER, UIZ, TAH, PED, CUA,
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COY, and PLA, respectively. The corresponding standard deviations are 5.6, 4.62, 6.04,

6.73, 12.79, 8.06, 10.1, 10.09, 13.38, 14.67, and 10.27. These values corroborate what the

graphical comparison indicates. For instance, in the case of sites MER, CUA, and COY

the fit was good but not as good as in other cases. That is reflected in the large mean of

the differences and also by the corresponding standard deviation. Similar analysis can be

performed for the other sites. Therefore, perhaps in the case of MER and other similar

behaving sites, a model with the presence of change-points could be used in order to

improve the estimations. We also have that in the case of station PLA, the mean of the

differences of means is among the largest. However, recall that the observed data in that

station was not taken into account when we estimated the parameters of the model. Also,

the exceedance days are result of prediction.

If we look at the plots of the differences between the different pairs of accumulated

means, we may see in which period of time the estimated values either over- or under-

estimate the observed values. In Figures 7 and 8, we have the plots of m(·) = m̂(·)−m(·),

where m(·) and m̂(·) are the observed and the estimted accumulated means, respectively.

The values of m(·) were evaluated at points t where an ozone exceedances occurred in the

particular site.

Figure 7 about here.

Figure 8 about here.

Looking at Figures 7 and 8, we may notice that there is a large variability in the

ways the estimated means behave with respect to the observed ones. In general, the

estimated mean under-estimate the observed one. In the beginning of the observational
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period we have, in general, an over-estimation. The under-estimation at the end of the

observational period, could be considered an aid to the environmental authorities. If the

estimated results reflect a bad situation, then in reality the situation could be worse. if the

estimated results reflect a good situation, then perhaps an analysis of the real situation

should be made in order to see how bad/good it is.

The effect of the anisotropic parameters in the deformation of the space are presented

in Figure 9. The strongest effect on the transformed set of coordinates is the one given

by the rotation of the map. The shrinkage is small (recall that the value corresponding

to the shrinkage in the transformed set of coordinates is ψ−1r = 0.84). Therefore, it seems

that for the chosen set of monitoring stations, the transformed space and the original one

differ mostly by the rotation of the Metropolitan Area by an angle of π/2.

Figure 9 about here.

The rotation angle of π/2 indicates that the north-south direction is the one where

deformation of the space should be made. That is compatible with the fact that there are

influence of winds coming from the north and northeast to the south of the city. However,

since the deformation parameter is 0.84, the deformation is small. Therefore, even though

there is an evidence that the north-south wind direction produces some effect in the way

sites might be correlated, that effect seems to be small.

We also can see (Figure 6) that the estimated days of exceedances also reflect well what

happens in reality. Hence, the methodology considered here can be applied successfully

to estimate the ozone behaviour at sites where measurements are not possible to obtain.

Remark. Note that even though we are only considering sites where all measurements

are present, we may also include sites where only partial observations are available. These
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locations could be treated as unobserved sites and data could be simulated using the

posterior distributions in the same manner as in the case of station PLA.

Note that in the case of station PLA, the estimated value of K, when compared to the

real value, is reasonable. Therefore, using the estimated mean in the non-homogeneous

Poisson probability, provide a reasonable estimate of the number of exceedances in a give

time interval.
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Appendix

In this section we present the expressions for the full conditional posterior distributions

from which the parameters were sampled. We will denote by θ(−η) the complete set of
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parameters without the component η. Whenever we are able to sample directly from

the full conditional posterior distributions that will be made. However, when that is not

possible, sampled values will be obtained through a Metropolis-Hastings step.

As follows we have the full conditional posterior distributions of the parameters ψa

and ψr. It is possible to see that those expressions are very complex and sampling directly

from them might be complicated. Therefore, in each case we use a Metropolis-Hastings

algorithm to obtain the values used in the sample. In that case, proposed values are

generated using the respective prior distributions and they are either accepted or rejected

according to the acceptance probability of the Metropolis-Hastings procedure.

P (ψa |θ(−ψa),D) ∝ |Σα(ψa, ψr, φα,σα)|−1/2
(
Σβ(ψa, ψr, φβ,σβ)

)−1/2

exp

[
−1

2
(logα− µα)t (Σα(ψa, ψr, φα,σα))−1 (logα− µα)

]

exp

[
−1

2

(
logβ − µβ

)t (
Σβ(ψa, ψr, φβ,σβ)

)−1 (
logβ − µβ

)]
.

P (ψr |θ(−ψr),D) ∝ |Σα(ψa, ψr, φα,σα)|−1/2 |Σβ(ψa, ψr, φβ,σβ)|−1/2 1

ψc+1
r

exp

[
−1

2
(logα− µα)t (Σα(ψa, ψr, φα,σα))−1 (logα − µα)

]

exp

[
−1

2

(
logβ − µβ

)t (
Σβ(ψa, ψr, φβ,σβ)

)−1 (
logβ − µβ

)]
.

The full conditional posterior distribution of the blocks corresponding to the parame-
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ters µα and µβ are given as follows.

P (µα |θ(−µα),D) ∝ exp

[
−1

2
(logα− µα)t (Σα(ψa, ψr, φα,σα))−1 (logα− µα)

]

exp

[
−1

2

NO+NU∑
i=1

(
µαi − ai

bi

)2
]
.

P (µβ |θ(−µβ),D) ∝ exp

[
−1

2

(
logβ − µβ

)t (
Σβ(ψa, ψr, φβ,σβ)

)−1 (
logβ − µβ

)]

exp

[
−1

2

NO+NU∑
i=1

(
µβi − ci
di

)2
]
.

In each step of the Gibbs sampling algorithm, each component of the vector µα is

proposed according to its prior distribution. Then, each component is separately either

accepted or rejected in a individual acceptance-rejection method with the acceptance

probability given by the Metropolis-Hastings step. The vector µβ will also be constructed

in similar manner

In the case of the parameters φα and φβ, the corresponding full conditional posterior

distributions are,

P (φα |θ(−φα),D) ∝ |Σα(ψa, ψr, φα,σα)|−1/2 e
−µφα/φα

φa1+1
α

exp

[
−1

2
(logα− µα)t (Σα(ψa, ψr, φα,σα))−1 (logα− µα) |

]
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and

P (φβ |θ(−φβ),D) ∝ |Σβ(ψa, ψr, φβ,σβ)|−1/2 e
−µφβ /φβ

φa2+1
β

exp

[
−1

2

(
logβ − µβ

)t (
Σβ(ψa, ψr, φβ,σβ)

)−1 (
logβ − µβ

)]
.

Due to the complexity of the expressions involved, a Metropolis-Hastings algorithm will

also be used to generate the sampled values. Proposed values are produced using the

respective prior distributions.

In the case of the blocks corresponding to the parameters α(O), α(U), β(O) and β(U)

the full conditional posterior distributions are given, respectively, by

P (α(O),α(U) |θ(−α),D) ∝ P (α(U) |α(O))P (α(O) |θ(−α),D)

= P (α(U) |α(O),θ(−α),D)×

× exp

[
−

NO∑
i=1

(
Ti
βi

)αi] [NO∏
i=1

Ki∏
k=1

dαi−1k,i

βαi−1i

]
|Σα(O),α(O)

(ψa, ψr, φα,σα)|−1/2(∏NO
i=1 αi

) ×

[
NO∏
i=1

(
αi
βi

)Ki]

× exp

[
−1

2

(
logα(O) − µα(O)

)t (
Σα(O),α(O)

(ψa, ψr, φα,σα)
)−1 (

logα(O) − µα(O)
)]
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and

P (β(O),β(U) |θ(−β),D) ∝ P (β(U) |β(O))P (β(O) |θ(−β),D)

= P (β(U) |β(O),θ(−β),D)×

×|Σ
β(O),β(O)

(ψa, ψr, φβ,σβ)|−1/2(∏NO
i=1 βi

) exp

[
−

NO∑
i=1

(
Ti
βi

)αi] [NO∏
i=1

Ki∏
k=1

dαi−1k,i

βαi−1i

]
×

[
NO∏
i=1

(
αi
βi

)Ki]

× exp

[
−1

2

(
logβ(O) − µβ(O)

)t (
Σβ(O),β(O)

(ψa, ψr, φβ,σβ)
)−1 (

logβ(O) − µβ(O)
)]

,

where P (α(U) |α(O),θ(−α),D) is the multivariate log-normal distribution having its pa-

rameters given by (9) and (10). Similar comment is valid for P (β(U) |β(O),θ(−β),D).

Here, the generation of the values was made in two steps. First, using a Metropolis-

Hastings algorithm, we generate α(O) and β(O). In both cases, the proposed values are

produced using the respective log-normal prior distributions. After obtaining the values

of α(O) and β(O), the generation of the parameter α(U) is performed using the log-normal

distribution with parameters µα(U)
and Σ

α(U)

(·), given by the conditional distribution of

α(U) given α(O). Similar procedure is used in the case of β(U), but now with µβ(U)
and

Σ
β(U)

(·)

Remark. Note that the case of the parameters α(U) and β(U), we have a closed form

for their distributions. However, in the case of α(O) and β(O), the marginal conditional

distribution do not have a closed form. Hence, the need of performing a Metropolis-

Hastings step. The proposed values are generated using the respective prior distributions

and each component is either accepted or rejected using an acceptance/rejection method.
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If the vector of parameters σα and σβ are also considered as parameters to be esti-

mated, their respective posterior distributions are,

P (σα |θ(−σα),D) ∝ |Σα(ψa, ψr, φα,σα)|−1/2 e
−m/σα

σn+1
α

exp

[
−1

2
(logα− µα)t |Σα(ψa, ψr, φα,σα)|−1 (logα− µα)

]
and

P (σβ |θ(−σβ),D) ∝ |Σβ(ψa, ψr, φβ,σβ)|−1/2 e
−w/σβ

σz+1
β

exp

[
−1

2

(
logβ − µβ

)t |Σβ(ψa, ψr, φβ,σβ)|−1
(
logβ − µβ

)]
.

Again, we need a Metropolis-Hastings step. The proposed values are obtained using

the respective prior distributions and the acceptance/rejection of them are given by the

respective Metropolis-Hastings acceptance probability.

The distribution, at an unobservable site i, of the number of days at which a surpass

occurs is given by,

P (Ki |θ(U)) ∝

[
m(Ti |θ(U))

]Ki
Ki!

exp
[
−m(Ti |θ(U))

]

=
1

Ki!

(
Ti

β
(U)
i

)Ki α
(U)
i

exp

−( Ti

β
(U)
i

)α
(U)
i

 ,
and given Ki, the elements in D

(U)
i are distributed as the order statistics of a sample

obtained from F (t) = m(i)(t)/m(i)(Ti), t ∈ [0, Ti], i = 1, 2, . . . , NU .
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Tables caption

• Table 1. Estimated mean values, standard deviation (indicated by SD) and 95%

credible intervals of the parameters of the non-homogeneous Poisson model for all

station considered. The letters inside the parenthesis, beside the name of a station,

represent the region where it is located.

• Table 2. Estimated mean values, standard deviation (indicated by SD) and 95%

credible intervals of the parameters µα and µβ for all station considered. The letters

inside the parenthesis, beside the name of a station, represent the region where it is

located.

• Table 3. Estimated mean values, standard deviation (indicated by SD) and 95%

credible intervals of the parameters of the anisotropy model.
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Table 1

Station Mean SD 95% Credible Interval

EAC (NW) α 0.81 0.04 (0.73, 0.88)

β 1.45 0.48 (0.66, 2.58)

TLA (NW) α 0.84 0.05 (0.76, 0.94)

β 2.98 1.11 (1.4, 5.7)

SAG (NE) α 0.77 0.05 (0.68, 0.89)

β 3.51 1.57 (1.35, 7.3)

CHA (NE) α 0.69 0.05 (0.6, 0.78)

β 1.73 0.83 (0.59, 3.72)

MER (CE) α 0.76 0.04 (0.68, 0.85)

β 0.82 0.35 (0.29, 1.66)

UIZ (SE) α 0.84 0.03 (0.78, 0.9)

β 1.07 0.29 (0.58, 1.77)

TAH (SE) α 0.8 0.04 (0.73, 0.88)

β 1.18 0.44 (0.55, 2.27)

PED (SW) α 0.82 0.03 (0.77, 0.9)

β 0.63 0.22 (0.36, 1.24)

CUA (SW) α 0.8 0.04 (0.73, 0.88)

β 0.86 0.32 (0.4, 1.68)

COY (SW) α 0.8 0.03 (0.74, 0.86)

β 0.57 0.19 (0.3, 0.99)

PLA (SW) α 0.87 0.054 (0.2, 2.25)

β 1.43 0.57 (0.52, 2.73)
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Table 2

Station Mean SD 95% Credible Interval

EAC (NW) µα - 0.61 0.47 (-1.51, -0.3)

µβ 0.33 0.44 (-0.56, 1.18)

TLA (NW) µα - 0.48 0.48 (-1.4, -0.45)

µβ 1.04 0.4 (0.27, 1.84)

SAG (NE) µα - 0.45 0.48 (-1.4, -0.51)

µβ 1.22 0.5 (0.25, 2.21)

CHA (NE) µα - 0.47 0.49 (-1.43, -0.48)

µβ 0.57 0.53 (-0.48, 1.59)

MER (CE) µα - 0.65 0.47 (-1.57, -0.27)

µβ -0.22 0.5 (-1.22, 0.76)

UIZ (SE) µα - 0.49 0.47 (-1.4, -0.46)

µβ 0.11 0.34 (-0.59, 0.75)

TAH (SE) µα - 0.44 0.5 (-1.4, -0.55)

µβ 0.18 0.4 (-0.6, 0.99)

PED (SW) µα - 0.97 0.49 (-1.9, -0.03)

µβ -0.77 0.45 (-1.64, 0.15)

CUA (SW) µα - 0.67 0.49 (-1.63, -0.32)

µβ -0.2 0.46 (-1.11, 0.72)

COY (SW) µα - 0.59 0.08 (-1.8, -0.06)

µβ -0.75 0.44 (-1.57, 0.15)

PLA (SW) µα -1.96 0.43 (-2.85, -1.22)

µβ -0.81 0.19 (-1.21, -0.46)
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Table 3

Mean SD 95% Credible Interval

ψa 1.58 ≈ π/2 0.9 (0.09, 3.07)

ψ−1r 0.84 0.13 (0.51, 0.995)

φα 1.07E-04 9.23E-05 (3.49E-05, 2.89E-04)

φβ 1.92E-04 1.13E-04 (8.11E-05, 4.115E-04)
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Figures caption

• Figure 1. Metropolitan Area of Mexico City with the location of the monitor-

ing stations considered in the present study. Stations represented by � are the

ones whose data were considered available and the one represented by • is the one

whose data were considered unavailable. The thicker lines represent the boundary

of the several regions in which the Metropolitan Area is divided. The thinner lines

represent the boundary of Mexico City.

• Figure 2 Ozone measurements in each of the monitoring station in regions NE,

NW, and CE from 01 January 2005 to 31 December 2009.

• Figure 3 Ozone measurements in each of the monitoring station in regions SE and

SW, including station PLA, from 01 January 2005 to 31 December 2009.

• Figure 4. Estimated (dashed line) and observed (solid line) accumulated means

for each of the monitoring stations located in regions NW, NE, and CE.

• Figure 5. Estimated (dashed line) and observed (solid line) accumulated means for

each of the monitoring stations located in regions SE and SW with the exception of

the assumed non observable station PLA.

• Figure 6. Observed and estimated accumulated means in the case of station PLA.

The observed accumulated mean is represented by the solid line, the estimated

accumulated mean obtained using the estimated parameters α and β is represented

by the dashed solid line, and the estimated accumulated mean obtained using the

estimated days of exceedance of the threshold 0.11 is represented by the dotted line.
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• Figure 7 Differences between the estimated and observed accumulated means for

stations in regions NE, NW, and CE from 01 January 2005 to 31 december 2009.

• Figure 8 Differences between the estimated and observed accumulated means for

stations in regions SE and SW, including station PLA, from 01 January 2005 to 31

december 2009.

• Figure 9. Metropolitan Area of Mexico City with the location of the monitoring

stations considered here using the coordinates in the transformed space. The new

coordinates were obtained using the rotation and the deformation matrices with the

estimated parameters of the model.
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