
Reconstruction Ability of Exploratory Analysis Methods for
Qualitative Data

Sergio Camiz
Dipartimento di Matematica, Sapienza Università di Roma
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Abstract

In this work, the partial reconstruction of the Burt’s table through the de-
compositions performed by Multiple Correspondence Analysis (MCA), Greenacre
(1988)’s Joint Correspondence Analysis (JCA), and Gower and Hand (1996)’s Ex-
tended Matching Coefficient (EMC ) are compared, in order to check the quality
of the methods. In particular, the ability is considered separately for the whole,
the diagonal, and the off-diagonal tables, that is to describe either each character’s
distribution or the interaction between pairs of characters, or both. The theoretical
aspects are discussed first, then the results obtained in an application are shown
and discussed.
Keywords: Correspondence Analysis, Multiple Correspondence Analy-
sis, Joint Correspondence Analysis, Extended Matching Coefficient, Sin-
gular Value Decomposition.

1 Introduction

In exploratory multidimensional scaling the identification of the proper dimension of the
solution is the basis to define a threshold between relevant information and residuals. The
relevant information is also tied to the possibility to interpret the factors according to the
paradigms of the methods at hand: in the linear case, the percentage of explained inertia
is the most widely used. Thus, to take into account a large share of inertia is the most
evident rough method that may be used and a higher-dimensional solution is normally
preferred to a smaller one only if its corresponding inertia is significantly larger than the
previous one.

Tied to this aspect, the reconstruction of the original data table according to a lower
rank matrix is of relevance, since it corresponds to the explained inertia; thus the ex-
amination of partial reconstructions is helpful to better understand to what extent the
reduction in dimension, through the use of factors, provides a reasonable approximation
of the original data.

In this paper, we consider the special case of qualitative data, that are usually sum-
marized by the so-called Burt’s matrix, the super-contingency table that cross-tabulates
all characters taken into account. It is well known that an exploratory factor analysis of
such a matrix is possible through Multiple Correspondence Analysis (MCA, Benzécri et
al., 1973-82; Greenacre, 1983), but also other methods are proposed in literature, able to
overcome some limitations of MCA itself. Indeed, the most significant one, albeit not seri-
ously considered in literature as such, is the use of the chi-square metrics. The chi-square
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metrics is based on the deviation from the expectation, a measure that cannot work on
such table, in which the subtables along the diagonal cross each character with itself so
that they too are diagonal. Another point is the low amount of explained inertia by the
main factors, that depends also on the high number of eigenvalues that result. Tied with
this, a problem results in the unpredictability of the partial data reconstruction of the
Burt’s table as it will be shown in the following.

In this paper, we take into account two different proposed alternatives: the Joint
Correspondence Analysis (JCA, Greenacre, 1988), whose solution depends on an a priori
selected dimensionality, and the Principal Component Analysis (PCA, Jolliffe, 2002) of
the Extended Matching Coefficient matrix (EMC, Gower and Hand, 1996), which are
proposed by the corresponding authors as a solution.

At the end, these methods will be applied to a very small table, taken from studies in
linguistics (Nardi, 2007).

2 Theoretical framework

2.1 Singular Value Decomposition

We may ground our further discussion on the well known Singular Value Decomposition
(SVD, Greenacre, 1983; Abdi, 2007) theorem, that states

Theorem 1. Any real matrix X may be decomposed as X = UΛ1/2V ′, with Λ the di-
agonal matrix of the real non-negative eigenvalues of XX ′, U the orthogonal matrix of
the corresponding eigenvectors, and V the matrix of eigenvectors of X ′X (with the same
eigenvalues), with both constraints U ′U = I and V ′V = I.

This theorem corresponds to the reconstruction formula of an r-rank matrix

xij =
r∑

α=1

√
λα uiα vjα

on which the Eckart and Young (1936) theorem is based:

Theorem 2. (Eckart and Young) The s-rank reconstruction of any real matrix X, with
s < r, the rank of X, once its singular values are sorted in decreasing order,

xij ≈
s∑

α=1

√
λα uiα vjα = hs,ij

is the best one in the least-squares sense.

This means that, for every s < r, the matrix Hs = (hs,ij) solves the problem to approxi-
mate an n×p matrix X by another one Hs of lower rank s at the best in the least-squares
sense, thus by minimizing

n∑
i=1

p∑
j=1

(xij − hs,ij)2 = trace ((X −Hs)(X −Hs)
′) (1)

It is well known that Principal Component Analysis (PCA, Jolliffe, 2002) finds its
rationale on this theorem, once the data table is standardized according to zij =

xij−x̄j√
nσj

,
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with x̄j and σj the average and the standard deviation of the j-th character; indeed, this
way Z ′Z = cor(X) = C, the matrix of correlations between the columns of X. Thus, given
the PCA on the correlation matrix C, with Λ and V their diagonal matrix of eigenvalues
and unit matrix of eigenvectors respectively, and given U the unit eigenvectors of ZZ ′,
the reconstruction formula becomes

xij =

(
r∑

α=1

√
λα uiα vjα

)
√
nσj + x̄j (2)

For correspondence analysis, we shall adopt the Generalized Singular Values Decom-
position(GSVD, Greenacre, 1983; Abdi, 2007), in which two other matrices are involved:

Theorem 3. Given two real positive definite matrices L and M , any real matrix X may
be decomposed as X = ŨΛ1/2Ṽ ′, under the constraints Ũ ′LŨ = I and Ṽ ′MṼ = I.

The solution is given by the SV D of the matrix X̃ = L1/2XM1/2 = FΛ1/2G′, with
F ′F = I, G′G = I, Ũ = L−1/2F , and Ṽ = M−1/2G. It results that Ũ Ũ ′ = L−1 and
Ṽ Ṽ ′ = M−1 respectively. In this case the minimization problem (1) becomes

n∑
k=1

n∑
i=1

p∑
j=1

p∑
l=1

m−1
ki (xij − hs,ij)2n−1

jl = trace
(
L−1(X −Hs)M

−1(X −Hs)
′) (3)

Thus, the exploratory analysis paradigm states that the most relevant information is
tied to the largest eigenvalues and the non-relevant to the least ones. The problem of
distinguishing among them, that is to identify at least a tentative cutpoint of either the
singular- or the eigen-values sequence, remains a crucial issue, that did not find a univocal
solution so far (for PCA see, e.g., Jackson, 1993; Peres-Neto et al., 2005). In Simple
Correspondence Analysis (SCA, Benzécri et al., 1973-82; Greenacre, 1983), it seems more
easily solved, since the special chi-square metrics adopted allows some useful solutions
and an easy interpretation of the results, and for MCA both Ben Ammou and Saporta
(1998, 2003) propose an interesting method.

2.2 Simple Correspondence Analysis

Let N an r× c contingency table, with n = n.. the table grand total, ~r = (p1., ..., pr.)
′ the

vector of row marginal profile (with pij = nij/n), ~c = (p.1, ..., p.c)
′ the vector of column

marginal profile, and Dr = diag(~r), Dc = diag(~c) the corresponding diagonal matrices.
The SCA of N results from the application of GSVD to the contingency table N with
the constraints given by the diagonal matrices Dr and Dc. It results the reconstruction
formula of N :

nij = nricj

1 +

min(r,c)−1∑
α=1

√
λα fiα gjα

 .

where 1 is the first trivial eigenvalue, that ties the origin to the centroid of data and
represents the independence. This time, as both Dr and Dc are diagonal and represent
the table marginal frequencies of rows and columns respectively, the minimization problem
(3) results simplified and takes an interesting aspect

r∑
i=1

c∑
j=1

(nij − hij)2

eij
=

r∑
i=1

c∑
j=1

(nij − hij)2

nricj

= n−1trace
(
D−1
r (N −H)D−1

c (N −H)′
)

(4)
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that is the sum of squared deviations from the observed values divided by the expected
ones. Thus, the reconstruction formula may be well synthesized as

N = n ~r ~c ′ +DrFΛ1/2G′Dc. (5)

As a matter of fact, in order to produce a simultaneous graphical representation, SCA
eigenvectors are usually rescaled, by defining as coordinates the quantities Φ = FΛ1/2 and
Ψ = GΛ1/2. With this transformation, and applying the Eckart and Young’s theorem,
any reduced rank approximation obtained by limiting the sum above to the r largest
eigenvalues is the best approximation in the weighed least-squares sense:

nij ≈ nricj

(
1 +

r∑
α=1

1√
λα

φiα ψjα

)
.

As it results that in SCA the eigenvalues sum, up to the grand total, to the table
chi-square, namely

χ2 = n

min(r,c)−1∑
α=1

λα,

the inertia along each dimension α equals χα
2 = nλα. Thus, the cutting problem is simply

solved by using the classical test for goodness of fit (Kendall and Stuart, 1961) or more
easily through the Malinvaud (1987) test. The test may be applied, since, for each α-
dimensional partial reconstruction, the residuals correspond to

Qα =
∑
ij

(nij − ñαij)2

ñαij
,

asymptotically chi-square-distributed with (r − α− 1) × (c− α− 1) degrees of freedom.
In the formula, ñαij is the cell value estimated by the α-dimensional solution, and the
table chi-square test results when α= 0 and ñ0ij =

ni· n·j
n··

is the expected value under inde-
pendence. Now, Malinvaud (1987) showed that, by substituting the estimated cell values
with the expected ones under independence hypothesis, the formula may be approximated
by

Q̃α =
∑
ij

(nij − ñαij)2

nricj
≈ χ2 −

α∑
β=1

χ2
β = n

min(r,c)−1∑
γ=α+1

λγ,

that may be more easily used to check for nullity of the residuals. Moreover, it is inter-
esting to observe that the partial chi-square associated to each eigenvalue, χ2

α = n..λα,
may be checked for significance with df = (r + c− 2α− 1) (Kendall and Stuart, 1961),
to detect if there are linear ordinations of both rows and column levels that explain the
deviation from expectation (Orlóci, 1978).

2.3 Multiple Correspondence Analysis

Let us consider now a qualitative data table X with n observations, Q nominal characters
and J the total number of levels, that is J =

∑Q
i=1 li where li is the number of levels of

the i-th character. It is well known that MCA of such a matrix is but a generalization of
SCA and it is based on SCA of either the indicator matrix Z, whose rows are the units
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and the columns are all the J levels of the Q considered variables, or the so-called Burt’s
table B = Z ′Z that gathers all contingency tables obtained by cross-tabulating all the
variables in Z, including the diagonal tables obtained by crossing each variable with itself.
The idea is to adopt for both matrices the same optimized decomposition of SCA, namely
the GSVD of either Q−1ZD−1

r or

Q−2D−1
r BD−1

r = Q−2D−1
r Z ′ZD−1

r . (6)

Indeed, it is evident that the latter is the square of the previous, so that they share the
eigenvectors, and the singular values in Burt’s case are the squares of those of the indicator
matrix case: να = µ2

α (note that the µα are called in literature eigenvalues of the Burt’s
matrix). This identity allows identical interpretation of the resulting factors. Thus, it
makes no difference to perform MCA on either matrix. On the other side, whereas the
total inertia of Z is Iz = J−Q

Q
, the one of B equals

∑
να =

∑
µ2
α. In both cases, the

chi-square metrics is adopted so that the interpretation of results ought to be done once
again in terms of deviations from expectation. This point deserves some special attention,
since the deviation refers to all contingency tables gathered in the Burt’s table, including
the diagonal ones. The problem is that such diagonal matrices, that “theoretically” would
indicate maximum deviation since the are diagonal, in this case are just the expected ones,
as they cross each character with itself.

As for SCA, given a Burt matrix B, MCA may be defined as the weighted least-squares
approximation of B by another matrix H of lower rank, minimizing

n−1Q−2trace
(
D−1
r (B −H)D−1

r (B −H)′
)
. (7)

Notice how (7) derives from (4). In terms of the subtables, this may be rewritten as

n−1trace
(
D−1(B −H)D−1(B −H)′

)
=

= n−1

Q∑
i=1

Q∑
j=1

trace
(
D−1
i (Nij −Hij)D

−1
j (Nij −Hij)

′) ,
where H is the supermatrix of the Hij. Introducing the norm notation

‖A−B‖2
ij = trace

(
D−1
i (A−B) D−1

j (A−B)′
)

the minimization can be written as

n−1

Q∑
i=1

Q∑
j=1

‖Nij −Hij‖2
ij . (8)

In MCA the identification of the true dimension is particularly difficult, despite the
MCA is a SCA of a particular table, because the chi-square test has no sense. Indeed, for
B a chi-squared-like statistic may again be calculated as if it were a contingency table,
and this simplifies as

χ2
B = 2

Q∑
i=1

i−1∑
j=1

χ2
ij + n(J −Q),

where χ2
ij is the chi-squared statistic for the off-diagonal subtable Nij = Z ′iZj crossing the

i-th and the j-th characters, but without the possibility to make a test. Unfortunately
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neither Qα nor Q̃α computed on the indicator matrix Z are chi-square distributed (Ben
Ammou and Saporta, 1998), since Z is composed by 0’s and 1’s, and it is dramatically
inflated by the diagonal tables without any real meaning.

The high number of eigenvalues of MCA, and their corresponding low explained inertia,
were criticized by Benzécri (1979) that suggests a reevaluation. Indeed, if we compare
SCA and MCA applied to the same two characters contingency table, a relation between
the eigenvalues may be found. Indeed, by partitioning a two-characters Burt’s table Z ′Z
into submatrices it can be shown (ibid.) the relation µα = 1±

√
λα

2
that holds among the

eigenvalues of Z and those of the SCA of the contingency table crossing the two characters.
In this case, it is evident that to the eigenvalues λα = 0 of SCA correspond eigenvalues
µα = 1

2
of Z and να = 1

4
of B, whereas to the others two correspond, one of which larger

and the other smaller than 1
2

and 1
4

respectively. Generalizing this argument to several
characters results in admitting to limit attention in MCA only to the eigenvalues larger
than their mean, that is µ ≥ µα = 1

Q
.

The argument is discussed in detail by both Benzécri (1979) and Greenacre (1988,
2006). Both authors suggest, in order to get a measure of relative importance of each
factor, to re-evaluate the eigenvalues larger than the mean (equal to 1

Q
) according to the

formula

ρ (µα) =

(
Q

Q− 1

)2

(µα − µ)2 , µα ≥ µ =
1

Q
.

Greenacre (1988) suggests to consider as total inertia the sum of the re-evaluated eigen-

values and consider as percentage of explained inertia the ratio ρ(µα)∑
α ρ(µα)

. This results

in a dramatic re-evaluation of the relative importance of the first eigenvalues. On the
opposite, Greenacre bases his arguments on the unusefulness to take into account the
diagonal block matrices and the utility to limit attention only to the total off-diagonal
inertia of the table, that is the sum of squared (non-re-evaluated) eigenvalues minus the
diagonal inertia: that is

Q

Q− 1

 ∑
µα>1/Q

µ2
α −

J −Q
Q2

 .

Experiments show that the Greenacre’s reevaluation is always limited to a share of the
total inertia of Burt’s table even by taking into account all the eigenvalues larger than
the mean. This does not affect the interpretation of the factors, that essentially depends
upon the eigenvectors, thus to the contributions of both levels and characters to them, but
more the quality of representation of these elements on the factor subspaces, that varies
according to the percentage of inertia attributed to each one. Indeed, this is a point that
would deserve some specific consideration, in particular in deciding which reevaluation
may be better taken into account. In the following, we shall call adjusted MCA the one
with re-evaluated inertia, thus with the coordinates recalculated accordingly.

The reduction in number of the dimension, thanks to both Benzécri’s and Greenacre’s
reevaluations, does not solve the problem of the true dimension of the table. To this
question, an answer comes by Ben Ammou and Saporta (1998, 2003): they suggest to
estimate the significance of the eigenvalues of MCA according to their distribution under
independence. In this case, E(µ) = 1/Q, thus

∑J−Q
β=1 µβ = J−Q

Q
and Sµ2 =

∑J−Q
β=1 µ

2
β =

J−Q
Q2 +

∑
i 6=j φ

2
ij

Q2 with n..φ
2
ij ≈ χ2

(li−1)(lj−1) , thus,

E[n..φ
2
ij] = E[χ2

ij] = (li − 1)(lj − 1)
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so the expectation of the variance S2
µ of the eigenvalues is

σ2 = E[S2
µ] =

1

n..Q2(J −Q)

∑
i 6=j

(li − 1)(lj − 1).

Roughly, one may assume that the interval 1
Q
± 2σ should contain about 95% of the

eigenvalues. Indeed, since the kurtosis of the set of eigenvalues is lower than for a normal
distribution, the actual proportion is larger than 95%.

2.4 Joint Correspondence Analysis

Greenacre (1988) criticizes MCA approach since it is not a natural generalization of
SCA and proposes his Joint Correspondence Analysis (JCA) as its natural generaliza-
tion. Moreover, in MCA no justification exist for fitting the diagonal subtables B which
contribute the term n(J−Q) to the total variation. A more natural measure of total varia-
tion is the sum

∑∑
q 6=s χ

2
qs. This suggests an alternative generalization of correspondence

analysis which fits only the off-diagonal contingency tables, analogous to factor analysis
where values on the diagonal of the covariance or correlation matrix are of no direct
interest.

Indeed, the proposed redefinition of the total variation, by removing the diagonal
block-matrices, would fix an important bias due to the application to the Burt’s table
of the chi-square metrics, since the diagonal structure of the diagonal block-matrices
represents a very high deviation from the expected values, that MCA analyzes as if it
were a true deviation. On this basis, opposite to the current use, this kind of analysis is
not really suitable.

So, Greenacre (1988) proposes his Joint Correspondence Analysis (JCA) as a weighed
least-squares approximation aiming at minimizing simultaneously

n−1

Q∑
i=1

i−1∑
j=1

‖Nij −Hij‖2
ij , (9)

instead of (8) with the corresponding χ2
J =

∑Q
i=1

∑i−1
j=1 χ

2
ij, sum of the chi-squares of all

off-diagonal tables, that unfortunately may not be checked for significance.
In order to get the solution, he proposes an alternating least-squares algorithm, based

on the reformulation of (9) as follows:

n−1

Q∑
i=1

i−1∑
j=1

‖Nij −Hij‖2
ij = n−1

Q∑
i=1

i−1∑
j=1

‖Nij − n ~ri ~rj ′ − Lij‖2

ij (10)

with ~ri the diagonal of the i-th block-diagonal matrix. Calling H and L the supermatrices
gathering the Hij and Lij respectively, Greenacre (1988) states the equivalence of the rank-
K solution of L which satisfies the normal equations in the minimization of the second
term of (10) with the rank-(K + 1) matrix H = ~r ~r ′ + L which satisfies minimizing (9),
with ~r the supervector gathering the Q vectors ~ri.

The matrix approximation L of rank K is of the form L = nDXDβX
′D, where

the J × K matrix X is normalized as X ′DX = QI, with D = diag(~r). The matrix
X of parameters has rows corresponding to the categories of the variables and columns
corresponding to the dimensions of the solution, that must be chosen in advance. The

7



diagonal matrix Dβ contains a scale parameter for each dimension. This form of L and the
normalization conditions are chosen to generalize the bivariate case (5). The parameter
matrix X is partitioned row-wise according to the variables as X1, · · · , XQ, where Xq

is Jq × K, so that the submatrices of L are Lqs = nDqXqDβX
′
sDs. There are also

inherent centering constraints on X of the form X ′r = 0 due to the orthogonality with
the dimension defined by the trivial solution. It is evident that the dimension of the
solution must be chosen in advance.

Thus Greenacre (1988) proposes the approximate reconstruction of the whole matrix
B − n ~r ~r ′, namely

B − n ~r ~r ′ ≈ nDXDβX
′D + C,

where C is a block diagonal matrix with submatrices Cqq, q = 1, ..., Q down the diagonal
and zeros elsewhere. Here, each Cqq is composed by dummy parameters which effectively
allow perfect fitting of the submatrices on the diagonal of B−n ~r ~r ′, thereby eliminating
their influence on the model of interest. The minimization of

B − n ~r ~r ′ = 2n−1

Q∑
i=1

i−1∑
j=1

‖Nij − n ~ri ~rj ′ − Lij‖2

ij

+ n−1

Q∑
k=1

‖Nkk − n ~rk ~rk ′ − Lkk − Ckk‖2
k .

(11)

is equivalent to minimizing (10) because the latter set of terms in (11) can always be
made zero by setting Cii = Nii − n ~ri ~ri ′ − Lii.

The algorithm proposed by Greenacre (1988) to minimize (11) can be performed iter-
atively by alternating between the variables in C and those in X and Dβ as follows:

1. fix the dimension K of the solution.

2. initiate the algorithm with an MCA of the full Burt matrix B, that is

B − n ~r ~r ′ ≈ nDXDβX
′D. (12)

3. limiting attention to the first K dimensions, say the first K columns of X ~x(1), · · · ,
~x(K), (12) can be rewritten as

B − n ~r ~r ′ ≈
K∑
k=1

nβkD~x(k)~x
′
(k)D.

so that, if all quantities except the βk (k = 1,· · · , K) are regarded as fixed, the
problem reduces to a simple weighted least-squares regression (see Greenacre, 1988,
for further details).

4. Keeping X and Dβ fixed, set

Cii = Nii − n ~ri ~ri ′ − nDiXiDβX
′
iDi (i = 1, · · · , Q).

5. Keeping C fixed, minimize with respect to X and Dβ: this is achieved by performing
a correspondence analysis of the table B∗ = B − C, that is the Burt matrix with
modified submatrices on its diagonal, setting X equal to the first K vectors of
optimal row or column parameters and the diagonal of Dβ equal to the square roots
of the first K principal inertias respectively.
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6. Iterate the last two steps until convergence.

In the special case Q = 2, where the problem reduces to fitting the single off-diagonal
submatrix N12, the initial solution described above is optimal and provides the simple
correspondence analysis of N = N12 exactly.

2.5 The Extended Matching Coefficient

JCA has been introduced by Greenacre (1988) as a way to drop the excessive attention
given to the diagonal of the Burt’s matrix by MCA, that indeed does not deserve any
interest. In addition, it is our opinion that the use of the chi-square metrics, that finds
its rationale in SCA, since its factors partition correctly the chi-square of the contingency
data under study, does not find any theoretical justification in the case of Burt’s table.
Thus, it was interesting to take into account the proposal by Gower and Hand (1996) to
drop the chi-square metrics in favor of a simpler one: the Extended Matching Coefficient.
Indeed, for two units, they define it as the number of common levels across all characters.
Thus, given the indicator matrix Z, ZZ ′ would give us a similarity matrix to deal with;
indeed, given its size, the Burt’s table B as such is its corresponding in the dual space,
so that it is sufficient to perform the SVD of the centered Burt’s matrix, that is

Q−2B = Q−2Z ′Z (13)

to be compared with (6). Now, the reconstruction formula (2) holds, but this time the
layers may not be interpreted in terms of deviations from expectation, that is not taken
into account by the method, but merely as contribution to the reconstruction, that is in
this case the frequencies in the Burt’s cells.

3 An Application to the kind of words

Table 1: Burt’s table of the words’ type example.
L2 L3 L4 WN WV WA TC TR TD TS

L2 1512 0 0 788 483 241 433 385 399 295
L3 0 375 0 203 23 149 64 82 86 143
L4 0 0 113 62 9 42 3 29 21 60

WN 788 203 62 1053 0 0 229 284 273 267
WV 483 23 9 0 515 0 174 133 125 83
WA 241 149 42 0 0 432 97 79 108 148
TC 433 64 3 229 174 97 500 0 0 0
TR 385 82 29 284 133 79 0 496 0 0
TD 399 86 21 273 125 108 0 0 506 0
TS 295 143 60 267 83 148 0 0 0 498

L2 L3 L4 WN WV WA TC TR TD TS

To show in detail the different behavior of the different analyses in practice, we refer to
a data set taken from Nardi (2007), consisting in 2000 words taken from four different
kind of periodic reviews (Childish (TC), Review (TR), Dissemination (TD), and Scientific

9



Summary (TS)), classified according to their grammatical kind (Verb (WV), Noun (WN),
and Adjective (WA)) and the number of internal layers (Two- (L2), Three- (L3), and Four
and more layers (L4)), as a measure of the word complexity. In Table 1 the Burt’s table
that results by crossing the three characters is reported. Note that the abbreviations are
the levels’ labels that appear on the graphics.

Table 2: SCA of the three contingency data tables of the three characters two by two. In
the columns, the eigenvalues, the percentage of inertia, and the p-value of the chi-square
associated to the factors.

Words - Levels Publications - Words Publications - Levels

N. eigen % p-value eigen % p-value eigen % p-value

1 .0925 99.98 .0000 .0253 80.53 .0000 .0619 98.82 .0000
2 .0000 0.02 .8625 .0061 19.47 .0022 .0007 1.18 .4771

In Table 2 are reported the eigenvalues of the three SCAs of the contingency data tables
that cross the three characters two by two: the eigenvalues, the percentage of correspond-
ing inertia, and the p-value associated to the chi-square calculated for the corresponding
one-dimensional reconstruction, that in this case is identical to the Malinvaud’s test, since
each solution is 2-dimensional. In two cases, the tests do not give the second factors any
real meaning, since the p-value is larger than 5%, whereas in the case of the table type of
publication - kind of words the second factor is also significant.

Figure 1: Words’ type example: The pair of characters levels on the three two-way SCAs:
(a) Words vs. Levels; (b) Publications vs. Words; (c) Publications vs. Levels.

In Figure 1 the results of the three SCAs are represented too: it must be pointed
out that the vertical position of the items is significant only for the second graphic.
Indeed, the inspection of this factor plane shows an arch pattern due to a Guttman effect
(Guttman, 1941; Camiz, 2005); the same, the interpretation is straightforward: for the
first table, both verbs and nouns seem to have in general less syllables than the adjectives;
for the second, the variation in use of the words according to the higher complexity of the
publication: verbs for the childish, nouns for reviews and disseminations, adjectives for
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scientific summaries; for the third, the more complicated words (3 and more syllables) in
scientific summaries than in all others. In the second table it is noteworthy the opposite
pattern of verbs and adjectives, the first reducing while the publication is of higher level
and the second raising: this explains clearly the observed Guttman effect. The position of
long words very elongated on the second axis of both the first and the third analyses, in
the latter case also with reviews, is explained by the shortness of the verbs and its scarce
presence in childish publications, but we said that it is not significant. We may ground our
comparisons on this interpretation of the data. Running MCA, the pattern of eigenvalues
is represented in Table 3, in which are reported the eigenvalues, their percentage to the
total (equal to J−Q

Q
= 2.33), the cumulate percentage, the singular values of the Burt’s

matrix, corresponding to the explained inertia, and the cumulate inertia.

Table 3: MCA singular values, percentage to the total and cumulate percentage, eigenval-
ues, and cumulate inertia of the Burt’s table of words’ type example. Then re-evaluated
inertia and percentages according to both Benzécri (1979) and Greenacre (1988).

N Eigen % Cumul. Sing. Cum. Re-ev. Benzécri’s Greenacre’s
values Inertia % values Inertia Inertia % Cum.% % Cum.%

1 0.4896 20.98 20.98 0.2397 0.2397 0.0549 95.91 95.91 88.36 88.36
2 0.3640 15.60 36.58 0.1325 0.3722 0.0021 3.69 99.60 3.40 91.76
3 0.3434 14.72 51.30 0.1179 0.4901 0.0002 0.40 100.00 0.37 92.13
4 0.3300 14.14 65.44 0.1089 0.5990 0.0572 100.00 92.13
5 0.3084 13.22 78.66 0.0951 0.6941
6 0.2728 11.69 90.35 0.0744 0.7685
7 0.2252 9.65 100.00 0.0507 0.8192

In addition, on the table are reported the re-evaluated inertia and its percentages and
cumulated ones according to both Benzécri (1979) and Greenacre (1988), limited to the
only three singular values larger than 1/Q = 1/3, with the totals in the following row. In
both cases, the first dimension’s re-evaluated inertia is by far larger than the others. If
we apply the Ben Ammou and Saporta (1998, 2003) estimation of the average eigenvalue
distribution under independence, we find that the standard deviation is σ = 0.0159364, so
that the confidence interval at 95% level is (0.30146 < λ < 0.36521). As a consequence,
only the first eigenvalue is outside the confidence interval and should be considered sig-
nificant. As a matter of facts, the second one is very close to the threshold (0.3640): this
is consistent with the fact that one of the 2-dimensional tables has a significant second
eigenvalue.

In Figure 2a the distribution of all character levels on the plane spanned by the first
two factors of MCA is represented. Indeed, the patterns of all the characters’ levels repeat
fairy well the same in the three two-way tables: thus it may be taken as a sign of coherence
between the individual SCAs and MCA. It may be observed that the similarity is good
even on the second dimension, albeit not significant, whereas on the plane the Guttman
effect appears again in good evidence. This may also depend upon the magnitude of
the first two eigenvalues, that is sufficiently high to state that the three characters share
around either 48% or 36% of the first and second factor respectively. Concerning the
inertia reevaluation, this does not affect the interpretation of the single factors but if
anything the spaces, since it acts as different multiplicative constants on the factors.
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Let us now discuss the results of the JCA carried out on the same example. In
the 2-dimensional solution1 the axes inertias are 0.2488 and 0.0272, with a proportion of
90.15% and 9.85%, respectively: considering significant only the first axis, we may observe
in Figure 2b a pattern of levels nearly identical to the one of MCA.

Figure 2: Words’ type example: representation of the three-characters levels on the plane
spanned by the first two factors: (a) MCA; (b) JCA.

Some differences appear on the second axis, in which are noticeable the very different
positions of verbs and childish publications on the negative side and of long words and
summaries on the positive one, but, once again, this may not be considered significant.

Table 4: Eigenvalues, percentages of explained and cumulate inertia of the analysis of
EMC on Words’ type example. On the left the pattern of the eigenvalues.

N. eigen % cum %
1 272.7187 23.38 23.38
2 245.3787 21.03 44.41
3 168.3971 14.43 58.84
4 163.5518 14.02 72.86
5 145.3435 12.46 85.32
6 121.7007 10.43 95.75
7 49.5341 4.25 100.00

Eventually, we got the results of EMC. The seven (J − Q) non-zero eigenvalues and
the corresponding percentages of explained and cumulate inertia are reported on Table
4. They are reported also in the figure nearby, where the average corresponds to the

1The R package ca, that we used, gave a diagnostic when asked of running the 1-dimensional solution.
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dotted line. Thus, one may identify two major eigenvalues that summarize 44% of the
total inertia, three others around the mean and a minor one. As this time, no method is
known to decide which is the true Burt’s table dimension, according to this method, so
that we can only compare the results with the previous ones, thus considering the first
dimension as the “true” one, but also taking into account the second one at least for the
graphical representation. In Figure 3 all levels are plotted on the plane spanned by the
first two factors: indeed, the pattern of levels along the first axis is somehow similar to
the ones resulting from both MCA and JCA but not so much: both L4 and L3 and even
more WA and WN are exchanged, slightly modifying the interpretation of the results.

An interpretation of the pattern is possible, considering that, opposite to correspon-
dence analysis, in principal component analysis the lower frequencies results close to the
center and the higher far away. Indeed, this is the case of both L2 and WN that have
the highest marginal values, whereas 4L, with the lowest, is toward the center.

Figure 3: Words’ type example: representation of the three-characters levels on the plane
spanned by the first two factors of the centered PCA on the Burt’s table, corresponding to
the Extended Matching Coefficient.

Let us look now at the one-dimensional reconstruction, as resulting by the SCAs of
the three individual tables, by both MCA and adjusted MCA, by Greenacre’s JCA, and
by EMC as reported in Table 5. The comparison of the SCA one-dimensional solutions
with the original tables shows that the amount of the cumulate absolute residuals is in
good agreement with the quality of the solution, as represented by the corresponding chi-
square. For this reason, the low quality of the reconstruction of the table crossing kind of
words with the type of publications depends on the significance of the second dimension
of the SCA of this table, that here is not taken into account. At first glance, it is evident
the high difference in the cumulate absolute residuals of both MCA and EMC in respect
to the other solutions, that is an important sign of their limits in respect to the other

13



methods. It is noteworthy how the adjusted MCA, that is the one with the re-evaluated
inertia applied to the reconstruction, works better than MCA.

Table 5: Original two-way contingency tables of words’ type example and their reconstruc-
tion according to the first dimension of SCAs, MCA, adjusted MCA, JCA, and EMC with
the corresponding cumulate absolute residuals.

Original Contingency Tables
WN WV WA TC TR TD TS TC TR TD TS

L2 788 483 241 L2 433 385 399 295 WN 229 284 273 267
L3 203 23 149 L3 64 82 86 143 WV 174 133 125 83
L4 62 9 42 L4 3 29 21 60 WA 97 79 108 148

SCA First Layer
WN WV WA TC TR TD TS TC TR TD TS

L2 788 483 241 L2 435 382 400 296 WN 253 257 267 276
L3 204 23 149 L3 60 89 85 141 WV 165 144 127 79
L4 61 9 42 L4 5 25 22 61 WA 82 96 112 142

SCA cumulate absolute residuals
2 29 134

MCA First Layer
WN WV WA TC TR TD TS TC TR TD TS

L2 770 559 183 L2 492 409 401 211 WN 249 257 264 283
L3 216 -24 183 L3 13 69 82 211 WV 219 155 145 -3
L4 67 -20 66 L4 -5 18 23 76 WA 32 84 97 219

MCA cumulate absolute residuals
304 342 397

Adjusted MCA First Layer
WN WV WA TC TR TD TS TC TR TD TS

L2 783 471 258 L2 433 385 399 295 WN 229 284 273 267
L3 206 39 130 L3 64 82 86 143 WV 174 133 125 83
L4 63 6 44 L4 3 29 21 60 WA 97 79 108 148

Adjusted MCA cumulate absolute residuals
78 67 166

JCA First Layer
WN WV WA TC TR TD TS TC TR TD TS

L2 783 484 245 L2 435 391 393 293 WN 259 260 266 269
L3 207 29 139 L3 53 82 87 153 WV 160 136 136 82
L4 63 2 48 L4 12 24 25 52 WA 81 100 104 147

JCA cumulate absolute residuals
44 64 134

EMC First Layer
WN WV WA TC TR TD TS TC TR TD TS

L2 630 595 287 L2 477 381 391 262 WN 178 256 259 360
L3 334 -72 114 L3 12 88 88 187 WV 234 134 139 7
L4 89 -8 32 L4 10 27 27 49 WA 88 106 108 131

EMC cumulate absolute residuals
631 219 390
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Indeed, the quality of JCA one-dimensional reconstruction is in all cases much better,
meaning that its graphical simultaneous representation of the three tables is the one
that approximates best. Finally, looking at the first layer obtained by EMC we find a
behavior somehow comparable with the first layer of MCA: much worst for the first table,
much better for the second and relatively equal for the third. This may also depend
on the different way that this method uses to reconstruct the data table, as each layer
does not represent a deviation from expectation but rebuilds the table anew. Thus a
better reconstruction must be expected through a larger number of factors. We did it,
by comparing the sum of the absolute differences in the partial reconstructions obtained
by increasing the solution dimension: this could be done for the whole 7 factors of both
MCA and EMC and only for the first 3 above the mean for both adjusted MCA and JCA.
The results are given in Table 6.

Table 6: Absolute residuals of the reduced dimensional reconstructions of both the Burt’s
table and the two-way off-diagonal ones according to MCA, adjusted MCA and JCA
respectively: to 0 correspond the deviations from independence.

MCA Adjusted MCA JCA EMC
N Total Diag. Off Total Diag. Off Total Diag. Off Total Diag. Off

8906 7000 953 8906 7000 953 8906 7000 953
1 7557 5470 1044 6879 6263 308 6629 6149 240 7849 5363 1243
2 7378 4303 1537 6588 6116 236 6206 5916 145 5950 3907 1022
3 7089 3463 1813 6510 6080 215 5836 5800 18 5185 3129 1028
4 5949 2805 1572 3961 2172 895
5 3675 1720 977 2143 1080 531
6 2335 877 729 513 394 60
7 0 0 0 0 0 0

In Table 6 are reported the cumulate absolute residuals of reconstructions of both
MCAs, normal and adjusted, JCA, and EMC : they are total and partitioned according
to the diagonal matrices and to the off-diagonal ones. In this latter case, the residuals
are divided by two, that is the sum of the residuals of the individual 2 × 2 contingency
tables, that form either triangular off-diagonal sub-matrix. The residuals for 0-dimension
are the deviations from independence and, as said, the following are reported for all the
allowed dimensions: 7 = J − Q for both MCA and EMC and only 3 for both adjusted
MCA and JCA, the number of singular values of the Burt’s table larger than the mean.

The first row reports the deviations in respect to the independence, that for EMC
does not make any sense. For each method, the first column represents the variation of
the whole Burt’s table reconstruction: it is always descendant, as it should be expected,
although with different slope: in this respect, EMC performs best by far. Indeed, the
same occurs for what concerns the reconstruction of the diagonal tables: once again the
EMC ’s performance is the best, albeit not as for the total table. Both MCA and EMC
eventually rebuild totally the Burt’s table, as expected. The surprises arise looking at
the off-diagonal tables reconstruction: here, the MCA reconstruction is dramatically bad
and problematic: indeed, all partial reconstructions are worst than the independence,
that is the estimated frequencies are further from the observed ones than those due to
the independence, but the last one. That is the first 5 dimensions, instead of improving
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the estimation, get it even worse! In this respect, EMC performs much better, as it is
constantly decreasing.

If we look now at both adjusted MCA and JCA, we notice that, for what concerns
the diagonal submatrices, they perform very badly, even worst than MCA, but this ought
to be expected, specifically for JCA, in which the diagonal submatrices are intentionally
neglected. On the other side, the improvement in the reconstruction of the off-diagonal
ones is incredibly better, with an excellent performance of JCA.

4 Conclusion

This study started with the aim to understand to what extent the JCA (Greenacre,
1988) could be of help in identifying the true dimension of an analysis concerning a set
of qualitative data. In this sense, the confidence interval proposed by Ben Ammou and
Saporta (1998, 2003) seems a better answer to this problem, in agreement with the most
one-dimensional solution of the SCAs applied to the two-way tables of the first application.

During the study, the problem of the data reconstruction not only showed that MCA
is bad in reconstructing the whole data table in respect to EMC, even in what con-
cerns the diagonal submatrices, but mostly concerning the off-diagonal ones, that are
even more biased: the reconstruction of the two-way off-diagonal tables is for the most
reduced-dimensional solutions worst than the initial independence table. Indeed, only re-
defining the coordinates according to the adjusted MCA, a suitable reconstruction may be
performed, albeit far from optimality. It is interesting to note that the adjusted MCA per-
forms much better than ( EMC), a sign that, despite the theory that would oppose its use
for Burt’s table, the chi-square metrics is more suited for such kind of data. Eventually,
the performance of JCA is by no means the most suitable to deal with the off-diagonal
tables, that is on the study of the interaction among the levels of the different characters.

The re-evaluations proposed by both Benzécri (1979) and Greenacre (2006) were only
quoted in literature so far, but never applied in the daily practice. Indeed, they do not
influence the interpretation of the factors, but only the graphics and the quality of repre-
sentation of the character levels. Eventually, JCA seems the most promising development
of JCA and its properties deserve some further deepening. The same, Greenacre’s follow-
ers (Tateneni and Browne, 2000; Vermunt and Anderson, 2005; Greenacre, 2006), that
propose alternative JCA programs, do not quote sufficiently their important improve-
ment.

Acknowledgements
This work was mostly carried out during the reciprocal visits of both authors in the

framework of the bilateral agreement between Sapienza Universitá di Roma and Universi-
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