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Abstract

This paper extends the evolution equation of Patton (2006) for the time variation of the copula

parameters by specifying an autoregressive fractionally integrated term. For any copula parameter

there is a suitable one-to-one transformation so that the maximum likelihood estimation method

may be employed. It is suggested an exploratory tool based on the copula data cross-products

for detecting the presence of long range dependence on the copula level of real data. We simulate

from copula models possessing long range dependence and work out two examples using real data.

Modeling long range dependence on the level of dynamic copulas has the potential for providing

improved forecasts and are useful for financial and economic applications.
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1 Introduction: Conditional dependence

The study of dependence in the context of time series is an exciting area of research which

has continuously posed new challenges for econometricians, statisticians and probabilists

during the last century. Taking care of dependencies becomes important in order to extend

standard models towards more efficient ones.

In the univariate setting, modeling short and long range serial dependence in the

first and second moments of a time series may be successfully accomplished through

ARIMA (Box and Jenkins, 1976), ARFIMA (Granger and Joyeux (1980), Hosking (1981)),

GARCH (Engle (1982), Bollerslev (1986)), FIGARCH (Baillie, Bollerslev and Mikkelsen

(1996), Bollerslev and Mikkelsen (1996)), and FISV (Breidt et al., 1998) models. All these

processes rely on the behavior of the autocovariance function and have their statistical

properties well established. In addition, computer packages are avaliable for practitioners.

In the multivariate setting just a few complex conditional models exist to take care
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of the dynamics in the moments of the marginal distributions as well as in the covari-

ance matrix. The most popular are the multivariate GARCH models combined with a

conditional specification for the mean. However they suffer from the so called curse of

dimensionality, and are hard to estimate in large dimensions. Lately, the approach via

dynamic copulas and pair-copulas has gained increasing popularity.

Attempts to model the time-varying behavior of copula dependence parameters are

only a few (Patton (2006), Rockinger and Jondeau (2005), van den Goorbergh, Genest,

and Werker (2005), Fantazzini (2007), Pelletier (2006), Hafner and Reznikova (2009),

Garcia and Tsafack (2008), and Chollete et al. (2008) among others). Recently, this topic

had attracted the attention of researchers in the context of Markov processes (Ibragimov

(2005), Beare (2010), Mendes and Aiube (2010)). However, in all these works just short

memory was considered, and it is just natural to assume that long memory may also

exist on the level of copulas. Modeling long range dependence on the level of dynamic

copulas has the potential for providing improved forecasts and are useful for financial and

economic applications.

To the best of our knowledge, no model has been proposed so far modeling long range

dependence in the dynamic evolution of copula parameters. Accordingly, in this paper we

formally define long range dependence on the level of copulas, and extend the evolution

equation of Patton (2006) by specifying an autoregressive fractionally integrated term for

the time variation of the copula parameters. It is suggested an exploratory tool based

on the copula data cross-products for detecting the presence of long range dependence

on the copula level of real data. We simulate from copula models possessing long range

dependence and empirically show that long memory may exist in the sequence of copula

dependence parameters, independently of the dynamics existing in the marginal processes.

Full maximum likelihood estimation may be a difficult computationally expensive problem,

and we leave this as a challenge for future research.

The remaining of the paper is as follows. In Section 2 we review the definitions of

copulas, of dynamic copulas, of long memory processes, define long memory on the level

of copulas, and discuss estimation and exploratory tools for detecting long memory on the

level of copulas. In Section 3 we work out two examples with real data on log-returns and

realized volatilities. The analyzes show that the dependence parameter indexing the copula

associated with the standardized residuals from the ARFIMA and FIGARCH models fitted

to the margins may still change with time and show a high degree of persistence coherent

with the presence of long range dependence, which might have been generated by the

aggregation of common micro units when composing the prices series. We summarize our

results in Section 4.
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2 Dynamic copulas and long memory

2.1 Copulas in finance

In the last decade copulas have gained popularity in the areas of finance and insurance

because of the flexibility they offer when dealing with multivariate problems. Curiously,

the most important theorem in copula theory dates back to the fifties (Sklar, 1959). It

states that any multivariate distribution can be expressed by its copula function evaluated

at its marginal distribution functions.

Consider a continuous random vector (X1, X2) with cumulative distribution function

(cdf) F and marginal cdfs F1 and F2. Sklar’s theorem ensures that there exists a unique

copula C : [0, 1]2 → [0, 1] such that

F (x, y) = C(F1(x), F2(y)). (1)

Let f(x, y) represent the joint density, and fi, i = 1, 2, be the marginal densities. When

C is absolutely continuous, taking partial derivatives of (1) one obtains

f(x, y) = c(F1(x), F2(y))f1(x)f2(y) (2)

where c represents the copula density. This expression will prove useful later for parameter

estimation. (2) allows for tailored dynamic marginal modeling considering all characteris-

tics of each Fi, including the mean, standard deviation, skewness, kurtosis and any type of

short and long memory serial dependence, plus a search for the best fit for the dependence

structure through a large number of copula families that may be considered. This results

in flexible multivariate distributions with any choice of margin distributions. An impor-

tant example is the family of the meta-elliptical distributions (Fang, Fang and Kotz, 2002,

2005) which, unlike the family of elliptical distributions, do not impose any constraints

on their margins. This flexibility have motivated applications of copulas in finance. They

include asset allocation, credit scoring, default risk modeling, derivative pricing, and risk

management, see Bouyè, Durrleman, Bikeghbali, Riboulet, and Roncalli (2000), Li (2000),

Costinot, et al. (2000), McNeil, Frey e Embrechts (2005), Cherubini and Luciano (2002),

Hu (2002), Embrechts, Lindskog, and McNeil (2003), Cherubini, Luciano, and Vecchiato

(2004), among many others.

Copulas can be employed in probability theory to characterize other types of associa-

tions (Nelsen (1999), Joe (1997)). The copula based dependence measures (for example,

Kendall’s τ , Spearman’s ρS, and the tail dependence coefficients) are invariant to any

increasing transformation of individual series.

2.2 Copulas with time varying parameters

Most of the above mentioned applications deal with unconditional copulas. In practice,

conditional distributions with respect to past observations are more powerful when de-

3



scribing the underlying model. This is also true for copulas, which may efficiently fit

static and dynamic forms of dependence. Patton (2006) extended Sklar’s theorem and

introduced the conditional copula in the bivariate case.

Consider a stationary continuous process (X1,t, X2,t)t∈Z . Let Ft, F1,t, and F2,t rep-

resent their joint and marginal cdfs at time t. In the case the copula of (X1,t, X2,t) is

independent of t, the dependence structure of (X1, X2) is given by its constant copula C

(see (1)). In the time series context, the Sklar’s theorem (Sklar, 1959) may be extended:

Ft(x1,t, x2,t | At) = Ct(F1,t(x1,t | At), F2,t(x2,t | At) | At), (3)

where Ct is a copula at times t, and

At = σ{x1,t−1, x2,t−1, x1,t−2, x2,t−2, · · · } t = 1, · · · , T,

represents the σ-algebra generated by all past joint information up to time t provided by

the sample (x1,1, x2,1), · · · , (x1,T , x2,T ). The same conditioning set for each marginal and

for the conditional copula guarantees that we have indeed a copula (not a pseudo-copula),

and each transformed variable (standard uniform) is independent of the information in

the conditioning set of its marginal distribution. Theoretical details may be found in

Fermanian and Wegkamp (2004), where the concept of pseudo-copulas was introduced

and previous attempts in the direction of modeling time varying dependence structures

using copulas were unified. As specified, the common σ-algebra may take into account

several lagged values. Therefore there is a sequence of conditional copula functions, which

depend on some index t and on the past values {(X1,t−1, X2,t−1), · · · } of the random vector.

Previous works on dynamic copula modeling include Rockinger and Jondeau (2001),

where a parametric copula conditional to the position of past joint observations in the unit

square is combined with previous marginal estimation of GARCH-type models with time

varying skewness and kurtosis. Van den Goorbergh, Genest and Werker (2005) studied the

behavior of bivariate option prices when the dependence structure of the underlying finan-

cial assets follows a dynamic copula model, using rolling windows to estimate the copula

parameter. In addition, trends were detected as functions of past volatilities. Semipara-

metric dynamic copula modeling strategy was proposed by Hafner and Reznikova (2009)

where the copula parameter was considered as being a smooth function of time. A similar

idea was proposed by Mendes and Melo (2010), where the full dynamic dependence struc-

ture existing among assets was assessed by applying local maximum likelihood estimation

to copula parameters using the estimated GARCH volatilities as regressors. The regime

switching copula of Pelletier (2006), Garcia and Tsafack (2008), and Chollete et al. (2008)

allows for two regimes, characterized by different levels of dependence.

Patton (2001, 2006) specified the time variation of the copula parameters by defining

an evolution equation based on lagged past observations (forcing variables) and an au-

toregressive term. This evolution equation may be written as follows. Let Ct be some
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parametric copula family parameterized by θt, and let Θ represent the parameter space.

Then

θt = Λ(w + βΛ−1(θt−1) + α
1

N

j=N∑

j=1

| ut−j − vt−j |) (4)

where Λ : < → Θ is an strictly increasing function designed to keep the parameter es-

timates within their boundaries, and Λ−1 represents its inverse. For example, when θt

is the linear correlation coefficient rt or the Kendall’s τ , Λ may be the modified logistic

transformation

Λ(x) =
1 − e−x

1 + e−x
, (5)

and Λ−1(r) = log( 1+r
1−r

). In the case θt is the (upper or lower) tail dependence coefficient,

the logistic transformation Λ(x) = (1 + e−x)
−1

may be used.

A similar evolution equation was used in Dias and Embrechts (2004), Cherubini, Lu-

ciano, and Vecchiato (2004), and Fantazzini (2007). In all these papers some member of

the large family of GARCH models was used to model the margins and some elliptical

copula with time varying parameters was taken to model the dependence structure. Es-

timates were obtained by maximizing the log-likelihood, which allows for constructing a

model selection criterion.

Other references in time-varying copulas modeling in finance include Hafner and Man-

ner (2008) where the parameters vary according to an independent latent random pro-

cess and are estimated using efficient importance sampling. Giacomini, Härdle, Spokoiny

(2009) where adaptive estimation is based on the assumption of local homogeneity for

modelling the distribution of returns.

Note that all above cited papers just considered short memory on the copula level.

2.3 Long range dependence

Models for long memory in mean were first introduced in the univariate setting by Granger

and Joyeux (1980) and Hosking (1981), following the seminal work of Hurst (1951), and

in econometrics by Granger (1980). The important characteristic of an Autoregressive

Fractionally Integrated Moving Average (ARFIMA) process is its autocorrelation func-

tion (acf) decay rate. In an ARFIMA process, the acf exhibits a hyperbolic decay rate,

differently from an ARMA process which presents a geometric decay rate. Long memory

in mean has been observed in data from areas such as meteorology, astronomy, hydrology,

and economics, as reported in Beran (1994).

There does not exist a unique definition of long range dependence, and the most

commonly used employ the standard autocovariance or autocorrelation functions taking

their slow decay to characterize long-memory processes. Let {yt}
T
t=1 be a weakly stationary

process and let γk = cov(yt, yt+k) and ρk = corr(yt, yt+k) represent, respectively, its
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autocovariance and autocorrelation of lag k. We say that {yt}
T
t=1 exhibits long range

dependence if
∑

∞

k=−∞
| γk |= ∞.

If {yt}
T
t=1 follows an ARFIMA (p, d, q) process, then

φ(B)(1 − B)dyt = θ(B)εt (6)

where B is the backshift operator, that is, Bkyt = yt−k, φ(B) = 1 − φ1B − · · ·φpB
p and

θ(B) = 1 − θ1B − · · · − θqB
q represent the ordinary autoregressive and moving average

components; εt is a white noise process with zero mean and unit variance. When −0.5 <

d < 0.5, the ARFIMA(p, d, q) process is stationary and has autocorrelation function of

lag k, as k → ∞, equal to (−d)!
(d−1)!

k2d−1. {yt} is covariance stationary for d < 1/2 and

invertible for d > −1/2. The so called anti-persistence case, d < 0, describes the behavior

of overdifferenced series. Proper long range dependence occurrs when d > 0 and if 0 <

d < 0.5 the process presents long-memory behavior.

Persistence and long memory are interesting features found when analyzing long-term

patterns of rivers’ flows (Hurst, 1951), prices fluctuations, stocks’ trading volumes, and

so on. It is an intermediate state between two well known situations, namely, the purely

random sequence of variables (stationarity, d = 0), and the deterministic trend (unit root,

d = 1).

The ARFIMA framework was naturally extended towards volatility models. The Frac-

tionally Integrated Generalized Autoregressive Conditionally Heteroskedastic (FIGARCH)

models were introduced by Baillie, Bollerslev and Mikkelsen (1996) and Bollerslev and

Mikkelsen (1996), motivated by the fact that the acf of the squared, log-squared, or the

absolute value series of an asset return decays slowly, even when the return series has no

serial correlation. Also aiming to model long memory in the second moment, Breidt et al.

(1998) introduced the Fractionally Integrated Stochastic Volatility (FISV) model.

Models for heteroskedastic time series with long memory are of great interest in econo-

metrics and finance, and empirical facts about asset returns have motivated the several

extensions of GARCH type models (FIGARCH, FIEGARCH, TGARCH, SW-ARCH, LM-

ARCH, among many others). Many applied works have detected the presence of long mem-

ory in the mean and in the volatility of risky assets, market indexes and exchange rates

(for example, Crato (1994), Saqdique and Silvapulle (2001), Lobato and Savin (1998)).

2.4 Long range dependence on the copula level

We now extend the ARFIMA framework towards copula models.

Let Cθ be a parametric copula with θ ∈ Θ. Consider a one-to-one transformation

Λ : < → Θ. In order to model the dynamic behavior of θ, it is supposed that the copula of

(X1,t, X2,t) is Cθt
, where θt = Λ(yt) and y1, · · · , yT are realizations of an ARFIMA model.
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In other words, to capture the long range time variation in the conditional copula we

extend the Patton (2001) evolution equation (4) to:

(1 − B)dθt = Λ(w + βΛ−1((1− B)dθt−1) + α
1

N

j=N∑

j=1

| ut−j − vt−j |) (7)

where (1− B)d is the fractional difference operator, defined by a binomial series

(1 − B)d =

∞∑

k=0

(
d

k

)
(−B)k = 1 − dB −

1

2
d(1− d)B2 −

1

6
d(1− d)(2− d)B3 − · · · (8)

2.5 Estimation of long memory on the level of copulas

Let (θt, η1,t, η2,t) represent the vector of all parameters indexing a bivariate distribution

Ft at time t, where θt is the copula vector parameter, and ηi,t, i = 1, 2, represent the

marginal parameters. The conditional joint density may be written as

f(x1,t, x2,t; θt, η1,t, η2,t | At) = ct(ut, vt; θt | At) f1,t(x1,t; η1,t | At) f2,t(x2,t; η2,t | At) (9)

where, at each time t, ct is the copula density function, ut = F1,t(x1,t; η1,t | At) and

vt = F2,t(x2,t; η2,t | At), and fi,t(xi,t; ηi,t | At) is the conditional density of each marginal

distribution, i = 1, 2. We assume that the functional form of the copula remains fixed

over the sample, although this could be relaxed.

The fully efficient maximum likelihood estimates of are obtained by maximizing (9).

However, parametric estimation of bivariate data under the long-memory copula approach

may be accomplished in two steps, the so called IFM method, see Joe (1997). In the first

step univariate marginal models are fitted and the estimated cdf F̂i,t, i = 1, 2, are used

to compute the probability integral transformed data. In the second step the copula

parameters are estimated. As pointed out by a referee, under the true distribution, Ut =

F1,t(X1,t) is uniformly distributed on [0, 1], but this may not be true under the estimated

marginal distribution, Ut = F̂1,t(X1,t). When applying the IFM method (Joe, 1997, 2005)

it is crucial that the estimated marginal distributions are indistinguishable from the true

marginal distributions. Marginal fits should be carefully checked since a poor fit will result

in probability integral transforms not being standard uniform or i.i.d.. As a consequence,

any copula model will be mis-specified. Evaluation whether the transformed series are i.i.d.

may be accomplished by visual assessment using the autocorrelation function. Diebold

et al. (1998) suggest that the autocorrelations should be computed and inspected for the

first four moments. Patton (2006) suggests to carry on a formal test by regressing each

centered series (up to the fourth power) on their lagged values. The hypothesis that the

transformed series are standard uniform may be tested via the Kolmogorov-Smirnov test.
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Assuming that the marginal distributions are known or have been accurately estimated,

so that a sample {(ut, vt)}, t = 1, · · · , T is available, and assuming that the copula pa-

rameters vary according to some evolution equation similar to (7), the copula parameters

θt may be obtained by numerically maximizing the pseudo log-likelihood function

L(θt; (u1, v1), · · · , (uT , vT ) | At) =

T∑

t=1

log ct(ut, vv; θt | At) (10)

which will give (under weak regularity conditions) consistent and efficient estimates whose

covariance matrix is given by the inverse of the Fisher information matrix. However,

estimation may be numerically difficult and computationally very expensive, and needs to

be evaluated with a truncated infinite sum in (8). Some well known algorithms previously

applied to other long-memory models, such as the Durbin-Levinson-Whittle sequences, see

Whittle (1963), Shaman (2008), Shaman (2010), and the pioneer work of Sowell (1992),

may be considered here.

2.6 Identification and simulation of long range dependence on the level of copulas

We now describe a simulation experiment to illustrate how long memory on the level of

copulas may be detected and estimated. We do not implement the maximum likelihood

method but instead we provide a very simple and intuitive estimation procedure which

could be good starting points when computing the maximum likelihood estimates.

We simulate {y1, y2, · · · , yT} from an ARFIMA(0, d, 0) process with d = 0.35, and

obtain {r1, r2, · · · , rT} = {Λ(y1), Λ(y2), · · · , Λ(yT )} where Λ is given by (5). The trans-

formed series may be considered a path of linear correlation coefficients. The simulated

path {rt} is then used to simulate the copula data {(u1, v1), (u2, v2), · · · , (uT , vT )} from

a Gaussian copula where, at each time t, t = 1, 2, · · · , T , the copula is indexed by rt. The

experiment is repeated 500 times2.

We are looking for some proxy, a series obtained from the copula data which may

be used to identify the presence of long memory on the copula level. We inspect the

following simulated series: {uv}T
t=1 and {u + v}T

t=1. The Lo’s modified rescaled adjusted

range test, R/S test (Lo, 1991) for long range dependence was computed for these series

and an estimate for d was computed according to the periodogram based Whittle’s method

(Taqqu et al., 1995).3 We found presence of long memory for the series {uv} in 65.80%

2A concern about this simulation experiment is that for each rt, just one pair of values is generated to

represent the copula at time t, and this is of course a source of large variability. There is no way to check

if data generated reflects the true rt. To overcome this problem we set T large, T = 10000. We note that

the large sample will also increase the power of the R/S test to be applied later on.
3The Hurst rescaled range (R/S) analysis was introduced in Mandelbrot and Walis(1969) and used in

Mandelbrot (1971) to detect LM in asset prices. We applied the Lo’s modified rescaled adjusted range

test (R/S test) (Lo, 1991), and computed an approximate maximum likelihood estimator, the Whittle’s

8



of the 500 repetitions of the experiment, providing an average d estimate of 0.123. The

tentative proxy {u+v} was not able to indicate presence of long memory, being successful

in only in 4% of the cases. As expected, both marginal series {u}T
t=1 and {v}T

t=1 did not

rejected the null of no long range dependence in 94.80% and 94.52% of the repetitions.

Thus, long range dependence was detected only on the cross-products, and this long term

behavior was not carried out to the marginal processes.

Figure 1 shows the acfs computed for the {y}T
t=1 ARFIMA series, for the transformed

correlation coefficient path {rt}
T
t=1, for the dependence proxies {uv}T

t=1 and {u + v}T
t=1,

and for the marginal processes {u}T
t=1 and {v}T

t=1. For this particular simulated data, the

R/S statistics were 3.6853 (d = 0.1253) and 2.1417, significant at the 1% and 5% levels,

respectively for the {uv} and the {u + v} series.

Figure 1: The acfs of the simulated data: the ARFIMA series, the correlation coefficient path, the

proxies, and the marginal processes.

This simple experiment confirms that long memory may exist only on the dependence

level, while the marginal processes possess just short memory or no temporal structure at

all. In the case {X1,t, X2,t} do have short and/or long memory, they would be implied by

their marginal data generating processes, and not by the copula. In summary, we have

now a tool for detecting long memory in copula parameters for real data4. Simulations

estimator, implemented in S-Plus based on the algorithm of Haslett and Raftery (1989). All the existing

tests and estimators for long range dependence are very tricky to use, heavily dependent on arguments.

To get around this problem in the simulation experiments we rejected the null only when it was rejected

by the R/S test and the Whittle estimator was statistically significant at the 5% level.
4We wonder if long range dependence could exist only in some specific dependence parameter and not in

the others. For example, just during stressful times, at high quantiles, and therefore in the tail dependence
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from different long memory processes, and different copula families indexed by real valued

parameters, were carried out and confirmed the good performance of the exploratory tool.

For real data analysis we suggest to estimate the time-varying copula parameters

through the specification of an evolution equation such as (7) for each copula parameter

(or alternatively for a copula-based measure such as the tail dependence or the Kendall’s

τ coefficients), and the maximization of the log-likelihood (10). Note that this allows for

each copula parameter to be driven by a different ARFIMA process. Thus the degree of

persistence may vary among dependence measures.

However, for elliptical copulas for which the linear correlation coefficient is the canoni-

cal measure of dependence, we propose to use the cross-product data {(u1v1), · · · , (uTvT )}

as a proxy for identifying and estimating long range dependence on the copula level using

the following ad hoc procedure. Fit by maximum likelihood an ARFIMA(p, d, q) model

(note we are allowing also for short memory) to the proxy data {Λ−1(utvt)}
T
t=1 and obtain

the fitted values ŷt, which are noise free. Then form the path of time-varying correlations

{r̂t}
T
t=1 where r̂t = Λ(ŷt). The method yields an estimate for d and the ARFIMA k-steps

ahead forecasts of the copula parameter. In addition, the correlation coefficient path may

be used as starting values when optimizing (10).

Following a suggestion from a referee, we now carry on a large number of simulations

intended to assess the accuracy of the estimation method. Since empirical works have

shown that typically financial returns have a dependence structure best modeled by the

t-copula (termed by Paul Embrechts as the “desert island copula”, see Köck, Schlüter,

Weigert, 2008), to mimic a real life situation we simulate from the elliptical t-copula. We

run the simulation scheme described in (2.6) and apply the estimation method described

in (2.5).

Four values for the long range parameter d and two values for the degrees of freedom ν

were considered: d = 0.05, 0.10, 0.20, 0.25, and ν = 5 and 10. The number of repetitions of

each experiment was 500 and the series length was 3000. Table 1 summarizes the results

for ν = 5 (the results for ν = 10 are similar). We report the average estimate and the

standard error, along with th MSE. The bivariate trajectories were obtained through the

conditional copula and, as already commented, this is a key step. As a consequence, the

d estimates show a downward bias since some of the long memory property is lost during

the copula data generating process.

Table 1: Average estimate (standard error) from the 500 simulations of models.

coefficient, but not during low volatility days. Then we would need another exploratory tool.
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Models ν̂ (s.e.; MSE) d̂ (s.e.; MSE)

t-copula ν = 5, d = 0.05 5.022(0.828;0.678) 0.018(0.002;0.001)

t-copula ν = 5, d = 0.10 4.992(0.724;0.526) 0.034(0.007;0.004)

t-copula ν = 5, d = 0.20 5.176(0.752;0.610) 0.076(0.010;0.015)

t-copula ν = 5, d = 0.25 5.362(0.732;0.692) 0.092(0.009;0.025)

3 Real data analyzes

We provide two examples using real data from a developed and an emerging market.

Example 1: Log-returns on U. S. market indexes. A 5-years sample composed by 1827

pairs of daily log-returns on the SP500 and Nasdaq, from June 1, 2000 to June 1, 2007 was

obtained from Datastream. Figure 2 shows the evolution through time of the log-returns.

Figure 2: Time series plot of daily log-returns on the SP500 (top) and Nasdaq (bottom).

We apply the two-steps estimation method. The KPSS statistics for testing station-

arity accepted the null for both returns series at the 1% level. The series show most of

the stylized facts found in return series, in particular a wide range of significant autocor-

relations in the squares and just a few for the returns. Figure 3 shows the acf computed

using the SP500 and Nasdaq log-returns in the upper panel, and their squares in the lower

panel. The modified R/S test accepted the null hypothesis of no long-term dependence

on the return level, but rejected at the 1% confidence level for squared series. Thus,

ARMA(p, q)-FIEGARCH(r, d, s) models were fitted to the log-return series in order to

extract all marginal dynamics.

For both series the best fit was an ARMA(0, 1)-FIEGARCH(2, d, 1) plus leverage term,
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Figure 3: The acf of SP500 and Nasdaq log-returns (top), and of their squares (bottom).

with all estimates being highly statistically significant. The d estimates were, respectively,

d = 0.355 and d = 0.616. The Ljung-Box test applied to the standardized residuals

and their squares accepted the null hypotheses of no autocorrelation, indicating that the

residuals are free of volatility clusters and temporal dependences.

The series of transformed data {ut}
T
t=1, and {vt}

T
t=1 were obtained from the empirical

distribution by ranking the standardized residuals5. The modified R/S test applied to

the copula proxy {utvt}
T
t=1 rejected the null hypothesis of no long memory. The test

statistic was equal to 1.908 (d = 0.0859), significant at the 5% level. It is interesting

to report that the modified R/S test for long range dependence applied to each series of

standardized residuals accepted the null hypothesis of no long memory, the test statistics

being, respectively, 1.685 and 1.597.

An ARFIMA(0, d, 0) was found as the best fit for the {Λ−1(utvt)}
T
t=1 (Λ-transformed

cross-products) series and the path of estimated correlation coefficients {r̂t}
T
t=1 was derived

using the fitted values. Although the d estimate was very small, d = 0.0109, it was highly

significant (s.e. = 0.00283).

Figure 4 shows in the first row the {r̂t}
T
t=1 series, and in the second row its acf.

Assuming a t-copula and fixing the estimated correlations sequence, we estimated the

(constant) degree of freedom as 11. The log-likelihood value for the time varying t-copula

model was 1316.55, and for a Gaussian copula it was 1304.05. For the sake of completeness

5Another possibility for computing the transformed data is to assume a mixture model for the univariate

distributions, where the Generalized Pareto distribution would be used for the extreme lower and upper

tails and the empirical cdf for the rest of the data.
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we also fit a static t-copula to the data, obtaining the global constant maximum likelihood

estimates of (r̂ = 0.8733, ν̂ = 9), being the log-likelihood equal to 1305.99.

Figure 4: The estimated path of the correlation coefficients and its acf.

Usually, the estimation of the time varying dependence and marginal dynamics is not

the final objective in a time series application. Each problem will require the forecast of

a different functional of the joint conditional distribution. For example, estimation of the

one-step ahead conditional Value-at-Risk of a portfolio of assets requires obtaining the

one-step ahead copula and marginal predictive distributions. This may be accomplished

by simulating the one-step ahead predictive distribution, based on the ARFIMA forecast of

the copula parameter and the ARMA-FIEGARCH forecasts of the marginal parameters, to

finally compute the desired quantile of some linear combination of the composing variables.

The simulations also provide confidence intervals for any quantity of interest.

Example 2: Daily realized volatilities of Brazilian stocks. A sample composed by pairs

of daily realized volatilities of two of the most traded stocks in the Brazilian market,

Bradesco (BBDC4) and Petrobras (PETR4), from January 2, 2001 to April 30, 2009 (8-

years), is obtained from the Bolsa de Valores, Mercadorias e Futuros (Bovespa). The

realized volatilities were computed from the high frequency (5-minutes) returns. Figure 5

shows the evolution through time of the T = 2063 daily realized volatilities of the Brazilian

stocks BBDC4 (top) and PETR4 (bottom).

The modified R/S test strongly rejected the null hypothesis of no long-term depen-

dence on the mean level, thus we fit an ARFIMA(p, d, q) model to the realized volatilities

series. For both series the best fit was an ARFIMA(1, d, 0) with all estimates being highly

statistically significant. The d estimates were, respectively, d = 0.4418 and d = 0.4717,

and the modified R/S test accepted null for both series of residuals. Having extracted the

long range dependence of the univariate series of volatilities, we inspect the presence of
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Figure 5: Time series plot of the daily realized volatilities of the Brazilian stocks BBDC4 (top)

and PETR4 (bottom).

long memory on the copula level using the residuals from the fits.

The series of transformed data {ut}
T
t=1, and {vt}

T
t=1 were obtained from the empirical

distribution by ranking the standardized residuals. The modified R/S test applied to the

copula proxies {utvt}
T
t=1 and {ut + vt}

T
t=1, strongly rejected the null hypothesis of no long

memory. The test statistics were respectively equal to 2.8334 (d = 0.1667) and 3.1089

(d = 0.2365), both significant at the 1% level. Figure 6 shows the acf of the proxies.

As expected, the modified R/S test for long range dependence applied to each series of

standardized residuals accepted the null hypothesis of no long memory.

Again an ARFIMA(0, d, 0) was found as the best fit for the Λ-transformed cross-

products (d = 0.0931 and t-statistic 5.3887) and the path of estimated correlation coeffi-

cients {r̂t}
T
t=1 were derived using the maximum likelihood fitted values. Figure 7 has in

the first row the {r̂t}
T
t=1 series, and in the second row its periodogram, which shows a

large concentration of power (variance) in low frequencies.

Assuming a t-copula and fixing the estimated correlations sequence, we computed the

maximum likelihood estimate of the constant degree of freedom as 5. The AIC value for

the time varying t-copula model was −466.3. We note that average of the rt estimates is

0.2772. A static t-copula is also fitted to the data, obtaining the global constant maximum

likelihood estimates of (r̂ = 0.3885, ν̂ = 5), being the AIC equal to −445.9.
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Figure 6: The autocorrelation function of the proxies UV and U + V from the realized volatilities

series.

Figure 7: The estimated path of the correlation coefficients and its periodogram.

4 Discussions

In this paper we have studied long range dependence in the copula parameters sequence.

The definition of copulas possessing long memory is quite general and one may assume

that each copula parameter is a one-to-one transformation of some non-observable long-

memory process. Thus each copula parameter may be driven by a different ARFIMA

process and consequently the degree of persistence may vary among dependence measures.

In Finance this is certainly important since dependence during high volatility days may

be substantially different from that during usual days.

For real data analysis we suggest to carry on the two-steps maximum likelihood esti-
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mation method, and in the second step to specify an evolution equation for each copula

parameter (or alternatively for a copula-based measure such as the tail dependence or

the Kendall’s τ coefficients). For dependence structures allowing for types of non-linear

dependence, the long memory may manifest itself in some other measure of association,

for example in the tail dependence coefficient.

Since the data cross-products is a simple data transformation containing information

about the dependence in the data, we proposed to take the copula data cross-products

as proxy for detecting long range dependence on the copula level. The decay rate of

the (linear) autocorrelation function of this series was then inspected for long-memory.

This seems natural for elliptical copulas for which the linear correlation coefficient is the

canonical measure of dependence.

We provided two applications using real data. The examples showed that it is possible

for long memory to exist only on the dependence structure level, possessing the marginal

processes just short memory or no temporal structure at all. We were initially moti-

vated by problems from the area of finance, but the methodology may be applied to data

from any other environment, and we encourage applications in other fields to exploit the

potentialities of the new model.
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