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Abstract

Standard generalized spatial models assume that spatial components affect the mean

structure of observations. This is a useful starting point but, in some applications, further

spatial structure may still remain. Models should include these structures in order to ad-

equately describe spatial heterogeneity. In this paper regression models that account for

spatial heterogeneity in both the mean and the dispersion are introduced. The models con-

sider both spatially structured and unstructured random effect components in a bi-parametric

family of models. These models are defined in the framework of lattice (regional summary)

data. A number of possibilities are considered for the spatial effects, including conditional

autoregressive models, and extension to geostatistical contexts are also discussed. This is

a generalization that takes into account extra variability and also strengthens the model

in terms of spatial dependence. The Bayesian paradigm is adopted to perform inference.

Samples of the posterior distribution are drawn using standard MCMC procedures. The

relevance of the methodology when compared against currently used methods is highlighted.

A number of biomedical situations that require the use of these spatial dispersion models are

presented.
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1 Introduction

This paper focuses on the analyses of life expectancy analysis in Colombia and of the postpar-

tum screening of Colombian mothers. The variables of interest in this study are the lifespan of

Colombian people and the proportion of mothers that underwent postpartum screening, broken

down by the country’s political departments (states). In both studies, the response is affected by

the economic, cultural and political spatial structure of Colombia. Observation of the variable of

interest by departments imposes consideration of the spatial neighborhood structure (see Moran,

1948, or Geary, 1954). Standard procedures in these cases are to study the data with regression

models such as GLM with addition of spatially structured and unstructured random effects in the

mean possibly after a suitable link transformation (Besag, 1974). The questions addressed in this

paper are: is this procedure adequate? does it adequately describe the heterogeneity present in

the data?

Life expectancy is the number of years that a set of newborns will live on average in each

department if mortality conditions do not change throughout life. The life expectancy of people

in each of the 31 continental departments of Colombia from 2005 to 2010 is related to socioeconomic

and political conditions. A population that has unsatisfied basic needs (UBN) is expected to have

shorter life expectancy and higher infant mortality, given that UBN is an indicator of inadequate

access to housing and services such as water, electricity and sanitation, as well as high levels of

economic dependence and school-age children not attending school (Soto et al., 2012). Similarly,

intra-familiar violence is likely to be related with life expectance. Thus, the aim of this study is

to determine the impact of UBN and violence on life expectancy, taking into account the social

and geographical structure of the country and the political and economic distribution of the land.

This paper also studies the proportion of mothers who underwent postpartum screening and

the effect of factors that explain the assistance, including unsatisfied basic needs, proportion of

women over 18 who suffered any type of physical abuse, percentage of the population without

sufficient basic services and percentage of mothers who had to pay the total cost of postnatal
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screening. Discovering the proportion of Colombian mothers who underwent postpartum screen-

ing, by department, is a second interest. Good health of mothers is very important for the

development of healthy children. However, the first postpartum year is a critical period character-

ized by the development of affective disorders like anxiety and depression (see Giakoumaki et al.,

2009). Postpartum disorders can have grave consequences for a mother and her infant, including

hallucinations, confusion, inability to sleep or eat and some times suicide and infanticide. However,

these are not the only reasons that mothers should make periodic visits to a physician after a child

is born. It is important to verify that the mother’s blood pressure is appropriate, that her body

and cervix are recovering appropriately and that her breasts do not show any physical or medical

abnormality. The last factor is very important to detect mastitis, an illness that commonly causes

pain in a mother’s breasts and, on some occasions, is accompanied by blushing of the affected area

and fever. This is the main reason a mother should make an early visit to the doctor so that the

possibility of mastitis will be minimized (Mathew, 2004 or Johnson et al., 2005).

2 Basic concepts

2.1 Spatial structure

Let {Ai, i = 1, . . . , n} be a partition of an area S ∈ R2 into geographical units. These units

can be state, countries, counties but will be called regions hereafter. This partition produces

a neighborhood structure {Ni : i = 1, ..., n}, where Ni denotes the set of all regions that are

neighbors of region i. The most common neighbor definitions are given by the physical first-order

contiguity or by the distance between regions. However, being neighbors does not necessarily mean

geographic proximity (Case et al., 1993). If two subregions Aj and Ak, are in the neighborhood

of region Ai, it does not mean that the dependence between Aj and Ai, and between Ak and

Ai are the same. Dependence between Ai and Aj, j 6= i, is characterized here by nonnegative

real numbers wij, j ∈ {1, 2, . . . , n} − {i} such that
∑

j 6=iwij = 1 and wii = 0. Specifically, each
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component of the spatial variable Y is associated with a vector wi that indicates the importance

of their neighborhoods. Thus, the intensity of spatial dependence between a region i and its

neighborhoods is reflected by the point product wiy, where y is the vector of observed values of

Y, that is by

[Wy]i =
n∑
j=1

wijyj, (1)

where W is a spatial lag operator, specifying for each geographical unit i (state, country,...), in

the rows, the neighbors as the columns corresponding to non-zero elements wij in a fixed and

positive n × n spatial weights matrix. A usual weight matrix is used to define the neighborhood

structure given by the n× n symmetric matrix A = (aij), where aij = 1 if i and j are neighbors,

and aij = 0 otherwise. With the neighborhood thus defined, the weight matrix is given by the

product W = GA, where G = diag(n−1i ) and n−1i is the number of neighbors of region i. However,

there is no unique definition for the spatial lag (see, for example, Moran, 1948, or Geary, 1954). A

definition of wij, based on the distance between regions, was given by Cliff and Ord (1973). Other

proposals were made by Dacey (1968), Bodson and Peeters (1975) and Gamerman and Moreira

(2004).

The choice of the spatial weights matrix is a crucial decision for researchers using georeferenced

data. Some recommendations for researchers applying spatial models regarding model selection

and weights matrix specification are given in Getis and Aldstadt (2004), Aldstadt and Getis (2006),

and Stakhovych and Bijmolt (2008). It is also possible to consider nonlinear specifications of the

mean target model to obtain a nonlinear mean spatial model.

2.2 Spatial autoregressive models

One of the first approaches to analyze a geostatistics normal dataset was the mixed regressive-

autoregressive model proposed by Ord (1975). In this proposal, Y = Xβ+ ρWY + e, where X is

an n× p matrix with ones in the first column, Θ = {β, ρ} is the set of parameters of the model,
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Y is the n× 1 variable of interest and e the random error vector. This model can be rewritten as

Y = (I − ρW)−1Xβ + (I − ρW)−1e. Assuming that e ∼ N(0, σ2In) gives

Y ∼ N((I − ρW)−1Xβ, σ2(I − ρW)−2). (2)

A second approximation assumes an autoregressive dependence for the error. In this case, the

model is given by Y = Xβ + ρW(Y −Xβ) + e and can be rewritten as

Y = Xβ + (In − ρW)−1e (3)

and thus, Y ∼ N(Xβ, σ2(I − ρW)−2). Model (3), called simultaneously autoregressive (SAR), is

extensively used in the literature. More theoretical and applied information on SAR models can

be found, for example, in Cressie and Wikle (2011) or in Wall (2004).

Another common spatial autoregressive class of models is the conditional autoregressive struc-

ture CAR models

[Yi|Y∼i] = [xiβ + ρ(wiy − xiβ) + νi] (4)

where νi, i = 1, 2, . . . , n, are independent random variables, such that νi ∼ N(0, σ2
i ), Y∼i denote

all the components of Y except Yi, y is the observed value of Y (Song and De Oliveira, 2012 and

De Oliveira, 2012) and [Z] denotes the distribution of Z. In this case, given that D = diag(σ2
i ), if

D−1W is symmetric and D−1(In −W) is definite positive, the joint distribution of Y is given by

Y ∼ N(Xβ, (In −W)−1D). (5)

Some usual CAR models are defined with a particular weight matrix structure. For example,

W can be defined by the product W = GA, as in section 2.1, or by the product W = δW∗, where

δ is an unknown parameter and W∗ is a nonnegative (wi,j ≥ 0), symmetric neighbor with known

weight matrix (Cressie and Wikle, 2011). If D = σ2In, the variance-covariance matrix is equal to

σ2(I−W)−1.

In the cases where Y is not normally distributed, data transformations may be used to develop

an approximate statistical analysis. For example, if Y > 0 a log-normal distribution may be
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assumed. In this case, after the log-transformation of the data, usual CAR or SAR models can be

used in the data analysis. If Y is scored from 0 to M , a logit or probit transformation of the data

could be appropriate and the analysis developed assuming normal distribution. A general method

to perform this type of analysis is to combine the spatial correlation structure of Y with Box-Cox

transformation (Box and Cox, 1964). In this case it is assumed that (Y λ
i − 1)/λ, i = 1, 2, . . . , n

follows the usual SAR or CAR models.

This and other families of transformations are used to normalize random variables. Some

examples of these families and their application in the context of spatial data analysis are given

in De Oliveira et al. (1997) and Lai (2010). These direct approaches include in the mean process

a spatial autoregressive component taking a spatial area location into account, through a weight

matrix W . In a latent approach, the spatial variation is incorporated into the model via an

unobserved component. A general spatial structure is assumed for this latent component, as for

example a CAR structure (Gamerman and Moreira, 2004).

2.3 CAR structure

In this section we present one of the spatial structures used in the definition of a generalized spatial

dispersion model (GSDM, in short). The spatial structure is taken into account assuming latent

random variables νi, i = 1, 2, . . . , n, associated with regions A1, ..., An, and let ν = (ν1, ν2, . . . , νn)′.

Assuming that ν is a multivariate normal random variable, the full conditional distributions are

νi|ν∼i, τi ∼ N(α
∑
∼i

bijνj, τ
−1), i, j = 1, 2, . . . , n. (6)

where j ∈ Ni is used to mean that the addition is carried out over all regions Aj that are neighbors

of Ai. Thus,

ν ∼ N(0, [Dτ (I− αB)]−1) (7)

where B is an n×n matrix with bii = 0 and Dτ = diag(τi) (Jin et al., 2005). Usually, it is assumed

that Dτ = τD, where D is an n × n diagonal matrix. The parameter α is called a smoothing
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parameter, taking values between 0 and 1. Even tough α = 0 corresponds to an independent

model, α cannot be interpreted as a spatial correlation (Jin et al., 2007).

The quantities α, D and B can be chosen to obtain CAR model structures. In the intrinsic

autoregressive model α = 1, D = diag(ni), where ni is the number of neighborhoods of region i

and B = D−1W , where W is the adjacent matrix, with entries wij = 1, if j is a neighbor of i;

and wij = 0, if not. Thus, model (7) can be rewritten as

ν ∼ N(0, [Dτ (D−W)]−1) (8)

In these models, called intrinsic autoregressive (IAR) models, Dτ (D −W) is singular and thus

(8) is improper and contains no parameter to control the strength of spatial dependence (Jin et

al., 2005). This CAR structure corresponds to

νi|ν∼i ∼ N
( α
ni

∑
∼i

νj,
τ

ni

)
, i, j = 1, 2, . . . , n, (9)

(see Jin et al., 2007). The ICAR models reduce to an independent model if α = 0, assuming

independence between spatial observations.

It is quite common to find discrete count data, generally assumed to follow either a binomial

or a Poisson distribution, depending on the particular data characteristics. If the researcher is

interested in modeling such data and studying their dependence on some given covariates, then

generalized linear models (GLMs) with a binomial or a Poisson response are the most commonly

used data analysis methods. In practice, the data variance is larger than that assumed by the

model given the spatial correlation of the data. The existence of latent heterogeneity is one of the

main causes of overdispersion. So, models that incorporate spatial structure should be considered.

2.4 Spatial geostatistical structure

Two possibilities to extend the spatial structure defined in Section 2.3 to geostatistical analysis

are considered in this section. The first assumes that a place sj is in the neighborhood of si if the
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distance is smaller than a real number r and that sj does not belong to the neighborhood of si,

otherwise. Thus, the geostatistical models have similar structure of the spatial areal data.

The second one assumes that the random effects ν can be specified as a Gaussian process with

a multivariate normal distribution with an n-dimensional mean vector with all components equal

to zero and an n× n variance-covariance matrix Σ1 = Cov(ν) with entries defined as a function

of the distance between geographic coordinates of the observation (Wang and Wall, 2003). One

possible choice of the geostatistical model for the variance covariance matrix is to assume that the

entries σ2
ij = cexp(−a|si − sj|), where |si − sj| is the distance between site si and site sj, c is the

sill, representing the variance in the absence of spatial correlations, and a is the range parameter,

representing the speed of decrease in correlation between two locations as the distance increases.

2.5 Double generalized regression models

The class of double generalized regression models was defined by Cepeda (2001) and Cepeda and

Gamerman (2005). This class of models assumes that the distribution of the variable of interest

belongs to the biparametric exponential family of distributions defined by Gelfand and Dalal

(1990). That is, it is assumed the family of distributions for the response y is given by

p(y|θ, τ) = b(y) exp{θy + τT (y)− ρ(θ, τ)} (10)

where if y is continuous (discrete), p is assumed to be a density with respect to the Lebesgue

measure (to the counting measure, respectively). Typically, E(y) = µ depends on θ and τ and

the variance V ar(y) = σ2 depends only on τ . Gelfand and Dalal (1990) showed that if (10) is

integrable over y ∈ Y , and if T (y) is convex, then for a common mean, σ2 increases in τ . The

normal, gamma and reparameterized beta distributions are examples of distributions belonging

to this family. A special case of this family occurs when τ = 0, corresponding to the well known

one-parameter exponential family.

In this family of distributions, the double generalized regression models are defined assuming
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regression structures for the pair of parameters (θ, τ). Some models belonging to this family are:

1. The heteroscedastic normal regression models defined by Aitkin (1987), where mean and

variance or mean and precision parameters are modeled as linear or nonlinear functions of

the explanatory variables (see Cepeda and Gamerman, 2001, and Cepeda and Achcar, 2010).

2. The gamma regression models, where mean and dispersion, mean and variance, mean and

shape, or shape and scale parameters are modeled as functions of regression structures. A

particular case of this class of model is the joint mean and variance gamma regression models,

with mean and variance regression models given by

h(µi) = x
′

iβ and g(σ2
i ) = z

′

iγ, (11)

where h and g are appropriate real functions, x and z are the mean and precision explanatory

variables, respectively, and β and γ are the respective parameter vectors (Cepeda, 2001, and

Cepeda and Gamerman, 2005).

3. The beta regression models, where mean and another parameter representing dispersion,

such as precision or variance, is modeled as a function of the explanatory variables, including

regression structures, as in (11). See Cepeda (2001) and Cepeda and Gamerman (2005).

Other classes of models belonging to the double generalized linear models are generalized

linear models defined by McCullagh and Nelder (1989), and nonlinear regression models and the

overdispersed models defined by Dey, Gelfand and Peng (1997). Joint modeling of the parameters

as regression models can be easily defined and fitted using the Bayesian methods.

2.6 Aim of the paper

The aim of this paper is to take into account spatial structure and extra variability in the data, in

the framework of double generalized models. This can be achieved by the introduction of spatially

structured and unstructured random components. Bayesian methods can be implemented to
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incorporate prior information into the model, using Monte Carlo Markov chains (MCMC) to

obtain samples of the posterior distribution (Gamerman and Lopes, 2006). Two applications are

presented to highlight the importance of these proposals.

After these introductory sections, this paper has the following structure. In Section 3, general-

ized spatial dispersion models are defined. Section 4 presents the use of these models to model life

expectancy and postnatal period screening. Finally, Section 5, contains our concluding remarks.

3 Model definition

The class of a generalized spatial dispersion models (GSDM) is now presented. Let Yi, i =

1, 2, . . . , n, be spatially dependent random variables with distribution in the biparametric expo-

nential family. The GSDM is characterized by the following components.

1. The random component: components Yi has a distribution belonging to the biparametric

exponential family, with means µi and dispersions τi, i = 1, 2, . . . , n, conditional on the

random effects.

2. The systematic component: the linear predictor ηi = (η1i, η2i), given by η1i = x
′
iβ + νi + ξi,

and η2i = z′iγ + ψi + εi, where xi is the ith vector of the mean explanatory variables, zi

is the ith vector of the variance explanatory variables, β = (β1, β2, ..., βp)
′

is the vector of

the mean regression coefficients, γ = (γ1, γ2, ..., γr)
′

is the vector of the dispersion regression

coefficients, νi and ψi are structured random effects, following one of the spatial structures

given in the previous Section, and ξi and εi are unstructured independent random effects,

with zero mean and constant variance.

3. The link functions between the random and systematic components: µi = h−1(η1i) and τi =

g−1(η2i), where h and g are monotonic twice differentiable functions.
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Dependence between these components may be introduced for the sake of parsimony. The

dependence can lead, in extreme cases, to degeneracy, eg νi = φψi, for all i. In these cases a

single structured effect for each observational unit suffices. Our model are used in the sequel with

independent effects, to capture all possible spatial features present in the data.

3.1 Special cases

1. Heteroscedastic geostatistical models. Standard geostatistical models assume a linear

regression on the mean with addition of a spatially structured Gaussian noise. Palacios and

Steel (2006) introduced spatial heteroscedastic models by assuming further that dispersion is

spatially structured possibly after a logarithmic transformation and inclusion of explanatory

variables. They assumed that Y ∼ N(µ, λ) and µ = x′β + ν and log λ = z′γ + ϕ. These

models belong to the biparametric exponential family and are therefore included in the class

of GSDM.

2. Spatial gamma dispersion models. In these models it is assumed that responses come

from a gamma distribution. That is, it is assumed that Y ∼ G(α, λ) with mean µ = αλ and

variance σ2 = αλ2, and that a pair of parameters is modeled as a spatial regression. For

example, the mean and shape parameters can follow the models given by

h(µi) = x′iβ + νi + ξi and g(αi) = z′iγ + ψi + εi. (12)

Often the link functions h(µi) = log(µi) and g(αi) = log(αi) are chosen and assumed known.

Also, in many applications, the identity and reciprocal link functions are considered for the

mean. If νi = ψi = εi = ξi = 0, the double generalized gamma regression model is obtained,

where both parameters of the gamma distribution are modeled only as a function of the

explanatory variables.
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3. Spatial beta dispersion models. Here the case where the random variable of interest

comes from a beta distribution is considered. Let Y ∼ B(α, λ), with mean µ = α/(α + λ)

where α, λ > 0. Taking φ = α + λ, this density can be rewritten as

f(y|µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−µ)φ−1I(0,1)(y), (13)

where I(0,1)(y) is the indicator function, equal to 1 if y belongs to the real open interval (0, 1)

and 0 otherwise. Joint mean and precision beta regression models was proposed in Cepeda

(2001) by assuming that the mean and precision models are given by logit(µi) = xiβ and

log(φi) = z
′
iγ, respectively. This model was considered by Smithson and Verkuilen (2006)

and by Simas et al. (2010), under a classic perpective. A nonlinear beta regression model

was proposed by Cepeda and Achcar (2010). The generalized spatial beta regression models

are defined by

h(µi) = x′iβ + νi + ξi and g(φi) = z′iγ + ψ + εi (14)

where h and g are appropriate real functions. Often the link functions h(µi) = logit(µi)

and g(φi) = log(φi) are considered. Although a spatial joint mean and precision model

is considered in (14), many other alternatives are possible, such a spatial joint mean and

variance beta regression, where the mean is modeled as in (14) and the variance follows the

model g(φi) = z′iγ + ψi + εi.

One parameter spatial models are obviously members of this family of models, obtained when

the dispersion is fixed. These include the spatial Poisson models of Besag et al. (1991), the Poisson

normal model, spatial binomial models and spatial exponential models (Quintero-Sarmiento et

al., 2012; Gamerman, 1997). There are many options to characterize spatial dependence in the

spatial components in all models above, including the options provided in the previous section

and combinations of them.
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3.2 Inference

Bayesian inference is performed to the models. This implies specification of prior distribution for

all unknowns. The unknowns in the models are the regression coefficients β and γ the random

effects {νi}, {ξi}, {ψi} and {εi} and the collection of hyperparameters θ, associated with the

specification of the random components.

Thus, one must obtain the posterior distribution via Bayes theorem as

p(β,γ, {νi}, {ξi}, {ψi}, {εi}, θ | y,X,Z) ∝
n∏
i=1

p(yi | β,γ, {νi}, {ξi}, {ψi}, {εi},xi, zi)

p(β)p(γ)p({νi} | θ)
n∏
i=1

p(ξi | θ)p({ψi} | θ)
n∏
i=1

p(εi | θ)p(θ). (15)

The first terms in the right hand side is the likelihood, obtained from (10). The remaining

terms constitute the prior distribution for all unobserved model components.

The regression coefficients (β,γ) are usually given a joint normal distribution butr correlation

between them can be introduced. Many options are available here: the variance matrix can be

block diagonal if one wants to impose prior independence between the two sets of coefficients; the

variance can be made large, eg 103I, if one wants to represent vague prior information.

The spatially structured random effects {νi} and {ψi} may be given one of the spatial distri-

butions of the previous sections. They are assumed to be mutually independent but correlation

between them can be introduced by using one the multivariate version of spatial effects (Gamerman

and Moreira, 2004). The unstructured random effects {ξi} and {εi} are usually given independent

zero mean normal distributions. Model is completed with a prior for hyperparameters θ that will

depend on the choices made for the random effects.

The posterior distribution in (15) is too complicated for analytical treatment and approxima-

tions must be used to summarize it. Among the methods currently available, MCMC was chosen

due to its simplicity and ease of use. So, results of the data analyses of the next section are based

on approximate samples from the posterior distribution.

For each proposed model, we simulated 10,000 initial Gibbs samples. After this burn-in period,

13



another 40,000 Gibbs samples were drawn and recorded every 150th sample, to have approxi-

mately uncorrelated samples. WinBugs (Spiegelhalter et al. 2003) was used in these simulation

procedures. Convergence of the Gibbs sampler algorithm was monitored using standard existing

methods as the trace plots of the simulated samples and parallel chains starting from different ini-

tial values, to provide indication of stationarity. In all applications, the posterior samples showed

the same behavior for all chains, providing strong indication of convergence.

4 Results

In this section the results of the analysis of life expectancy and postnatal screening data are

reported. Each data analysis will require a different observational specification and will thus

provide an illustration of the capabilities of the models proposed here.

In order to apply the Bayesian method in all models, independent normal prior distributions

N(0, 10k), with k = 3, for the regression parameters were assumed, to represent lack of prior

information. Larger values of k were also considered but made no difference in the results. Vague

gamma distributions G(0.0001, 0.0001) were assumed for the precision parameters of normal dis-

tributions included in the models, given that we do not have information about these parameter

values.

4.1 Life expectancy

In this section, the variable of interest is life expectancy of people in each of the 31 mainland

departments of Colombia from 2005 to 2010. Life expectancy is the number of years that a

cohort of newborns will live on average in each department assuming that mortality conditions

do not change through his lifespan. One possible reason to believe that life expectancy between

departments is not independent is their geographic location and the common characteristics that

they may have. That is, because of the different geographic regions in Colombia (i.e., mountainous,
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coastal and prairies), it is expected that the different departments in the country may be spatially

correlated. Each region has several departments and some of them have specific characteristics,

such as having a large proportion of black or indigenous population and similar climatic conditions.

Figure 1 shows a map of Colombia, in which the life expectancy by departments is represented.

It can be seen that shorter life expectancy is associated with more isolated departments of the

country.

PLACE FIGURE 1 ABOUT HERE

Life expectancy is related to socioeconomic conditions. Thus, a population that has unsatisfied

basic needs (UBN) is expected to have shorter life expectancy. Likewise the presence of violence

is related with life expectance: more intra-familiar violence should be related with life expectance,

given that women abuse should increase infant mortality. Consequently, in the proposed model we

consider UBN , in percentage, and violence (V IOL), the percentage of women over 18 years who

had suffered any type of physical abuse from their current partners. Data regarding life expectancy,

UBN and V IOL were provided by the National Statistics Office (DANE) of Colombia. Figure 1

shows the map of these auxiliary variables.

In order to apply the proposed spatial regression models, a gamma model with mean and

precision given by log(µi) = β0 + β1UBNi + β2V IOLi + νi + ξi and log(φi) = γ0 + γ1UBNi +

γ2V IOLi + ψi + εi, respectively, was considered. For this model, the likelihood function and DIC

values are 2logL = −12.976 and DIC = 57.392. However, their regression coefficients are not

significatively different from zero at a 95% level, except to β1 in the mean model. Thus, the

gamma regression models considered in the sequel assume

log(µi) = β0 + β1UBNi + νi + ξi and (16)

log(φi) = γ0 + ψi + εi. (17)

The model is denoted by M1 and its parameter estimates and their standard deviations are given

in Table 1. Model M2 differs from M1 by the removal of spatial effects ξi. Further removal of the

random effect εi from the dispersion regression leads to model M3. Finally, removal the structured
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random effect ψ from the dispersion regression in model M3 leads to model M4. The parameter

estimates and their standard deviations for these models are also given in Table 1.

PLACE TABLE 1 ABOUT HERE

For all fitted models, the estimates of the regression coefficient showed a strong, inverse relation

between the response life expectancy and unsatisfied basic needs (UBN), as expected. The higher

the unsatisfied basic needs, the shorter are life expectations. This relation shows a stable pattern,

as it seems to remain basically constant across models. According to the criteria used, Model

M3 was the best among all models considered. Note that it includes spatially structural errors

in the mean and in the precision. The presence of the spatially structural errors in the models

is explained by the spatial distribution of poverty and sociocultural conditions and the resulting

violence.

In this analysis, geographic characteristics and economic conditions of the country seem to

be more adequately captured by the presence of spatially structured random effects in the mean

and in the dispersion. Figure 2 shows the estimates of these spatial effects. They seem to provide

similar but not same information with important differences noted for example in the southwestern

regions. These regions exhibit small mean spatial effects but sizeable positive dispersion effects,

that increasing the dispersion of these regions. This possibly reflects the scarcity of information in

these more remote regions in the Amazonian rain forest. In any case, the dispersion spatial effect

are clearly relevant. Standard spatial models, that do not consider these dispersion effect, seem

to be missing an important component and capture the remaining heterogeneity only partially.

PLACE FIGURE 2 ABOUT HERE

4.2 Modeling postnatal period screening

Good health of mothers is obviously very important for the health of their children. Thus, it is

relevant that mothers have proper health care after their children are born. Physicians should

verify that blood pressure of the mothers is appropriate, that their body and cervix are recovering
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appropriately and that their breasts do not show any physical or medical abnormality. The last

factor is very important to detect mastitis, an illness that commonly causes pain in a mother’s

breasts and, on some occasions, is accompanied by blushing of the affected area and fever. This

is one of the main reasons a mother should make an early visit to the physician after her child is

born, to increase the chance of early detection and treatment. Additional scientific evidence on

this can be found in Mathew (2004) and Johnson et al. (2005). Figure 3 shows a map of Colombia,

in which the response variable is depicted. It seems to indicate some spatial structure, specially

for the lower values of the response.

PLACE FIGURE 3 ABOUT HERE

A beta model is proposed to describe the variation in the proportion of mothers. The behavior

of this random variable will be tentatively explained by the proportion of women over 18 who

suffered any type of physical abuse from their current partners (V IOL) in the i-th department,

the percentage of the population that had basic services not being satisfactorily attended (UBN)

and the percentage of mothers who had to pay for the total cost of the postnatal screening (PAY ).

Relevance of the covariates was tested at a credibility level of 95% and they are all removed

but for UBN in the mean model. Thus, the beta regression model

logit(µi) = β0 + β1UBNi + νi + ξi (18)

log(φi) = γ0 + ψi + εi (19)

is considered and denoted as Model 1. Results of the five additional beta regression models

considered in this analysis are reported in Table 2, all of them including spatial structures: Model

2 - including structural errors in both mean and precision and unstructured error in the precision,

Model 3 - including structural error in the mean model and unstructured error in the precision,

Model 4 - removed structural and unstructured errors from the mean in model 1, Model 5 - with

structural errors in the mean and precision and Model 6 - only with structural error in the mean.

PLACE FIGURE 4 ABOUT HERE

PLACE TABLE 2 ABOUT HERE
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For all fitted models, the estimates of the regresssion coefficient showed a strong, inverse

relation between the response and unsatisfied basic needs (UBN), as also observed in the previous

application. This relation shows a stable pattern, as it seems to remain basically constant across

models.

The model with both structural and unstructured errors in the mean and in the precision seems

to fare best among the models considered. This shows again the relevance of including spatial

effects also in the precision to adequately capture the unexplained data heterogeneity. Figure 4

shows estimates of the mean and dispersion spatial effects. They seem to show a similar pattern,

but relevant difference may still be observed.

5 Extensions

In this paper, generalized spatial dispersion models are proposed after an initial introduction of

different possibilities for incorporation of spatial components into regression models. The models

were applied the to the studies of life expectancy and relevance of postpartum screening. The ideas

were introduced at the more basic levels of linear regression and spatial components in additive

form. The data applications showed the relevance of the incorporation of spatial components at

both mean and dispersion levels.

Among the many possible extensions, one can single out the use of GSDM in the context of

non-linear regression and also in non-additive forms, where they could be for example interacting

with the covariates. This could be achieved by allowing the regression coefficients also to vary

in space as in Gamerman, Moreira and Rue (2003) for areal data or Gelfand et al. (2003) for

geostatistical data. This is a working in development.
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<69.1
69.2−72.7
72.8−73.7
>73.8

UBN Variable

< 22.25
From 23  to 35
From 36 to 46.75
> 47

VIOL Variable

< 30
From 30  to 36
From 37 to 37.75
> 38

Figure 1: Response variable: left - Mean life expectancy by department. Explanatory variables:

center - UBN by department; right - V IOL by department.

< −1.8740
From −1.8739 to 0.1179
From 0.1180 to 1.4010
> 1.4011

< −0.02638
From −0.02637 to 0.01024
From  0.01025 to 0.01890
> 0.01891

Figure 2: Posterior mean of spatial effects in M3: left - mean; right - dispersion.
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> 0.500
0.501− 0.598
0.599−0.636
< 0.637

Figure 3: Proportion of mothers that underwent postnatal screening among those that had their

last child between 1999 and 2005, by department.

< −0.01727
From −0.01726 to 0.00452
From 0.00453 to 0.01800
> 0.01801

< −0.165200
From −0.165199 to 0.004675
From 0.004676 to  0.168100
> 0.168101

Figure 4: Posterior mean of spatial effects, model 1
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Table 1: Parameter estimates for gamma spatial models.

Param β0 β1 γ0 τν τξ τψ τε 2 log L DIC

M1 4.311 -9.834E-4 2.248 395.2 752.3 20.48 21.84 13.415 46.940

(0.026) (6.355E-4) (2.038) (152.3) (240.5) (42.52) (41.96) — —

M2 4.311 -9.83E-4 2.588 535.9 — 18.64 22.8 19.211 34.372

(0.012) (3.083E-4) (1.694) (149.5) — (35.23) (46.42) — —

M3 4.31 -9.764E-4 3.725 532.4 — 20.27 — 55.764 -2.805

(0.011) (2.804E-4) (2.298) (144.0) — (39.02) — — —

M4 4.311 -9.915E-4 2.338 1001.0 — — — 4.299 20.051

(0.009) (2.378E-4) (1.855) (398.1) — — — — —

Table 2: Parameter estimates for beta spatial regression models.

Param β0 β1 γ0 τν τξ τψ τε 2 log L DIC

M1 1.066 -0.019 5.297 29.33 21.96 18.64 18.83 133.018 -108.020

(0.240) (0.006) (1.691) (45.89) (33.78) (39.81) (36.41) — —

M2 1.035 -0.018 3.946 18.39 — 20.77 25.58 87.988 -70.584

(0.227) (0.006) (1.178) (34.19) — (39.87) (46.99) — —

M3 1.03 -0.018 3.855 21.36 — — 25.72 85.456 -71.310

(0.231) (0.006) (1.182) (37.93) – — (44.7) — —

M4 1.028 -0.018 3.095 — — 26.32 28.75 59.511 -47.728

(0.214) (0.005) (0.293) — — (45.34) (46.69) — —

M5 1.03 -0.01798 3.548 25.14 — 23.30 — 76.906 -60.300

(0.222) (0.005) (0.847) (41.22) — (45.66) — — —

M6 1.019 -0.017 3.173 172.8 — — — 63.526 -51.430

(0.216) (0.005) (0.485) (364.2) — — — — —
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