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Abstract

HIV RNA viral load measures are often subjected to some upper and lower detection limits
depending on the quantification assays. Hence, the responses are either left or right censored.
Linear/nonlinear mixed-effects models, with slighty modifications to accommodate censoring,
are routinely used to analyze this type of data. Usually, the inference procedures are based on
normality (or elliptically) assumptions for the random terms. However, those analyses might
not provide robust inference when the distributional assumptions are questionable. In this pa-
per, we discuss a fully Bayesian quantile inference using Markov Chain Monte Carlo (MCMC)
methods for longitudinal data models with random effects and censored responses. Compared
to conventional mean regression, quantile regression can characterize the entire conditional
distribution of the outcome variable, and is more robust to outliers and misspecification of
the error distribution. Under the assumption of error term subject to asymmetric Laplace dis-
tribution, we establish a hierarchical Bayesian model and obtain the posterior distribution of
unknown parameters at pth level, with the median regression (p = 0.5) as a special case. The
newly developed procedures are illustrated with two HIV AIDS studies on viral loads that were
initially analyzed using the typical normal (censored) mean regression mixed-effects models,
as well as a simulation study.

Keywords Censored regression model; HIV viral load; Quantile regression; Asymmetric
Laplace distribution; Gibbs algorithms.

1 Introduction
Studies of HIV viral dynamics, often considered to be the centerpiece of AIDS research, considers
repeated/longitudinal measures over a period of treatment routinely analyzed using linear/ nonlin-
ear mixed effects models (LME/NLME) to assess rates of changes in HIV-1 RNA level or viral
load (Wu, 2005, 2010). Viral load measures the amount of actively replicating virus and its reduc-
tion is frequently used as a primary endpoint in clinical trials of anti-retroviral (ARV) theraphy.

∗Corresponding author. Address for correspondence: Departamento de Estatística, Rua Sérgio Buarque de
Holanda, 651, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, Brazil. CEP 13083-859. e-mail:
hlachos@ime.unicamp.br

1



However, depending upon the diagnostic assays used, its measurement may be subjected to some
upper and lower detection limits (hence, left or right censored), below or above which they are not
quantifiable. The proportion of censored data in these studies may not be trivial (Hughes, 1999)
and considering crude/ad hoc methods viz., substituting threshold value or some arbitrary point
such as mid-point between zero and cut-off for detection (Vaida & Liu, 2009) might lead to biased
estimates of fixed effects and variance components (Wu, 2010).

Our motivating datasets in this study are on HIV-1 viral load, (i) after unstructured treatment
interruption, or UTI (Saitoh et al., 2008) and (ii) setpoint for acutely infected subjects from the
AIEDRP program (Vaida & Liu, 2009). The former has about 7% observations below (left-
censored) the detection-limits, whereas the later has about 22% lying above (right-censored) the
limits of assay quantifications. As alternatives to crude imputation methods in the context of mean
regression, Hughes (1999) proposed a likelihood-based Monte Carlo EM algorithm (MCEM) for
LME with censored responses (LMEC). Vaida et al. (2007) proposed a hybrid EM using a more ef-
ficient Hughes’ algorithm, extending it to NLME with censored data (NLMEC). Recently, Vaida &
Liu (2009) proposed an exact EM algorithm for LMEC/NLMEC, which uses closed-form expres-
sions at the E-step, as opposed to Monte Carlo simulations. In the framework of LMEC/NLMEC,
the random effects and the within-subject errors are routinely assumed to have a normal distribu-
tion for mathematical convenience. However, such assumption may not be always realistic because
they are vulnerable to the presence of atypical observations. To deal with the problem of atypi-
cal observations in the context of heavy–tailed LMEC/NLMEC, Lachos et al. (2011) advocated
the use of the normal/independent (NI) class of distributions (Liu, 1996) and adopted a Bayesian
framework to carry out posterior inference. More recently, Matos et al. (2013) proposed a ro-
bust parametric modeling of LMEC/NLMEC based on the multivariate-t distribution so that the
t-LMEC/t-NLMEC is defined and a fully likelihood based approach is carried out, including the
implementation of an exact conditional EM (ECM) algorithm for maximum likelihood (ML) esti-
mation. Note however that the majority of these methods focuses on mean regression which is not
a good measure of centrality when the conditional distribution of the response variable is skewed
or multimodal, and therefore the mean regression estimator may be inadequate to make inferences
about the shapes of these distributions. In contrast to the mean regression model, quantile regres-
sion (QR) belongs to a robust model family, which can give an overall assessment of the covariate
effects at different quantiles of the outcome (Koenker, 2005). Unlike conventional models, which
address solely the conditional mean or the central effects of the covariates, QR models quantify
the entire conditional distribution of the outcome variable. In addition, QR does not impose any
distributional assumption on the error, except requiring that the error has a zero conditional quan-
tile.

An additional complication in the analysis of HIV data is that viral-load measurements are
often highly right-skewed with heavy right (or left) tail, and even log-transformations on the re-
sponses do not render normality or symmetry. These characteristics further complicates analy-
sis of mixed-effects models, because both the random error (within-subject) and random effects
(between-subject) might contribute to the “shift from symmetry”. For example, Figure 1 (panels
a and b) display the density histogram and associated Q–Q plots for (repeated and noncensored)
viral-load measurements (in the log10 scale) from the above study, which reveals some degree
of left skewness in the response and panels (c and d) for the residuals, all obtained after fitting
a NLMEC model to the UTI data using the R package lmec() (Vaida & Liu, 2009). These plots
reveal left-skewed nature of the responses and the slightly symmetric behavior for the random er-
rors. To the best of our knowledge, there are no studies on QR from a Bayesian perspective for
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LMEC/NLMEC. Thus, in this article we propose a QR model for LMEC/NLMEC based on the
asymmetric Laplace distribution (ALD). The hierarchical representation of the ALD makes pos-
sible the implementation of an efficient Gibbs algorithm with known generating distributions. In
the Bayesian paradigm, the estimation and inference based on the proposed model can be easily
implemented using the Markov chain Monte Carlo (MCMC) procedure.
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Figure 1: UTI data: density histogram and corresponding Q-Q plots for raw HIV viral load mea-
sures (in log10 scale; Panels a and b), and model residuals (Panels c and d), respectively, after
fitting an Normal LMEC model using R package lmec.

The rest of the paper proceeds as follows. Section 2 introduces the conection between QR
and ALD as well as outline the main results related to ALD. In Section 3 the QR-LMEC model
and related Gibbs sampling algorithm to estimate all all of the model unknowns is presented.
In Sections 4 the extension to QR-NLMEC model is discussed. The advantage of the proposed
methodology is illustrated through the analysis of two case studies of HIV viral load in Section
5. Section 6 presents a simulation study to compare the performance of our methods with mean
regression-based methods. Section 7 concludes with a short discussion of issues raised by our
study and some possible directions for the future research.

2 Preliminaries
Let yi, i = 1, . . . ,n, be a response variable and xi a k×1 vector of covariates for the ith observation.
Let Qp(xi) denote the pth (0 < p < 1) quantile regression function of yi given xi . Suppose that
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the relationship between Qp(xi) and xi can be modelled as Qp(xi) = x⊤i βββ p, where βββ p is a vector
of unknown parameters of interest. Then, we consider the quantile regression model given by

yi = x⊤i βββ p + εi i = 1, . . . ,n,

where εi is the error term whose distribution (with density, say, fp(.)) is restricted to have the pth
quantile equal to zero, that is,

∫ 0
−∞ fp(εi)dεi = p.

The error density fp(.) is often left unspecified in the classical literature. Thus, quantile regres-
sion estimation for βββ p proceeds by minimizing

β̂ββ p = arg minβ∈Rk

n

∑
i=1

ρp(yi −x⊤i βββ p), (1)

where ρp(.) is the so called check (or loss) function defined by ρp(u) = u(p− I{u < 0}) and I{.}
denotes the usual indicator function. The quantile β̂ββ p is called the pth quantile. Note that the case
where p = 0.5, corresponds to median regression. As the check function is not differentiable at
zero, we cannot derive explicit solutions to the minimization problem. Therefore, linear program-
ming methods are commonly applied to obtain quantile regression estimates for βββ p. A connection
between the minimization of the sum in Equation (1) and the maximum-likelihood theory is pro-
vided by the ALD. This skewed distribution appeared in the paper by Koenker & Machado (1999)
and Yu & Moyeed (2001), among others. We say that a random variable Y is distributed as an ALD
with location parameter µ , scale parameter σ > 0 and skewness parameter p ∈ (0,1), denoted by
ALD(µ,σ , p), if its probability density function (pdf) is given by

f (y|µ,σ , p) =
p(1− p)

σ
exp{−ρp(

y−µ
σ

)}. (2)

Set µ = x⊤i βββ and y = (y1, . . . ,yn). Assuming that yi ∼ ALD(µi,σ , p), then the likelihood for n
independent observations is

L(βββ ,σ |y) = pn(1− p)n

σn exp{−
n

∑
i=1

ρp(
yi −x⊤i βββ p

σ
)}. (3)

Note that of we consider σ as a nuisance parameter, then the maximization of the likelihood in
(3) with respect to the parameter βββ p is equivalent to the minimization of the objective function in
Equation (1).

In quantile regression, it is often of interest to compare slope coefficients for different quantiles.
Then how ALD can deal with the case when slope coefficients might be different for different
quantile levels. In the Bayesian model using ALD, we impose the assumption y ∼ ALD(µ,σ , p),
which implies that the different quantiles of y conditional on x has the same slope. However, we
only compute the p-quantile of y if y ∼ AL(µ,σ , p) and for different p, we actually use a different
model. Thus as long as Qp(xi) = x⊤i βββ p, the likelihood is consistent in the sense that the maximum
likelihood estimator (MLE) will converge to the true βββ p in Equation (1). Thus, when using ALD
in Bayesian analysis, we still can get consistent estimation of the quantile function and the slope
coefficients might be different for different p.

Figure 2 shows how the skewness of the ALD changes with altering values for p. For example,
where p = 0.1 almost al the mass of the ALD is situated in the right tail. In the case where
p = 0.5 both tails of the ALD have equal mass and the distribution then equals the more common
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Figure 2: Standard asymmetric Laplace density (ALD).

double exponential distribution. In contrast to the normal distribution with a quadratic term in
the exponent, the ALD is linear in the exponent. This results in a more peaked mode for the
ALD together with thicker tails. On the other hand, the normal distribution has heavier shoulders
compared to the ALD.

To develop the Gibbs sampling in our development, we utilize a mixture representation based
on exponential and normal distributions, which is found in Kotz et al. (2001) and is summarized
as follows:

Lemma 1. Let Y ∼ AL(µ,σ , p), Z ∼ N(0,1) independent of V ∼ exp(σ). Then

Y d
= µ +ϑpV + τp

√
σV Z,

where ϑp =
1−2p

p(1− p)
and τ2

p =
2

p(1− p)
, exp(σ) represents the exponential distribution with

mean 1/σ and d
= denotes equality in distribution.

The result given in Lemma 1 yields a further hierarchical representation of Y in the following:

Y |V = v ∼ N(µ +ϑpv,τ2
pσv), (4)

V ∼ exp(σ). (5)
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It follows that the conditional distribution of V given Y is given by

V |Y ∼ GIG(
1
2
,δ ,γ),

where δ =
|y−µ|
τp
√

σ
and γ =

√
1
σ
(2+

ϑ 2
p

τ2
p
) and GIG(ν ,a,b) is the generalized inverse Gaussian

distribution with pdf and moments, respectively, given by:

f (x|ν ,a,b) = (b/a)ν

2Kν(ab)
xν−1 exp(−1

2
(a2x−1 +b2x)), x > 0, ν ∈ R, a,b > 0

E[Xk] =
(a

b

)k Kν+k(ab)
Kν(ab)

, k ∈ R,

where Kν(.) is a modified Bessel function of the third kind. See Barndorff-Nielsen & Shephard
(2001) for details.

3 QR linear mixed effects with censored responses
We consider the following general LME model

yi j = x⊤i jβββ + zi jbi + εi j, i = 1, . . . ,n, j = 1, . . . ,ni, (6)

where yi j is the jth measurement of a continous random variable on the ith subject, x⊤i j are row
vectors of a know design matrix of dimension N × k corresponding to the fixed effects, βββ is a
k×1 vector of population-averaged regression coefficients called fixed effects, zi j is a q×1 design
matrix corresponding to the q×1 vector of random effects bi.

We define the LMM quantile function of the response yi j as

Qp(yi j|xi j,bi) = x⊤i jβββ p + zi jbi. (7)

We assume that yi j, conditionally in bi, for i = 1, . . . ,n, j = 1, . . . ,ni are independent distributed
according to the ALD.

f (yi j|βββ p,bi,σ) =
p(1− p)

σ
exp

{
−ρp

(
yi j −x⊤i jβββ p − zi jbi

σ

)}
, (8)

and in addition, we assume that bi are distributed as bi
iid∼ Nq(0,DDD), where the dispersion matrix

D = D(ααα) depends on unknown and reduced parameters ααα . In the present formulation, we con-
sider the case where the response Yi j is not fully observed for all i, j (Vaida & Liu, 2009). The
observed data for the i-th subject is (Qi,Ci), where Qi represents the vector of uncensored reading
or censoring level, and Ci the vector of censoring indicators, such that

yi j ≤ Qi j if Ci j = 1,
yi j = Qi j if Ci j = 0. (9)

For simplicity we will assume that the data are left-censored and thus the quantile regression cen-
sored linear mixed effect models (QR-LMEC) is defined. The extensions to arbitrary censoring are
immediate. For normal LMEC, an EM algorithm was proposed by Hughes (1999), with computa-
tional improvements considered in Vaida et al. (2007) and Vaida & Liu (2009).
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3.1 Prior and posterior specifications
Let yi = (yi1, . . . ,yini)

⊤, Xi = (xi1, . . . ,xini), Zi = (zi1, . . . ,zini), Vi = (Vi1, . . . ,Vini), i = 1, . . . ,n and
θθθ = (βββ⊤,ααα⊤,σ)⊤. A key feature of this model is that, from Lemma 1, it can be formulated in a
flexible hierarchical representation as follows:

yi|bi,Ci,Qi,Vi,= vi,θθθ
ind∼ T Nni(Xiβββ p +Zibi +ϑpvi,τ2σΩΩΩi;Ai), (10)

Vi|σ
ind∼ 1

σni

ni

∏
i=1

exp(−
vi j

σ
), (11)

bi|ααα
ind∼ N(0,DDD) (12)

where the observed data for the i-th subject is (Qi,Ci), for i = 1, . . . ,n; ϑp and τ2 are as in Lemma
1; ΩΩΩi = v1/2

i v1/2⊤
i , with v1/2

i = (
√

vi1, . . . ,
√vini)

⊤; T Nni(.;A) denotes the truncated normal dis-
tribution on the interval Ai = Ai1 × . . . ,×Aini , with Ai j as the interval (−∞,∞) if Ci j = 0 and
(−,∞,Qi j] if Ci j = 1. Specifically, a k-dimensional vector X ∼ T Nk(µµµ,ΣΣΣ;A) if its density is given

by TNk(x|µµµ,ΣΣΣ;A) =
ϕk(x; µµµ,ΣΣΣ)

∏k
r=1
∫ ar
−∞ ϕk(x; µµµ,ΣΣΣ)dx

I{A}(x), where the notation ∏k
r=1
∫ ar
−∞ =

∫ a1
−∞ . . .

∫ ar
−∞

stand for the abbreviation of multiple integrals and ϕk(.; µµµ,ΣΣΣ) denotes the pdf of the k-variate nor-
mal distribution with mean vector µµµ and covariate matrix ΣΣΣ (Nk(µµµ,ΣΣΣ)).

Let y=(y⊤1 , . . . ,y
⊤
n )

⊤, b=(b⊤
1 , . . . ,b

⊤
n )

⊤, u=(u1, . . . ,un)
⊤, t=(t1, . . . , tn)⊤, Q= vec(Q1, . . . ,Qn)

and C= vec(C1, . . . ,Cn). It follows that the complete likelihood function associated with (y,b,Q,C,v),
is given by

L(θθθ |y,b,Q,C,v) ∝
n

∏
i=1

[
T Nni(yi|Xiβββ p +Zibi +ϑpvi,τ2σΩΩΩi;Ai)ϕq(bi;0,DDD)

× 1
σni

ni

∏
i=1

exp(−
vi j

σ
)

]
. (13)

In order to complete the Bayesian specification, we need to consider prior distributions to all
the unknown parameters θθθ = (βββ⊤

p ,σ2,ααα⊤)⊤. A popular choice to ensure posterior propriety in a
LMM is to consider proper (but diffuse) conditionally conjugate priors (Hobert & Casella, 1996;
Zhao et al., 2006). Following Lachos et al. (2009), we have

βββ p ∼ Np(βββ 0,Sβ ),

σ ∼ IGamma(q0,λ0),

DDD ∼ IWishq(ΛΛΛ−1
0 ,ν0),

where IGamma(a,b) denotes the inverse gamma distribution with mean b/(a − 1), a > 1, and
IWishq(M−1,ν0) denotes the inverse Wishart distribution with mean M−1/(ν0−q−1), ν0 > q+1,
where M is a q×q known positive definite matrix. Assuming elements of the parameter vector to
be independent we consider that the joint prior distribution of all unknown parameters have density
given by

π(θθθ) = π(βββ p)π(σ)π(DDD). (14)

7



Combining the likelihood function (13) and the prior distribution, the joint posterior density of all
unobservable is then

π(βββ p,σ
2,DDD,v,y|Q,C) ∝

n

∏
i=1

[
T Nni(yi|Xiβββ p +Zibi +ϑpvi,τ2σΩΩΩi;Ai)ϕq(bi;0,DDD)

× 1
σni

ni

∏
j=1

exp(−
vi j

σ
)

]
π(θθθ). (15)

Our Bayesian model allows a straightforward construction of a Gibbs sampler through the hier-
archical representation given in (12)-(14). To proceed, it is necessary to obtain the conditional
distribution of one variable given values of all the remaining - (Ci,Qi) included. We have the
following expressions:

1. yi|bi,vi,Ci,Qi,θθθ ∼ f (yi|bi,vi,Ci,Qi,θθθ). Thus, conditional on (bi,vi), yi is a vector of inde-
pendent observations, whose distributions are truncated normal, each with untruncated vari-
ance τ2σ√vi j and untruncated mean x⊤i jβββ p+zi jbi, on the interval yi j ≤ Qi j, i.e. T N1(x⊤i jβββ p+

zi jbi,τ2σ√vi j; (−∞,Qi j)).

2. bi|yi,vi,Ci,Qi,θθθ ≡ bi|yi,vi,θθθ ∼ f (bi|yi,vi,θθθ). This distribution is multivariate normal with
mean b̂i = ΛΛΛi(Z⊤

i ΣΣΣ−1
vi (yi −Xiβββ p −ϑpvi)) and variance ΛΛΛi, with ΛΛΛi = (DDD−1 +Z⊤

i ΣΣΣ−1
vi Zi)

−1

and ΣΣΣvi = τ2σΩΩΩi. Note that the entire vector yi is used for sampling from bi.

4. Vi j|yi j,bi,Ci j,Qi j,θθθ ≡ π(vi j|yi j,bi,θθθ) ∝ v1/2
i j exp{−1

2
(

A2
i j

τ2σ
v−1

i j +(
ϑ 2

p

τ2σ
+

2
σ
)vi j), with Ai j =

yi j − x⊤i jβββ p − zi jbi, i.e., Vi j|yi j,bi,Ci j,Qi j,θθθ ∼ GIG(1
2 ,

√
A2

i j
τ2σ ,

√
ϑ 2

p
τ2σ + 1

σ ), i = 1, . . . ,n, j =

1, . . . ,ni, where GIG(ν ,a,b) is the generalized inverse Gaussian defined in Section 2.

5. Now, by observing that θθθ 1|y,C,Q,bi,vi,θθθ (−θθθ 1)
and θθθ 1|y,bi,vi,θθθ (−θθθ 1)

are two equivalent
process, we have:

βββ p|y,v,b,θθθ (−βββ p)
∼ N

(
Aβ µµµβ , Aβ

)
,

σ |y,v,b,θθθ (−σ2) ∼ IGamma(q0 +
3N
2
,λ0 + s),

DDD|y,v,b,θθθ (−ααα) ∼ IWishq(ΛΛΛ−1,ν0 +n),

where µµµβ = (S−1
β βββ 0 + ∑n

i=1 X⊤
i ΣΣΣ−1

vi (yi − Zibi − ϑpvi)), Aβ = (S−1
β + ∑n

i=1 X⊤
i ΣΣΣ−1

vi Xi)
−1,

N = ∑n
i=1 ni, s = ∑n

i=1[
1

2τ2 (yi −Xiβββ p −Zibi)
⊤ΩΩΩ−1

i (yi −Xiβββ p −Zibi)+∑ni
i=1 vi j], ΛΛΛ = ΛΛΛ0 +

∑n
i=1 bib⊤

i .

Note that all the full conditional have closed forms and hence can be easily implemented, particu-
larly using the popular Bayesian software WinBUGS.

4 The nonlinear case

4.1 Model specification
Extending the notation of the previous section and ignoring censoring, we first propose the follow-
ing general mixed-effects model. Before, let yi = (yi1, . . . ,yini)

⊤ denote the (continuous) response
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vector for subject i and η = (η(xi1,ϕϕϕ i), . . . ,η(xini ,ϕϕϕ i))
⊤ be a nonlinear vector-valued differen-

tiable function of the individuals random parameter ϕϕϕ i of dimension r and a vector (or matrix) of
covariates xi. The NLME can then be expressed as:

yi = η(ϕϕϕ i,xi)+ εεε i, ϕϕϕ i = Aiβββ +Bibi, (16)

where Ai and Bi are known design matrices of dimensions r× k and r× q respectively, possibly
depending on some covariable values, βββ is the (k × 1) vector of fixed effects, bi is the (q× 1)
vector of random effects. In mean regression, it is common to assume that, bi

ind∼ Nq(0,D) and

εεε i = (εi1, . . . ,εini)
⊤ ind.∼ Nni(0,σ2Ini)(see, Lachos et al., 2011). Here, we define the NLMM quantile

function of the response yi j as

Qp(yi j|xi j,bi) = η(ϕi,xi j) = η(Aiβββ p +Bibi,xi j). (17)

We assume that yi j, conditionally in bi, for i = 1, . . . ,n, j = 1, . . . ,ni are independent distributed
according to the ALD, i.e.,

f (yi j|βββ p,bi,σ) =
p(1− p)

σ
exp

{
−ρp

(
yi j −η(Aiβββ p +Bibi,xi j)

σ

)}
, (18)

and in addition, we assume that bi are distributed as bi
iid∼ Nq(0,DDD), where the dispersion matrix

D = D(ααα) depends on unknown and reduced parameters ααα and hence the quantile regression non-
linear mixed effects model is defined (QR-NLME).

For QR-NLME with complete responses, the marginal distribution is given by

f (y|θθθ) =
n

∏
i=1

∫
Rq

[
ni

∏
j=1

f (yi j|βββ p,bi,σ)

]
ϕq(bi;0,D)dbi,

which generally does not have a closed form expression because the model function is not linear in
the random effect. Now assuming left-censoring, such that the observed data for the i-th subject
be (Qi,Ci), the individual observations within cluster i follows (9), so that the QR-NLMEC is
defined. Using the same notation of Section 3.1 and Lemma 1, we have the following hierarchical
representation for the QR-NLMEC:

yi|bi,Ci,Qi,Vi,= vi,θθθ
ind∼ T Nni(η(Aiβββ p +Bibi,xi)+ϑpvi,τ2σΩΩΩi;Ai), (19)

Vi|σ
ind∼ 1

σni

ni

∏
j=1

exp(−
vi j

σ
), (20)

bi|ααα
ind∼ Nq(0,DDD). (21)
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4.2 Prior and Posterior specifications
Under the same prior specifications as discussed in Subsection 3.1, the full conditional distributions
for QR-NLMEC models are as follows:

yi j|bi,vi,Ci,Qi,θθθ ∼ T N1(η(Aiβββ p +Bibi,xi j),τ2σ√
vi j;(−∞,Qi j))

bi|yi,vi,θθθ ∝ ϕni

(
yi;η(Aiβββ p +Bibi,xi),σ2Ini

)
ϕq (bi;0,DDD) ;

Vi j|yi j,bi,Ci j,Qi j,θθθ ∼ GIG(
1
2
,

√
A2

i j

τ2σ
,

√
ϑ 2

p

τ2σ
+

1
σ
), i = 1, . . . ,n, j = 1, . . . ,ni;

DDD|y,b,v,θθθ (−ααα) ∼ IWishq

(
ΛΛΛ−1,ν0 +n

)
;

βββ p|y,b,v,θθθ (−βββ )
∼ Np

(
Aβ µµµβ , Aβ

)
;

σ2|y,b,u,θθθ (−σ2) ∼ IGamma
(

3N
2

+q0, λ0 + s
)
,

where Aβ =(S−1
β +∑n

i=1 A⊤
i (BiDDDB⊤

i )
−1Ai)

−1, µµµβ =(S−1
β βββ 0+∑n

i=1 A⊤
i (BiDDDB⊤

i )
−1ϕϕϕ i), N =∑n

i=1 ni,

s = ∑n
i=1[

1
2τ2 (yi − η(ϕϕϕ i,xi))

⊤ΩΩΩ−1
i (yi − η(ϕϕϕ i,xi)) + ∑ni

i=1 vi j], ΛΛΛ = ΛΛΛ−1
0 + ∑n

i=1 bib⊤
i and Ai j =

yi j −η(Aiβββ p+Bibi,xi j). Note that the full conditional for bi requires Metropolis-Hastings steps.
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Figure 3: Individual profiles and overall mean (in log10 scale) at different quantiles for HIV viral
load at different follow-up times for (left panel) UTI Data and (right panel) AIEDRP data

5 Applications
We apply the proposed methods to the two HIV data sets previously analyzed using mean regres-
sion LMEC models.
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5.1 UTI data
We illustrate the proposed methods with the analysis of the HIV UTI data previously analyzed
using normal LMEC model. This is a study of 72 perinatally HIV-infected children (Saitoh et al.,
2008; Vaida & Liu, 2009). The data set is available in the R package lmec. Primarily due to treat-
ment fatigue, unstructured treatment interruptions (UTI) is common in this population. Suboptimal
adherence can lead to ARV resistance and diminished treatment options in the future. The subjects
in the study had taken ARV therapy for at least 6 months before UTI, and the medication was
discontinued for more than 3 months. The HIV viral load from the closest time points at 0, 1, 3, 6,
9, 12, 18, 24 months after UTI were studied. The number of observations from baseline (month 0)
to month 24 are 71, 62, 58, 57, 43, 34, 24, and 13, respectively. Out of 362 observations, 26 (7%)
observations were below the detection limits (50 or 400 copies/mL) and were left-censored at these
values. The individual profiles of viral load at different followup times after UTI is presented in
Figure 2. Following Vaida & Liu (2009), we consider a profile LME model with random intercepts
bi as

yi j = bi +β j + εi j, (22)

where yi j is the log10 HIV RNA for subject i at time t j, t1 = 0, t2 = 1, t3 = 3, t4 = 6, t5 = 9, t6 =
12, t7 = 18, t8 = 24. Vaida & Liu (2009) analyzed the same data set by fitting a N-LMEC from a fre-
quentist perspective, but from Figure 1 it is clear that inference based on normality assumptions can
be questionable. In our analysis, we assume a QR-LMEC as defined in (7)-(9). As prior choices,
we have β j ∼ N1(000,103), j = 1, . . . ,8, σ ∼ IGamma(0.1,0.1), σ2

b = α ∼ IGamma(0.1,0.1). We
generated two parallel independent MCMC runs of size 100,000 with widely dispersed initial val-
ues, where the first 20,000 iterations (burn-in samples) were discarded for computing posterior
estimates. To eliminate potential problems due to auto-correlation, we considered a spacing of
size 40. The convergence of the MCMC chains were monitored using trace plots, auto-correlation
(ACF) plots and Gelman-Rubin R̂ diagnostics. Following Gelman et al. (2006), we considered a
sensitivity analysis on the routine use of the inverse-gamma prior on the variance components and
found that the results are fairly robust under different choices of prior. The posterior summaries of
the parameters do not present remarkable difference and not impair the results given in Table 1.

Table 1: Posterior parameter estimates for the UTI data.

mean regression p = 0.5 (median regression)
Parameter Mean sd 95% CI Mean sd 95% CI

β1 3.6501 0.1308 [3.3983 ; 3.9095] 3.8749 0.1225 [3.6305 ; 4.1088 ]
β2 4.1765 0.1336 [3.9142 ; 4.4417] 4.2105 0.1158 [3.9750 ; 4.4310 ]
β3 4.2464 0.1357 [3.9768 ; 4.5051] 4.2621 0.1136 [4.0332 ; 4.4799 ]
β4 4.3637 0.1365 [4.1043 ; 4.6268] 4.4238 0.1181 [ 4.1831 ; 4.6478 ]
β5 4.5697 0.1429 [ 4.2903 ; 4.8450] 4.5465 0.1189 [4.3063 ; 4.7703 ]
β6 4.5881 0.1517 [ 4.2927 ; 4.8822] 4.5417 0.1222 [4.2949 ; 4.7764 ]
β7 4.6957 0.1709 [4.35951 ; 5.0321] 4.7042 0.1382 [4.4280 ; 4.9723 ]
β8 4.8079 0.2065 [4.4086 ; 5.2108] 4.7793 0.1636 [ 4.4582 ; 5.1007]
σ 0.3339 0.0304 [0.2798 ; 0.3969] 0.1851 0.0110 [ 0.1646 ; 0.2081 ]
α 0.7864 0.1526 [0.5375 ; 1.1534] 0.8070 0.1530 [ 0.5546 ; 1.1491]

In Table 1, we report the posterior mean, standard deviations (sd) and 95% credible intervals
(CI) of the model parameters from the popular mean regression (N-LMEC) and the QR-LMEC for
p = 0.5 (i.e., median regression). Note that the posterior estimates of β1−β8 (the slope parameters
corresponding to the time points) for the QR-LMEC models are quite close (to first decimal place)
to those from N-LMEC. The 95% posterior CI to βββ are tighter (and also the standard deviations)
than those in the mean regression model, indicating that the median regression seem to produce
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more precise estimates. As in Vaida & Liu (2009), our dropout (censored) model does not bias
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Figure 4: UTI data: Posterior means and 95% credible intervals for various values of p.

the inference regarding the mean of β j. The median and mean viral load β j increases gradually
throughout 24 months for all the models. For the N-LMEC, it increases from 3.65 at the time of
UTI to 4.80 at 24 months whereas in the median regression it increases from 3.87 to 4.77.

To obtain a more complete picture of the effects, a series of QR models over the grid p =
{0.1,0.15, . . . ,0.9} is estimated. Figure 4 gives a graphical summary of this analysis. The solid
lines are the Q0.025 percentile and the Q0.975 percentile obtained from the marginal posterior dis-
tribution of the diferentes parameters. Thus, the shaded area depicted the 95% credible band from
the marginal posterior distribution. From Figure 4 we can observe some interesting evidences
which cannot be detected by mean regression. For example, the effect of the most variables be-
come stronger for the higher conditional quantiles, this indicates that the viral load at different time
points are positively correlated with the quantiles. This finding can be also appreciated in Figure
3, where the overall mean (in log10 scale) at different quantiles for HIV viral load at different
follow-up times are depicted.

5.2 AIEDRP Data
The second AIDS case study is from the AIEDRP program, a large multi-center observational
study of subjects with acute and early HIV infection. We consider 320 untreated individuals with
acute HIV infection; for more details see Vaida & Liu (2009). Of the 830 recorded observations,
185 (22%) were above the limit of assay quantification, hence right-censored. So, we consider
a right-censored version of (9) and accommodate it within our NLME. Following Vaida & Liu
(2009), we choose a five-parameter NLME model (inverted S-shaped curve) as follows:

yi j = α1i +
α2

(1+ exp((ti j −α3)/α4))
+α5i(ti j −50)+ εi j,

where yi j is the log10 HIV RNA for subject i at time ti j. Choice of an appropriate non-linear model
is hard to assess for any HIV data, but the above model was considered in Vaida & Liu (2009) pri-
marily because the residual plots did not exhibit any serial auto-correlation, and the model fit seem
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adequate. The parameter α1i and α2 are the setpoint value and the decrease from the maximum HIV
RNA. In the absence of treatment (following acute infection), the HIV RNA varies around a set-
point which may differ among individuals, hence the setpoint is chosen to be subject-specific. The
location parameter α3 indicates the time point at which half of the change in HIV RNA is attained,
α4 is a scale parameter modeling the rate of decline and α5i allows for increasing HIV RNA trajec-
tory after day 50. The smooth (mean) curve for the observed data in Figure 3 (right Panel) agrees
with the postulated shape of the HIV RNA trajectory for this study. To force the parameters to be
positive, we re-parameterize as follows: β1i = log(α1i) = β1 + b1i; βk = log(αk),k = 2,3,4 and
α5i = β5 + b2i. Within a Bayesian framework, we use the Normal mean regression (N-NLMEC)
considered by Vaida & Liu (2009) and the QR-NLMEC with p = 0.5, where (b1i,b2i) are assumed
to be i.i.d., multivariate Normal distribution with unrestricted scale matrix DDD. The MCMC scheme
was similar to the previous application on UTI data, as well as the procedures described in Section
3, further we consider DDD ∼ IWish2(T−1,2), with TTT = Diag(0.01,0.01).

Table 2: AIEDRP data: Posterior estimates from censored N-LMEC (mean regression) and QR–
NLMEC with p = 0.5.

mean regression p = 0.5 (median regression)
Parameter Mean sd 95% CI Mean sd 95% CI

β1 1.5612 0.0191 [1.5209 ; 1.5971 ] 1.5709 0.0145 [ 1.5430 ; 1.5993]
β2 0.4983 0.1840 [0.2088 ; 0.9263 ] 0.4016 0.1284 [ 0.1824 ; 0.6848]
β3 3.5184 0.0650 [3.3548 ; 3.5926] 3.5294 0.0306 [ 3.4568 ; 3.5805]
β4 1.6468 0.3066 [1.0379 ; 2.2489 ] 1.4200 0.2716 [0.8970 ; 1.9150]
β5 -0.0018 0.0027 [-0.0072 ; 0.0036 ] -0.0024 0.0023 [ -0.0070 ; 0.0020]
σ 0.2324 0.0184 [0.1996 ; 0.2720 ] 0.1732 0.0085 [0.1571 ; 0.1906]

D11 0.0188 0.0028 [0.0141 ; 0.0249 ] 0.0186 0.0026 [0.0140 ; 0.0245]
D12 0.0004 0.0003 [-0.0001 ; 0.0011 ] 0.0004 0.0003 [-0.0001 ; 0.0011]
D22 0.0003 0.0001 [0.0002 ; 0.0005 ] 0.0003 0.0001 [0.0002 ; 0.0004]

Table 2 gives the estimates for the different parameters in the QR-NLMEC for p = 0.5 (median
case) and the N-NLMEC (mean regression). From Table 2, we observe that the estimates of the
slope parameters β2 and β4 for the median regression model are somewhat different than the mean
regression model and the standard errors of the QR–NLMEC are smaller, indicating that the me-
dian regression seem to produce more precise estimates. Residuals plots in our analysis (omitted
for brevity) revealed no serial correlations.

As in the linear case, to obtain a more complete picture of the effects, a series of QR models
over the grid p = {0.1,0.15, . . . ,0.9} is estimated. Figure 5 gives a graphical summary of this
analysis. The solid lines are the Q0.025 percentile and the Q0.975 percentile obtained from the
marginal posterior distribution of the diferentes parameters. Thus, the shaded area depicted the
95% credible band from the marginal posterior distribution. From Figure 5 we can see that the
effect β1 and β2 become stronger as the value of the conditional quantil p increases, on the other
hand the effects of β3, β4 and β5 have constat effects on the HIV viral load (in log10 scale).
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Figure 5: AIEDRP data: Posterior means and 95% credible intervals for various values of p.

6 Simulation study
In this section, we conduct a simulation study to illustrate the performance of our proposed method-
ology concerning parameter recovery. For illustration, we considered the following regression
model:

yi j =−2.83−0.18x1i j +0.50x2i j+b1iz1i j +b2iz2i j + εi j, i = 1,2, ...,50, j = 1, ...,6, (23)

where (b1i,b2i)
i.i.d.∼ N2

[(
0
0

)
,

(
0.49 0.01
0.01 0.02

)]
and ξ i.i.d.∼ 0.15D(ν), with D(ν) being a suitable

distribution (as we will explain ahead). We considered different scenarios produced by crossing the
levels of two factors: the percentual of censored response (PCR) and the error distribution (ED),
which corresponds to the term D(ν)). For PCR we considered (5%,10%,15%) and for ED we
considered N(0,1), t(4),χ2

(4),0.5N(2,0.36)+0.5N(−2,0.36) namely, henceforth, Normal, Student
t, χ2 and mixture. Therefore, we have a total of 12 scenarios. For each one of these scenarios,
we generated R = 100 replicas (responses) according to model (23) and we estimated the model
parameters, considering the quantiles 0.25, 0.50 and 0.75, by using the MCMC algorithm presented
in Subsection 3.1. The following priors were considered: βi

i.i.d∼ N(0,100),σ−1 ∼ U(0,100) and

DDD ∼ Wishart(ΩΩΩ,2), where ΩΩΩ =

(
1 0
0 1

)
. For the four scenarios, we compute the standard error
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Table 3: SE, Bias and RMSE for (β0,β1) based on R = 100 Monte Carlo replicas
Distr. Perc. (%) Quantile (%) β0 β1

SE Bias RMSE SE Bias RMSE
Normal 5 25 0.164 -0.283 0.327 0.021 -0.01 0.023

50 0.162 0.025 0.164 0.021 -0.006 0.022
75 0.167 0.343 0.381 0.02 -0.005 0.021

10 25 0.161 -0.287 0.329 0.021 -0.008 0.022
50 0.154 0.031 0.158 0.021 -0.006 0.022
75 0.159 0.351 0.385 0.022 -0.003 0.022

15 25 0.156 -0.268 0.310 0.023 -0.014 0.027
50 0.156 0.049 0.163 0.024 -0.012 0.027
75 0.17 0.371 0.408 0.023 -0.009 0.025

Student t 5 25 0.190 -0.291 0.347 0.020 -0.009 0.022
50 0.188 0.027 0.190 0.020 -0.007 0.021
75 0.188 0.349 0.396 0.020 -0.005 0.020

10 25 0.179 -0.267 0.322 0.023 -0.012 0.026
50 0.178 0.048 0.184 0.022 -0.01 0.024
75 0.18 0.365 0.407 0.024 -0.008 0.025

15 25 0.166 -0.274 0.320 0.025 -0.017 0.030
50 0.164 0.047 0.171 0.022 -0.015 0.027
75 0.171 0.369 0.406 0.023 -0.013 0.027

χ2 5 25 0.169 -0.280 0.327 0.02 -0.007 0.022
50 0.163 0.030 0.165 0.02 -0.005 0.021
75 0.159 0.339 0.375 0.02 -0.004 0.021

10 25 0.166 -0.299 0.342 0.023 -0.016 0.028
50 0.157 0.018 0.158 0.021 -0.013 0.025
75 0.169 0.331 0.372 0.021 -0.011 0.023

15 25 0.168 -0.244 0.296 0.021 -0.014 0.025
50 0.162 0.084 0.183 0.02 -0.012 0.023
75 0.167 0.417 0.449 0.021 -0.010 0.023

Mixture 5 25 0.156 -0.309 0.346 0.022 -0.009 0.024
50 0.151 0.008 0.151 0.021 -0.007 0.022
75 0.161 0.326 0.364 0.022 -0.004 0.023

10 25 0.164 -0.297 0.339 0.024 -0.007 0.025
50 0.158 0.018 0.159 0.023 -0.005 0.024
75 0.164 0.340 0.377 0.023 -0.002 0.024

15 25 0.141 -0.277 0.310 0.021 -0.008 0.023
50 0.138 0.035 0.143 0.021 -0.006 0.022
75 0.146 0.354 0.382 0.022 -0.005 0.023

(SE), the bias and the square root of the mean square error (RMSE), for each parameter over the
100 replicas. They are defined as:
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SE(γ) =

√√√√ 1
99

100

∑
i=1

(
γ̂i − γ̂

)2
; Bias(γ) = (γ̂−γ) ; RMSE(γ) =

√
SE(γ)2 +Bias(γ)2 ; γ̂ =

1
100

100

∑
i=1

γ̂i ,

where γγγ = (β0,β1,β2,σ2,D11,D12,D22), DDD =

(
D11 D12
D12 D22

)
, γ̂i is the estimated (the posterior

expectation) obtained in replica i and γ is the true value. The results are summarized in Tables
from 3 to 6. It can be seen that the most accurate results are obtained when the error distribution
used to simulate the responses matches the distribution used to obtain the Bayesian estimates.
Also, the higher is the PCR less precise are the estimates. In addition, the results when the median
is the quantiles of interest are more accurate when compared with the results related to the other
quantiles. All these results agree with our expectations.

Figures from 6 we can see the box-plots of the 100 replicas related to β0. The horizontal line
corresponds to the true value. The labels along the x-axis indicate the distribution and percentual
of censored response. For example, N10, indicates that the normal distribution was considered for
simulating the error distribution with 10% of censored response, and so on. Again, we can se that
the more accurate results are obtained for the normal distribution with 5% of censored response
when the median is the quantile of interest. Also, we can se that the estimates, when the me-
dian is the quantile of interest, are approximatly unbiased, whereas the parameter is subestimated
and overestimated when the quantiles of interest are 0.25 and 0.75, respectively. For the other
parameters, in general, the results were quite similar. Therefore, the plots were not presented.
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Table 4: SE, Bias and RMSE for (β2,σ) based on R = 100 Monte Carlo replicas
Distr. Perc. (%) Quantile (%) β2 σ

SE Bias RMSE SE Bias RMSE
Normal 5 25 0.210 0.006 0.21 0.015 -0.009 0.017

50 0.216 0.013 0.216 0.019 0.035 0.039
75 0.224 0.008 0.224 0.015 -0.008 0.017

10 25 0.231 0.005 0.231 0.014 -0.010 0.017
50 0.235 0.002 0.235 0.018 0.035 0.040
75 0.243 0.005 0.243 0.015 -0.007 0.017

15 25 0.227 0.004 0.227 0.014 -0.012 0.018
50 0.236 -0.001 0.236 0.018 0.034 0.039
75 0.246 -0.017 0.246 0.014 -0.008 0.016

Student t 5 250 0.246 -0.011 0.247 0.014 -0.009 0.016
50 0.247 -0.009 0.247 0.017 0.036 0.040
75 0.250 -0.017 0.251 0.013 -0.008 0.015

10 25 0.258 -0.012 0.259 0.013 -0.012 0.018
50 0.260 -0.012 0.260 0.017 0.032 0.036
75 0.272 -0.016 0.273 0.014 -0.01 0.017

15 25 0.245 -0.013 0.246 0.016 -0.011 0.019
50 0.235 -0.014 0.235 0.022 0.036 0.042
75 0.240 -0.018 0.241 0.019 -0.007 0.020

χ2 5 25 0.226 -0.005 0.226 0.013 -0.012 0.018
50 0.228 -0.003 0.228 0.017 0.031 0.036
75 0.236 0.004 0.236 0.013 -0.011 0.017

10 25 0.221 -0.001 0.221 0.013 -0.009 0.016
50 0.211 0.008 0.211 0.018 0.037 0.042
75 0.229 0.026 0.23 0.015 -0.006 0.016

15 25 0.237 -0.030 0.239 0.014 -0.011 0.018
50 0.223 -0.045 0.227 0.019 0.036 0.041
75 0.235 -0.06 0.243 0.015 -0.006 0.017

Mixture 5 25 0.203 -0.004 0.203 0.014 -0.009 0.017
50 0.201 -0.004 0.201 0.019 0.036 0.041
75 0.218 -0.009 0.218 0.016 -0.007 0.018

10 25 0.219 0.010 0.219 0.012 -0.009 0.015
50 0.218 0.019 0.219 0.015 0.036 0.039
75 0.225 0.017 0.226 0.013 -0.007 0.014

15 25 0.213 -0.027 0.215 0.012 -0.011 0.016
50 0.205 -0.010 0.205 0.016 0.036 0.039
75 0.218 <0.001 0.218 0.013 -0.006 0.015
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Table 5: SE, Bias and RMSE for (D11,D12) based on R = 100 Monte Carlo replicas
Distr. Perc. (%) Quantile (%) D11 D12

SE Bias RMSE SE Bias RMSE
Normal 5 25 0.163 0.084 0.183 0.014 -0.010 0.017

50 0.147 0.045 0.153 0.014 -0.009 0.017
75 0.159 0.087 0.181 0.017 -0.011 0.020

10 25 0.166 0.111 0.200 0.017 -0.012 0.021
50 0.149 0.062 0.161 0.016 -0.011 0.019
75 0.156 0.096 0.184 0.017 -0.013 0.021

15 25 0.166 0.109 0.198 0.019 -0.013 0.023
50 0.145 0.044 0.152 0.018 -0.010 0.021
75 0.163 0.071 0.177 0.020 -0.012 0.024

Student t 5 25 0.147 0.092 0.173 0.017 -0.012 0.021
50 0.130 0.055 0.141 0.017 -0.011 0.020
75 0.136 0.092 0.164 0.017 -0.012 0.021

10 25 0.152 0.077 0.170 0.016 -0.013 0.020
50 0.124 0.021 0.126 0.014 -0.011 0.018
75 0.155 0.058 0.166 0.016 -0.013 0.021

15 25 0.145 0.079 0.165 0.019 -0.014 0.024
50 0.120 0.025 0.122 0.017 -0.012 0.021
75 0.152 0.072 0.169 0.018 -0.015 0.023

χ2 5 25 0.162 0.095 0.188 0.014 -0.009 0.016
50 0.145 0.058 0.156 0.014 -0.008 0.016
75 0.170 0.098 0.196 0.015 -0.010 0.018

10 25 0.150 0.082 0.171 0.015 -0.013 0.019
50 0.125 0.040 0.131 0.013 -0.012 0.017
75 0.198 0.104 0.223 0.021 -0.017 0.027

15 25 0.146 0.079 0.166 0.019 -0.015 0.024
50 0.127 0.028 0.130 0.018 -0.013 0.022
75 0.134 0.074 0.153 0.019 -0.016 0.024

Mixture 5 25 0.133 0.068 0.149 0.017 -0.013 0.022
50 0.125 0.025 0.128 0.016 -0.011 0.020
75 0.159 0.072 0.175 0.018 -0.013 0.022

10 25 0.146 0.095 0.174 0.017 -0.010 0.020
50 0.134 0.045 0.141 0.016 -0.008 0.018
75 0.161 0.081 0.180 0.017 -0.011 0.020

15 25 0.139 0.087 0.164 0.016 -0.013 0.021
50 0.127 0.037 0.132 0.016 -0.010 0.019
75 0.159 0.072 0.175 0.018 -0.012 0.021
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Table 6: SE, Bias and RMSE for D22 based on R = 100 Monte Carlo replicas
Distr. Perc. (%) Quantile (%) D22

SE Bias RMSE
Normal 5 25 0.004 0.024 0.024

50 0.004 0.024 0.024
75 0.004 0.024 0.024

10 25 0.006 0.026 0.026
50 0.005 0.025 0.026
75 0.005 0.025 0.026

15 25 0.005 0.028 0.028
50 0.005 0.027 0.028
75 0.005 0.027 0.028

Student 5 25 0.005 0.024 0.025
50 0.005 0.024 0.024
75 0.005 0.024 0.025

10 25 0.005 0.025 0.026
50 0.005 0.025 0.025
75 0.005 0.025 0.026

15 25 0.005 0.028 0.028
50 0.005 0.027 0.028
75 0.005 0.027 0.028

χ2 5 25 0.005 0.024 0.024
50 0.005 0.024 0.024
75 0.005 0.024 0.025

10 25 0.005 0.025 0.026
50 0.004 0.025 0.025
75 0.005 0.026 0.026

15 25 0.005 0.028 0.028
50 0.005 0.027 0.028
75 0.005 0.027 0.028

Mixture 5 25 0.005 0.025 0.025
50 0.005 0.024 0.025
75 0.004 0.025 0.025

10 25 0.004 0.027 0.027
50 0.005 0.027 0.027
75 0.005 0.027 0.027

15 25 0.006 0.027 0.028
50 0.006 0.027 0.027
75 0.006 0.027 0.028
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Figure 6: Box-plots of the estimates along the 100 replicas, considering the combinations of the
levels of the factors, for the parameter β0, when the (left) median is being modelling (meddle) the
quantile p = 0.25 is being modelling and (right) when the quantile p = 0.75 is being modelling

7 Conclusions
In this paper, we have considered Bayesian quantile regression for censored mixed effects models
with the likelihood function based on the asymmetric Laplace distribution. The use of the asym-
metric Laplace distribution makes it easy to implement the Bayesian inference based on posterior
distributions of parameters of interest via Gibbs sampling. We apply our methodology to a recent
AIDS study (freely downloadable from R) to illustrate how the procedure developed can be used
to obtain robust parameter estimates when the distributional assumptions are questionable. De-
pending on assay quantifications, censoring can be both left or right. Our application is based on
right-censoring, consideration for left-censoring is immediate and follows from (9) by reversing
the role of yi j and Qi j . We believe that this paper provides a first attempt to incorporate censor-
ing in the context of Quantile regression mixed-effects models (QR-LMEC/NLMEC) and thus,
our method provides improvement over results from Vaida & Liu (2009), who considered analysis
of these data set using normal LMEC/NLMEC models. The models can be fitted using standard
available software packages, such as R and WinBUGS (code available upon request) and hence
can be easily accessible to practitioners in the field.

The mixture representation utilized in this paper allows us to express a quantile regression
model as a normal regression model. For instance, the models developed here do not consider
skewness in the random effects because typically in HIV-AIDS studies, the responses (censored
viral load) is log transformed to achieve a Şclose to normalityŤ shape. Recently, Lachos et al.
(2009) adopted a Markov chain Monte Carlo approach to drawing Bayesian inferences in Linear
mixed models with multivariate skew-normal (SNI) distributions for both random effects and error
terms. Therefore, it would be a worthwhile task to investigate the applicability of a likelihood based
treatment in the context of QR-LMEC/NLMEC models with SNI distributions. Incorporating
measurement error models (Wu, 2010) within our robust framework for related HIV viral load
covariates (namely, CD4 cell counts) is also part of our future research.
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