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Abstract

State space models (SSM) for binary time series using a flexible skewed inverse link function

based on the generalized extreme value (GEV) distribution are introduced. Commonly used probit

and logit links are prone to link misspecification because of their fixed skewness. The GEV inverse

link is flexible in fitting the skewness in the response curve with a free shape parameter. Markov

chain Monte Carlo (MCMC) methods for Bayesian analysis of SSM with GEV inverse link are

implemented using the WinBUGS package, a freely available software. Model comparison relies

on the deviance information criterion (DIC). The flexibility of the propose model is illustrated to

measure effects of deep brain stimulation (DBS) on attention of a macaque monkey performing a

reaction-time task (Smith et al., 2009). Empirical results showed that the GEV inverse link fit better

over the usual probit and logit inverse links.

Keywords: Binary time series, GEV link, logit link, Markov chain Monte Carlo, probit link, state

space models.

1 Introduction

In many areas of application of statistical modeling one encounters observations that take one of two

possible forms. Such binary data are often measured with covariates or explanatory variables that either

continuous or discrete or categorical. Time series of binary responses may adequately be described by

Generalized linear models (McCullagh and Nelder, 1989). However, if serial correlation is present or

if the observations are overdispersed, these models may not be adequate, and several approaches can

be taken. Generalized linear state space models also address those problems and are treated in a paper
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by West et al. (1985) in a conjugate Bayesian setting. They have been subject to further research by

Fahrmeir (1992), Song (2000), Carlin and Polson (1992) and Czado and Song (2008) among others.

Consider a binary time series {Yt , t = 1, . . . ,T}, taking the values 0 or 1 with probability of success

given by πt and which is related with a time-varying covariates vector xt = (xt1, . . . ,xtk)
′ and a q−

dimensional latent state variable θ t . We consider a Generalized linear state space model framework for

binary responses in the following way

Yt ∼ Ber(πt) t = 1, . . . ,T (1)

πt = F(x′tβ +S′
tθ t) (2)

θ t = Htθ t−1 +η t η t ∼ Nq(0,Wt). (3)

In the above setup the observed process {Yt} is described by equations (5)-(2), where πt = P(Yt = 1 |

θ t ,xt ,St) is the conditional probability of success, St is a q− dimensional vector, β is a k− dimen-

sional vector of regression coefficients and xt = (xt1, . . . ,xtk)
′ is a k×1 vector of covariates. The system

process is defined as a first order Markov process in equation (3), where Ht is the q× q transition ma-

trix, Wt is the covariance matrix of error term ηt , Ber(.) and Nq(., .) indicate the Bernoulli and the

q−dimensional normal distributions respectively. In the terminology of generalized linear models (Mc-

Cullagh and Nelder, 1989), F is the inverse link function. For ease of exposition, we refer to F as the

link function in this article.

A critical issue in modeling binary response data is the choice of the links. In the context of binary

regression problems symmetric links are widely used in the literature (Albert and Chib, 1993; Basu and

Mukhopadhyay, 2000a,b). However, as Chen et al. (1999) have argued, when the probability of a given

binary response approaches to 0 at a different rate than it approaches 1, symmetric link functions may

be not useful to fit binary data and asymmetric link functions must be considered. In this case if the

link function is misspecified, there can be substantial bias in the mean response estimates (Czado and

Santner, 1992). To deal with this problem some asymmetric links are considered in the literature. For

example, Kim et al. (2008) used the skewed generalized t-link, Bazán et al. (2010) the skewed probit

links and some variants with different parameterizations and more recently Wang and Dey (2010) and

Wang and Dey (2011) introduced the GEV link, as an appropriate and flexible model for the binary data

and to overcome the constraint for the skewed generalized t-link models. With a free shape parameter,
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the GEV distribution provides great flexibility in fitting a wide range of skewness in the response curve.
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Figure 1: Left: Probability density function plots. Right: cumulative distribution function (CDF) plots

of a Weibull distribution (µ = 0,σ = 1,ξ = −0.5,dashed), Gumbel distribution (µ = 0,σ = 1,ξ =

0.0,solid), and Fréchet distribution (µ = 0,σ = 1,ξ = 0.5,dotted).

State space model for binary responses with probit link have been used by Carlin and Polson (1992)

and Song (2000) without including covariates. Czado and Song (2008) introduced covariates for binary

state space models with probit link and called the resulting class as binary state space mixed models

(BSSMM). More recently, Abanto-Valle and Dey (2012) extended it to normal scale mixture links.

In this paper, we extend the BSSMM by assuming the GEV distribution as a link. Inference in the

BSSMM–GEV model is performed under a Bayesian paradigm via MCMC methods, which permits to

obtain the posterior distribution of parameters by simulation starting from reasonable prior assumptions

on the parameters. Despite the growing number of advanced sampling schemes developed with vari-

ous degree of sophistication and complexity, the idea to trade off the easy-to-use techniques with more

efficient but complicated techniques may be unattractive to general practitioners. Therefore, we adopt
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the WinBUGS software to implement the BSSMM–GEV model although WinBUGS uses a single-move

sampler. Compared with the multiple-move sampler, the single-move sampler produces higher correlated

posterior samples. However, such dependency can be compensated by running a longer Markov chain.

On the other hand, the gain in efficiency in using complex sampling schemes is “largely outweighed by

the ease of implementation” in WinBUGS.

The remainder of this paper is organized as follows. Section 2 gives a brief review about the GEV

distribution. Section 3 outlines the BSSMM-GEV model as well as the Bayesian estimation procedure

using MCMC methods. Section 4 is devoted to the application and model comparison among the logit

and probit links using a real data set. Finally, some concluding remarks and suggestions for future de-

velopments are given in Section 5.

2 Generalized extreme value models

The GEV link models are based on the Generalized Extreme Value (GEV) distribution. Given a sequence

of independent and identically distributed random variables Y1,Y2, . . . ,Yn, the extreme value theory con-

siders parametric models for the maximum Mn = max{Y1, . . . ,Yn}. The exact distribution of Mn is known

given a specified distribution of the Y ′
i s. On the other hand, in the absence of such specification, extreme

value theory considers the existence of limn→∞P[{(Mn−bn)/an} ≤ y]≡ F(y) with two sequences of real

numbers an > 0 and bn. If F(y) is non-degenerated, it belongs to either the Gumbel, the Fréchet or the

Weibull class of distributions. All these three families of distributions can be expressed under a common

distribution function as follows:

G(x) = exp
[
−
{

1+ξ
x−µ

σ

}− 1
ξ

+

]
, (4)

where µ ∈ R is the location parameter, σ ∈ R+ is the scale parameter, ξ ∈ R is the shape parameter

and x+ = max(x,0). The distribution in Model (4) is called the GEV distribution. A more detailed

discussion on the extreme value distributions can be found in Coles (2001) and Smith (2003). Extreme

value analysis finds wide application in many areas, including climatology (Coles et al., 2003; Huerta

and Sansó, 2007; Sang and Gelfand, 2009), environmental science (Smith, 1989; Thompson et al., 2001),

financial strategy of risk management (Dahan and Mendelson, 2001; Morales, 2005), to stock returns data

(Kunihama et al., 2011; Nakajima et al., 2011), and biomedical data processing (Roberts, 2000).

4



Its importance as a link function arises from the fact that the shape parameter ξ purely controls the

tail behavior of the distribution (Wang and Dey, 2010, 2011). The Gumbel distribution is least positively

skewed distribution in the GEV class when ξ is non-negative. Figure 1 (left) provides a plot of the

probability distribution of the GEV class which shows the flexibility of such distribution. Figure 1 (right)

shows the response curves with ξ equal to -0.5, 0 and 0.5. As the values of the shape parameter change,

so does the approaching rate to 1 and 0.

Since the usual definition of skewness µ3 = {E(X − µ)3}{E(X − µ)}− 3
2 does not exist for large

positive values of X’s for the GEV model, Wang and Dey (2010) and Wang and Dey (2011) extended

the skewness measure of Arnold and Groeneveld (1995) for the GEV distribution in terms of its mode.

Wang and Dey (2010) and Wang and Dey (2011) showed that, based on this skewness definition, the

GEV distribution is negatively skewed for X < log2−1 and positively skewed for X > log2−1.

3 Binary responses state space mixed models with GEV link

3.1 Model setup

Let Y1:T =(Y1, . . . ,YT )
′, where Yt , t = 1, . . . ,T , denote T independent binary random variables. As before,

xt is a k×1 vector of covariates. We assume that

Yt ∼ Ber(πt) t = 1, . . . ,T (5)

πt = P(Yt = 1 | θt ,xt ,β ) = 1−G(−{x′tβ +θt}) (6)

θt = δθt−1 + τηt , (7)

where, G(x) represents the cumulative distribution function at x for the GEV distribution with µ = 0 and

σ = 1 and unknown shape parameter ξ . We assume that ηt are independent and normally distributed

with mean zero and unit variance, | δ |< 1, i.e., the latent state process is stationary and θ0 ∼N (0, τ2

1−δ 2 ).

Clearly θt represents a time-specific effect on the observed process. Under a Bayesian paradigm, we use

MCMC methods to conduct the posterior analysis in the next subsection.
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3.2 Inference procedure

A Bayesian approach to parameter estimation of the model defined by equations (5)-(7), techniques

using Monte Carlo simulation via Markov Chain (MCMC) is adopted. Suppose that the model depends

on a parameter vector Ψ = (β ′,δ ,τ2,ξ )′ and let θ 0:T = (θ0,θ1, . . . ,θT )
′ be the latent states. Then the

likelihood function L(Ψ) is not easy to calculate. The Bayesian approach for estimating the parameters

in the model uses the data augmentation principle, which considers θ0:T as latent parameters. The joint

posterior density of parameters and latent variables can be written as

p(θ 0:T ,Ψ | y1:T ) ∝ p(Y1:T | θ 0:T ,Ψ,y1:T )p(θ 0:T | Ψ)p(Ψ), (8)

where

p(Y1:T | θ 0:T ,Ψ) =
T

∏
t=1

{πYt
t (1−πt)

1−Yt} (9)

p(θ 0:T | Ψ) = ϕ(θ0 | 0,
τ2

1−δ 2 )
T

∏
t=1

ϕ(θt | δθt−1,τ2), (10)

where πt is given by equation (6) and ϕ(x | µ,σ 2) denotes the normal density with mean µ and variance

σ2 evaluated at x and p(Ψ) indicates the prior distribution. We assume the prior distribution as

p(Ψ) = p(β )p(δ )p(τ2)p(ν).

The prior distributions are set as: β ∼ Nk(β 0,Σ0), δ ∼ N(−1,1)(δ0,σ 2
δ ), ξ ∼ U (−0.5,0.5) and τ2 ∼

I G (n0
2 ,

T0
2 ), where Nk(., .), N(a,b)(., .),U (a,b) and I G (., .) denote the k−variate normal, the truncated

normal on interval (a,b), the uniform distribution on interval (a,b) and the inverse gamma distributions

respectively.

We can evaluate Equation (8) using standard Monte Carlo Markov Chain methods in WinBUGS

(Lunn et al., 2000). Implementation in this software merely requires specifying the model setup in

equations (5)-(7), as well as priors for the unknown parameters p(Ψ).

4 Application

To illustrate the technique applied to binary responses, we consider responses from a monkey performing

the attention paradigm described in Smith et al. (2009). The task consisted of making a saccade to a
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visual target followed by a variable period of fixation on the target and detection of a change in target

color followed by a bar release. This standard task requires sustained attention because in order to receive

a reward, the animal must release the bar within a brief time window cued by the change in target color

(see Smith et al., 2009, for a more detailed description of the experiment). Thus our behavioral data set

for this experiment are composed of a time series of binary observations with a 1 corresponding to reward

being delivered and a 0 corresponding to reward not being delivered at each trial, respectively. The goal

of the experiment is to determine whether, once performance has diminished as a result of spontaneous

fatigue, deep brain stimulation (DBS) allows the animal to recover its pre-fatigue level of performance.

In this experiment, the monkey performed 1250 trials. Stimulation was applied during 4 periods across

trials 300-364, 498-598, 700-799 and 1000-1099, indicated by shaded gray regions in Figures 3 and 4.

Dividing the results into periods when estimulation os applied (“ON”) and not applied (“OFF”), there

are 240 correct responses out of 367 trials during the ON periods and 501 correct responses from 883

trials during the off periods. Out of 1250 observations, 741 (or 59.28%) are correct responses2. For this

data set we fit the Binary state space model with GEV link (BSSM-GEV) defined by equations (5) and

(7), where πt is modeled by

πt = P(Yt = 1 | θt) = 1−G(−θt).

As before, G(x) represents the cumulative distribution function at x for the GEV distribution with

µ = 0 and σ = 1 and θt is the arousal state of the macaque monkey at time t. We set the priors as

δ ∼ N(−1,1)(0.96,1000), τ2 ∼ I G(0.1,0.01) and ξ ∼ U (−0.5,0.5). With the same data set, we fit the

probit and logit model defined by equations (5) and (7), with πt = Φ(θt) and log( πt
1−πt

) = θt , respectively.

We denote them by BSSM-N and BSSM-L. We implemented the three models, BSSM-N, BSSM-L and

BSSM-GEV, using the software package WinBUGS, because of its user-friendly model declaration lan-

guage3. WinBUGS is not designed to handle extremely large models and data sets (e.g. > 2000 trials).

Other software may be preferable in these situations. For each case, we conducted the MCMC simulation

for 450000 iterations. In all the cases, the first 50000 draws were discarded as a burn-in period. In order

to reduce the autocorrelation between successive values of the simulated chain, only every 50th values

2We thank Anne C. Smith for making the data set available on her website: http://www.ucdmc.ucdavis.edu/

anesthesiology/research/smith_Bayesian.html
3The WinBUGS code for the BSSM-GEV model is available upon request to the first author.
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of the chain were stored. With the resulting 8000 values, we calculated the posterior means, the 95%

credible intervals. The MCMC output of all the parameters passed the convergence test of Heidelberger

and Welch (1983), available for free with the CODA package with the R software.

From Table 1, we found that for all the models considered here, the posterior means of δ are above

0.99, showing higher persistence of the autoregressive parameter for states variables and thus in binary

time series. The posterior means of τ2 are between 0.0081 and 0.0021, being the BSSM-N and BSSM-

GEV less variables than the BSSM-L. We found that the posterior mean and 95% credibility interval

for the shape parameter ξ are -0.4556 and (-0.4998,-0.3515), respectively. Figure 2, shows the density

(right) and CDF function (left) evaluated in -0.4998 (dashed line), -0.4556 (solid line) and -0.3515 (dot-

ted line). From Figure 2 (left), we can see differences, between the rates as them approaches to 1.
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Figure 2: Left: Probability density function plots. Right: cumulative distribution function (CDF) dashed

line (µ = 0,σ = 1,ξ = −0.4998), solid line (µ = 0,σ = 1,ξ = 0.4556), and dotted line (µ = 0,σ =

1,ξ =−0.3515).
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Figure 3 shows the posterior smoothed mean for the states θt for each one of the models fitted. The

solid, dotted and dashed lines indicate the posterior smoothed mean for the BSSM-GEV, BSSM-N and

BSSM-L, respectively. All the estimates follow a similar pattern, but there are expressive differences

between the estimates, specially in the last OFF period.

In Figure 4,we plot the posterior smoothed mean for the probability of a correct response computed

using the BSSM-N (dotted line), BSSM-L (dashed line) and BSSM-GEV (solid line) models. In this case

the estimated probability is less constrained and tracks the data independent of the stimulation-ON/OFF

information. In all the cases, on average the response curve lies around the 0.75 level but decreases

are observed at the end of the first stimulation-ON period around trial 375, at the end of the 4th OFF

period around trial 950 and for the remainder of the experiment from trial 1100 onwards, specially with

the BSSM-GEV. All the models are able to account for stimulation effect . The results indicate that

stimulation has a positive influence on the performance. However, They show that the performance

does not improve during the first stimulation period. Overall, however, all the models result highlight

an abrupt step-like decline in performance towards the end of the experiment, around trial 950, which

undergoes a significant increase during the final stimulation period before a final significant drop to zero.

All the results are consistent with Smith et al. (2009).

To assess the goodness of the estimated models, we calculate the deviance information criterion, DIC

(Spiegelhalter et al., 2002) to compare models using different link functions. The DIC is easily calculated

using WinBUGS. The minimum value of the DIC gives the best fit. In this context, pD is a measure of

model complexity. We compare the BSSM-N, BSSMM-L and BSSMM-GEV models. From Table 2, the

DIC selects the BSSM-GEV as the best model for the monkey performance data set.

5 Conclusions

In this paper we have proposed a class of state space mixed models for longitudinal binary data using a

GEV distribution as an extension of Czado and Song (2008) and Abanto-Valle and Dey (2012). In this

setup, the shape parameter is estimated along with model fitting. The flexibility in links is important

to avoid link misspecification. An attractive aspect of the model is that can be easily implemented,

under a Bayesian perspective, via MCMC by using the WinBUGS package. We illustrated the methods
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Figure 3: Estimation results for the monkey performance data set. Posterior smoothed mean of θt .

BSSM-N: dotted line, BSSM-L: dashed line, BSSM-GEV: solid line

Table 1: Estimation results for monkey performance data set. First row: Posterior mean. Second row:

Posterior 95% credible interval in parentheses.

Model

Parameter BSM-N BSSM-L BSSM-GEV

0.9945 0.9958 0.9936

δ (0.9870,0.9992) (0.9886,0.996) (0.9832,0.993)

0.0081 0.0211 0.0096

τ2 (0.0043,0.0142) (0.0091,0.0396) (0.0047,0.0213)

– – -0.4558

ξ – – (-0.4988,-0.3515)
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Table 2: Monkey performance data set. DIC: deviance information criterion, pD: effective number of

parameters.

Model DIC pD Rank

BSSM-N 1434.0 39.7 2

BSSM-L 1435.0 39.6 3

BSSM-GEV 1427.0 42.3 1
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Figure 4: Estimation results for the monkey performance data set. Posterior smoothed mean of πt .

BSSM-N: dotted line, BSSM-L: dashed line, BSSM-GEV: solid line
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through an empirical application with the monkey performance data set. Since the WinBUGS software

automatically computes the DIC, we used it for model comparison. Empirical findings show that the

BSSM-GEV model provides better model fitting than the BSSM-N and BSSM-L models.

This article makes certain contributions, but several extensions are still possible. First, we focus on

binary observations, but the setup can be extended to binomial and ordinal data. Second, if the rate of

zeros or ones are note the same, we can compare the performance of the GEV link with skewed links as

the skew normal or the skew Student-t. In such case, it is necessary to develop efficient sampler for the

states variables. Nevertheless, a deeper investigation of those modifications is beyond the scope of the

present paper, but provides stimulating topics for further research.
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