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Abstract. Limiting tail behavior of distributions are known to follow one of three
possible limiting distributions, depending on the domain of attraction of the observa-
tional model under suitable regularity conditions. This work proposes a new approach for
identification and analysis of the limiting regimes that these data exceedances belong to.
The model-based approach uses a mixture at the observational level where a Generalized
Pareto distribution (GPD) is assumed above the threshold. The novelty of this work is
the study of the behavior of the GPD through another mixture distribution over the three
possible regimes. Adequate solution to this evaluation is shown to require a mixed prior
distribution with a point mass, unlike previous work in the area. In some applications,
estimation results showed one regime is clearly indicated by the data whereas in other ap-
plications there is no clear indication of the regime. This estimation is based on evaluation
of posterior probabilities for each regime. Simulation exercises were conducted to evalu-
ate the accuracy of the model in various parameter settings and sample sizes, specifically
in the estimation of high quantiles. They show an improved performance over existing
approaches. Results of environmental applications show that the point mass approach
plays a vital role in this study.

Key-Words: Extreme value theory, GPD distribution, environmental data, MCMC,
Bayesian Inference.

1 Introduction

Natural disasters have become an issue of increasing concern worldwide. In Brazil,
rainfall during the summer months are very common, and in a few days, heavy rainfall
frequently causes disorder in the population. More specifically, cities in the Rio de Janeiro
state have suffered heavy losses with high rainfall over the last three years, leading to large-
scale property destruction and hundreds of lifes lost. According to Parmesan et al. (2000),
changes in extremes of temperature are more responsible for changes in the nature than
change in mean temperature.

Given the importance of extreme values in the aforementioned situations, Extreme
Value Theory (EVT) has proved vital for the prediction of these values. Through EVT,
one can formulate a specific model to estimate outliers and their odds by generalized



extreme value distribution (GEV), when analyzing maxima of data blocks, or by general-
ized Pareto distribution (GPD), when analyzing excesses above a certain threshold. The
classical result in this area is the Fisher & Tippett (1928) theorem. It establishes the
three possible distributions for maximum of blocks of observations. von Mises (1954) and
Jenkinson (1955) unified these distributions in a single class called generalized extreme

value (GEV).

Pickands (1975) proved that if X is a random variable whose distribution function
F, with endpoint xp, is in the domain of attraction of a GEV distribution, then as
u — xp, the conditional d.f. F(z|u) = P(X < u+ z|X > u) is the d.f. of a generalized
Pareto distribution (GPD), whose density is provided below. Loosely speaking, this result
states that if u is large enough, the conditional distribution F'(z | u) can in general be
approximated by a properly scaled GPD, as u tends to the endpoint of F. In addition to
u, the GPD depends on a scale parameter ¢ and a shape parameter £. Let the parameter
vector be denoted ¥ = (£, 0,u). The density of the GPD can be written as
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where x —u > 0for £ > 0and 0 <z —u < —0 /€ for £ < 0. Thus, the GPD is always
bounded from below by w, is bounded from above by u — ¢ /£ if £ < 0 and unbounded
from above if £ > 0.

Smith (1984) proposed parameter estimation via maximum likelihood. He showed that
the maximum likelihood estimators do not obey the regularity conditions if ¢ € (—1, —0.5),
and do not exist if £ < —1. According to Coles & Tawn (1996), situations where £ < —0.5
are extremely rare in environmental data. This finding is empirically supported by many
studies, including our data analyses.

Extreme value theory is particularly useful for determination of higher quantiles, ie.,
g-values satisfying P(X > q) = 1—p for large values of p. This task is particularly hard to
achieve under other contexts due to scarcity of the data but EVT provide the theoretical
support needed for this task. Thus, ¢ can be found by inversion of the d.f. of the GPD
equation p = G(q | &, 0,u) for any given probability p € [0,1]. This gives
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These quantiles are important design parameters specially in extreme cases with p
approaching 1 and we shall concentrate on their estimation. Nascimento et al. (2011a)
used a GPD distribution to calculate lower quantiles P(X < q) = 1 — p for the minimum
temperatures of cities in the Rio de Janeiro state, in Brazil, reversing the curve of mini-
mum density, and then returning the data in the original scale to calculate quantiles and
threshold.



1.1 Nonparametric density estimation

Analysis of extreme values through the GPD distribution typically starts by setting a
threshold and estimating only the tail of the observations. Recently, Cabras et al. (2011)
proposed a model considering a regression structure for the GPD parameters. Mahmoudi
(2011) handles a generalization of the GPD distribution, performing a classical estima-
tion approach, proposing a Beta GPD (BGPD). Although in some situations, estimating
the tail is the only interest to the researcher, one may be interested in answering other
questions such as what is the distribution below the threshold. More importantly, the key
question is the determination of the threshold itself.

Regarding the distribution below the threshold, various models have been proposed.
Frigessi et al. (2002) used a Weibull distribution, Behrens et al. (2004) used a Gamma
distribution. A more flexible approach is to consider a non-parametric approach to this
density. Tancredi et al. (2006) uses a mixture of uniforms distributions. Diebolt et al.
(2005) uses a continuous mixture of Gamma distributions, but considered a fixed thresh-
old. Mcdonald et al. (2011) used a mixture of kernels below the threshold whereas Nasci-
mento et al. (2012) proposed a finite mixture of Gamma distributions, based on results
from Wiper et al. (2001). Nascimento et al. (2012) showed that finite mixture of Gammas
belongs to the domain of attraction of the GEV distribution, indicating that the limit of
the tail converges to the GPD density. Regarding threshold estimation, Bermudez et al.
(2001) performs a Bayesian approach to the Peaks of Threshold (POT) method. Tancredi
et al. (2006) considers the number of observations beyond the threshold is a parameter to
be estimated. Behrens et al. (2004) and Nascimento et al. (2012) considers the threshold
as a parameter to be estimated.

1.2 Study of the shape parameter of the GPD

Embrechts et al. (1997) show that if the shape parameter £ is non-negative, the distri-
bution has a heavy tailed behavior and the distributions in its domain of attraction have
infinite support. If £ is negative, the distribution is light tailed and the distributions in
its domain of attraction have infinite support. When & = 0, the GPD has some special
properties, and the distributions in its domain of attraction may have finite or infinite
support. Situations where £ = 0 are common in many applications and should be studied
in detail.

Usual approaches for study of the shape either assume knowledge of the limiting
regime or assume the shape to vary continuously over its possible values. One of the main
difficulties there is the evaluation of whether £ = 0. Coles (2001), on pages 80 and 81,
report numerical instabilities in the likelihood function when £ ~ 0.

In this study, the possibility that the shape parameter of the GPD may assume the
value 0 is explicitly considered, since in many of the applications cited above this seems to
take place. Our approach allows for evaluation of the probabilities that & = 0, be positive
or be negative, afforded by a mixed distribution for this parameter.



Figure 1 shows the GPD density in some situations, varying £. The density is higher
where the parameter is negative in all configurations, because in this region the density
is limited and their points are concentrated in a smaller range. When ¢ is increasing, the
density is more dispersed for larger values, exhibiting a heavier tail behavior. Moreover,
it is clear that there is no discontinuity at 0, even using the exact density of the GPD for
the case £ = 0.
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Figure 1: Probability density function of the GPD with u = 6, £ varying in the following
configurations: From the left to the right. First line: y = 7 and ¢ = 2 and y = 9 and
o = 2. Second line: y=7and c =4 and y=9 and 0 =4

1.3 Outline of the paper

Section 2 shows the observational model, based on Nascimento et al. (2012), combining
a finite mixture of Gammas below the threshold, and GPD above. A Bayesian approach
will be presented for parameter estimation of all model parameters. A distinctive feature
is the mixed prior distribution for £, with a positive probability of this parameter being
equal to 0. Section 3 shows simulations exercises from the proposed model, showing
the efficiency of the estimation method and the accuracy in detecting extreme quantiles.
The method is compared with standard approaches that consider absolutely continuous
distribution of £. Section 4 shows two applications to extreme events: rainfall data from
Portugal and river flow in Puerto Rico. Results show that in some applications, there is
a high probability of the tail shape £ parameter equal 0. The section 5 summarizes the
main conclusions of this work.



2 Model

An observational model that takes into account the complete data set is proposed,
bearing in mind the need to estimate extreme events. The MGPD model of Nascimento
et al. (2012) showed to be efficient in the non-parametric estimation before the tail, in the
estimation of the threshold and in the estimation of the GPD parameters and is given by
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where h and H are respectively the density and cumulative functions of a finite mixture
of Gamma distributions, and ¢ is the GPD density with parameters ¥ = (u, o, §).

Parameters are estimated under the Bayesian paradigm, assigning a probability dis-
tribution for the parametric vector that combines information from the dataset and the
prior distribution via Bayes theorem. The difference will be in the characterization of the
shape parameter £, and this will be made explicit through its prior distribution. We are
specifically concerned here in the determination of the limiting regime under which the
data is subject to. So, the prior distribution for £ will explicitly consider this distinction
among the regimes through a mixed distribution.

A difficulty arises from the discreteness of the Gumbel regime, associated with £ = 0.
If a continuous distribution is assumed for &, testing for Gumbel could be performed by
either checking if the HPD credibility interval of high level (say 0.95) includes 0 or by
evaluating the probability of the set {¢ : 7(£|x) > 0}. A large value for this probability
would indicate that the Gumbel regime is not supported by the data. The latter procedure
is successfully used for testing by West & Harrison (1997) in the context of state-space
models.

The advantage of using a mixed distribution for ¢ is that it provides the exact prob-
abilities of Gumbel (§ = 0), Frchet (£ > 0) and Weibull (£ < 0) tail behaviours. When
¢ is positive for example, it is known that the data exhibit heavy tail behavior, which
is a common feature in financial data. When ¢ is negative, its distribution is bounded
above. In the situations cited in the Section 1, the data provides evidence pointing at
¢ = 0 but quantification of this event is difficult with a likelihood approach and even with
a Bayesian approach based on a continuous prior for £&. The next section introduces an
approach to handle this situation.

2.1 Prior distribution

The parametric vector for density (3) is composed of three groups of parameters: a) the
parameter 6 = (u,n) of the k-mixture of Gamma densities fo(z | pj,7;) with means s,
and shape parameters 7;, j = 1,..., k, where pt = (p1, ..., pix) and n = (9, ...,mx); b) the

mixture weights p = (p1, ..., px); ¢) the GPD parameter ¥ = (u, 0, §).
The prior distribution for 6 is the same as Nascimento et al. (2012), based on work of
Wiper et al. (2001). A important question about these parameters is their identification.



Diebolt & Robert (1994) and Frithwirth-Schnatter (2001) showed that the identifiability
of the parameters of the finite mixture of densities is only possible if the parametric space
is restricted to C'(p) = {u|0 < py < pe < ... < py}. Therefore, the prior for u is taken in
the form

k
plpas o) = K T fro(pa | ai/bi, b)T(m < ... < ),

i=1

where K1 = fC(“) Hle p(pi)d(p, - - ., ux) and frg is the inverse Gamma density with
parameters defined as in the corresponding Gamma.

The prior for shape parameters 7 is taken as a product of Gamma distributions with
n ~ G(cj/dj,cj), for some positive constants ¢; and d;, for j = 1,... k. The prior
for weights is taken as p ~ Dg(71,...,7), where Dy(wy, ..., wy) represents the Dirichlet
distribution with density proportional to Hle i

The prior distribution for the threshold u is assumed to be u ~ N (u,, 02), as suggested
by Behrens et al. (2004). This distribution is truncated at the lower data limit but usual
choices of hyperparameters make the effect of this truncation negligible. Nascimento
et al. (2012) shows that caution is necessary for setting hyperparameter values in some
situations with small samples. The prior distribution can not be too vague because it
will lead to an incorrect estimation of the threshold. This is controlled by appropriately
setting the value of o2. Nascimento et al. (2012) describes how to specify this value even
with scarce prior information. The prior distribution to scale parameter ¢ is given in
the usual non-informative format for scale parameter p(c) oc o~ ',0 > 0. This can be
shown to be the marginal specification for the Jeffreys prior proposed for GPD model in
Castellanos & Cabras (2007) for (o, §).

The main novelty of this work is the explicit evaluation of the probabilities associated
with the limiting regimes. This is afforded by appropriately setting the prior distribution
for the shape parameter £. Instead of considering a continuous prior distribution, the
possibility of ¢ taking the value 0 is assigned a positive probability. Thus, a mixed
distribution is proposed for &, considering separately the probabilities associated with the
three posible limiting tail behaviors: Gumbel (§ = 0), Frchet (£ > 0) and Weibull (§ < 0).

When ¢ is positive or negative, continuous densities are assumed for these regions.
This mixed setting can be rephrased with the insertion of latent quantities (Z¢, Q)¢). The
three-dimensional quantity Z; = (z; , zg, Ze ), where zgr + Zg +2ze =1, indicates the signal
of &, where zg = 1 indicates that £ > 0, zg = 1 indicates that { = 0 and z; = 1 indicates
that £ < 0. The importance of Z; is that the probability of the data tail behavior can be
obtained through its distribution. The quantity Q)¢ shows the probability of £ be positive,
negative or null, given by Q¢ = (¢, ¢, ¢¢ ), where ¢f + ¢¢ + ¢ = 1. The joint prior of
these parameters is given by

p(& Ze, Qe) = p(€ | Ze, Qe)p(Ze | Qe)p(Qe)
= p(&| Ze)p(Ze | Qe)p(Qe),

where conditional independence between £ and Q¢ given Z¢ is assumed. The distribution
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of £ | Z¢ is assigned in the following specification
€| zf =1~ Gamma(ag, be), §| 2z =1~ de—gand & | z; =1~ U(=0.5,0),  (4)

where the parameters ag, b may chosen so that the prior distribution of the positive
part is vague, 0 is the Dirac function. According to Coles & Tawn (1996), situations
where £ < —0.5 are extremely rare in environmental data and this is consistent with our
experience. Thus, the range of negative values of ¢ is limited to [—0.5, 0], based on Smith
(1984) but other limits may be chosen if required.

The conditional distribution Z; | Q¢ is assigned a multinomial prior with parameters

(¢ 48 q¢)

P(Ze | Qe) o (g7 (a2)% ()7, for (2,28, 27) = (0,0,1),(0,1,0), (1,0,0),

and 0, otherwise. Finally, ()¢ was given a Dirichlet distribution with parameter o, =
(a+,a0, _). Then,

P(Qg) o< (g )™ ()™ (g ), for (¢, q¢,qc) € {(,y, 2)|w,y,2 > 0,2+ y + 2 =1},

and 0, otherwise. In the lack of prior information, the vector a may be chosen to provide
little information on @Q¢. A example could be a; = ap = a_ = 0.01.

The above prior distribution can be marginalized with respect to Z; and ()¢ by analytic
integration, leading to a mixture distribution for £ containing continuous and discrete
components. The above formulation is retained because it simplifies computations and
also highlights the different regimes of tail behavior. These features are explored in the
next sections.

2.2 Posterior distribution

The posterior distribution function to the parameters is obtained by combining the ob-
servations of a sample x = (x1,...,xz,) of size n from the model (3), with the prior
distribution of the parametric vector described in section 2.1. The posterior density is
given by

i <u \j=1 T >u j=1

k k
m(0,p, ¥, Ze, Qelx) o [] (ijfG(xi,ujvnj)) 11 ll—ijFc(UIupnj)] 9(xi | u,0,)
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= nj Hj 2 Ou o

where the first line above comes from the likelihood, the second line refers to the prior

density of parameters, where p(§ | Z¢) is the density of (4), with a mixed distribution.
Inference cannot be performed analytically and approximating MCMC methods are

used (Gamerman & Lopes, 2006). Convergence was assessed by running two parallel
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chains with different starting values. Parameters were separated into blocks and each
block was updated according to a Metropolis rule, since most do not have full condi-
tional densities in recognizable form. Among the exception, one can cite )¢, whose full
conditional distribution is known. Details of the sampling algorithm are provided in the
Appendix and are similar to the application of the algorithm seen in Nascimento et al.
(2012). The modifications occur with respect to sampling of £, with mixed distribution,
and with the additional parameters Z; and ()¢. Proposal variances were tuned with a
variation of the method proposed by Roberts & Rosenthal (2009), with variances smaller
than their target value since our blocks are multidimensional.

2.3 Bayesian inference for higher quantiles

The model proposed here can be seen as mixture of 3 different models characterized by
the possible limiting tail regimes. This distinction is entirely based on a single parameter
& with all other parameters remaining the same under the possible sub-models. There are
a few possibilities for making inference about quantities of interest in such cases. Specially
of interest in EVT is estimation of higher quantiles, extrapolated beyond the data points,
that are merely functions of model parameters.

Consider a quantity of interest ¢, eg a higher quantile, and assume the existence of
the 3 models described above. The posterior probability of each model is given by

7T _ W(y | Ml)ﬂ'(Ml)
(M; | y) S wly | My)r(M;)

and the posterior distribution of 4 is given by

, for1=1,2,3, (6)

p61y) = p(6 |y, My)m(M; | )

Jj=1

Following Draper (1995), inference should be based on this distribution, obtained as
a weighted average of all possible models, hence the name Bayesian model averaging
(BMA). An alternative route is provided by Bayesian model choice (BMC) where one of
the models (say s) is chosen according to some criteria and inference about § is based on
the conditional posterior p(d | y, Ms). The most obvious criteria is to choose the most
probable model. An interesting discussion on the relative merits of BMA and BMC at
a less formal level can be seen in Wasserman (2000) and references therein. The next
sections present and compare both approaches to inference about higher quantiles.

3 Simulation

Simulation studies were performed in different settings of parameter values to better
understand features of parameter estimation, and to verify if the proposed methodology



provides accurate and credible results. Particular attention is given to the variation of
the shape parameter &, which is the main target of this study.

The simulation exercise was performed with samples of sizes 1,000, 2,500 and 10,000.
Data before the tail was simulated a mixture of two Gamma distributions with p = (2, 8),
n = (4,8), and weight vector p = (1/3,2/3). The threshold chosen was the 80% data
quantile and the scale parameters is ¢ = 2. The shape parameter ¢ was simulated with
the following values £ = (—1,—0.4,—0.1,0,0.1,0.4,1). The aim of these configurations is
to verify if the model is accurate in a variety of situations.

Prior distribution for mixture parameters were p; ~ 1G(2.1,5.5) and n; ~ G(6,0.5),
for j = 1,...,k, and 7(p) ~ Dg(1,...,1). These distribution have mean around the
actual parameter value but with large variance to represent lack of information: the prior
variance for p;’s is 250 and the prior variance for 7;’s is 24. Prior distribution for the GPD
parameters was given by Jeffreys prior for o, with p(c) o 1/0. The prior distribution
described in (4) was assigned to &, with az = b = 0.1, and ()¢ was assigned a Dirichlet
prior with ay = ag = a_ = 0.1. The threshold was assigned a normal prior distribution
with mean given by the true value. The prior variance for the threshold was chosen
in a way that the 95% credibility interval for the threshold ranges over the top half of
the data values. This is only mildly informative, using information typically available
and giving enough flexibility to avoid posterior degeneracy. Very large variances for the
threshold could also be considered and cause no problem to the inference for large data
sets. Specifically, a normal prior variance o2 = 10 was adopted when n = 1,000. A prior
variance 02 = 100 was used when n = 2,500 and n = 10, 000.

Inference was performed via the MCMC algorithm. 50,000 iterations to burn-in and
the next 30,000 iterations were kept for inference for simulations with a sample size
n = 1,000. 25,000 iteration to burn-in and 15,000 iterations were retained for inference
were run for the simulations with n = 2,500, while for simulations with sample size
n = 10,000, 15,000 iterations to burn-in and 10,000 iterations were retained for inference.
Inference was made after thinning at every 20 iterations in all simulations. The code was
developed in OxMetricsh (Doornik, 1996) in a HP Compaq 6005 Pro MT PC and 2Gb
RAM. The processing time allowed for 35 (or 4) iterations per second when n = 1,000
(or n = 10,000).

Figure 2 shows the posterior histogram distribution of tail parameters in simulations
with & = 0.4. The distributions of the parameters are centered around the true values
of the parameters used in the simulation. Precision was as effective as in the model by
Nascimento et al. (2012). Note that the entire posterior distribution of ¢ is contained in
the positive semi-line, because the sampled values of Z; in all interactions of the chain
were zgr = 1. Estimation is more precise for larger data sizes, as expected.

Figure 3 shows the estimation of &£, when the true value is equal to 0.1, in three different
configurations of sample size. The posterior distribution is less accurate now as this value
is close to 0, and there is a substantial probability that & = 0, specially for smaller
sample sizes. The estimation becomes more accurate and the posterior distribution is
located around the true value as sample size increases, with a few (when n = 2,500)
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Figure 2: Posterior histogram for the GPD parameters with £ = 0.4: top row - n = 1, 000;
bottom row - n = 10,000. Vertical lines: True value of parameter.

or rare (when n = 10,000) samples associated with the estimated value £ = 0. Figure
3 also shows the estimation of &, when the true value is equal to 0, in three different
configurations of sample size. Virtually same comments are valid here with replacement
of £ = 0.1 by £ = 0. It is interesting to notice the similarities between the two patterns
despite the different expected behavior between £ = 0.1 and £ = 0.

Table 1 shows the posterior probability of parameter Z; in all simulations. The tail
behavior is correctly identified with posterior probability 1 for situations where ¢ is away
from 0 (¢ = (—0.4,0.4,1)), even for smaller sample sizes. The probability probability
P(zg = 1) in the case £ = 0 is high for the three sample sizes, and seem to converge to 1
when the sample size increases. Care is required to study the situations where £ is close
to 0 (£ = (—0.1,0.1)). In those cases when the sample size is smaller, the estimation is
less accurate. Thus, there is greater uncertainty about the sign of the parameter &, and
in the simulations with n = 1,000, the probability P(zg = 1) of incorrect detection was
high. This does not occur for samples with n = 10, 000, which provide more accuracy in
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Figure 3: Posterior histogram for £ in simulations: top row - £ = 0.1; bottom row - £ = 0.
Vertical lines: probability lumps at & = 0.

detection of the sign of £, giving a probability of correct sign very close to 1.

Table 1: Posterior probability of Z, in all simulations.

n=1,000 n=2,500 n=10,000
3 Zzt | 29 | z= ||zt | Z2° | z= || Z* 70 Z~
0410 0 0 1 0 0 1 0 0 1

-0.1 || 0.02 | 0.47 | 0.51 || 0.02 | 0.17 | 0.81 0 0.003 | 0.997
0 0.05 | 0.78 | 0.17 | 0.04 | 0.92 | 0.04 || 0.025 | 0.951 | 0.024
0.1 || 0.16 | 0.80 | 0.04 || 0.92 | 0.08 | O 0.996 | 0.004 0
0.4 1 0 0 1 0 0 1 0 0
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3.1 Fit measures and extreme quantiles

The proposed model is compared with the model of Nascimento et al. (2012), which
showed good efficiency and gain estimation, when compared with other models, such as
models of Wiper et al. (2001) and Behrens et al. (2004). The comparison was made
through fit measures BIC (Schwarz, 1978) and DIC (Spiegelhalter et al., 2002). Another
important evaluation criterion in the estimation of extreme values is the analysis of high
quantiles of the distribution. These will also be compared here.

Figure 4 illustrates the estimation of posterior distribution of extreme quantiles in two
different simulations. High quantiles are well estimated in the proposed model even in
the cases where the model mistakenly indicates with high probability the incorrect tail
behavior. So these imprecise regime identification for smaller sample sizes do not seem to
affect estimation of high quantiles.
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Figure 4: p-quantiles of simulations: left - £ = 0.1, n = 1,000 and p = 0.999; right - £ = 0,
n = 10,000 e p = 0.9999. Vertical lines: true values of quantiles.

Table 2 shows the estimation of extreme quantiles in two different configurations (£ = 0
and £ = 0.1), that are frequently encountered in practice. They constitute the cases
where the proposed model with a lump probability at £ = 0 may contrast more from
the MGPD model with continuous prior for £. The quantiles of the model proposed
in this study were compared with empirical quantiles, and with the quantiles obtained
from the MGPD model of Nascimento et al. (2012). The comparison favors the empirical
quantiles for n = 1,000 with the MGPD providing better estimates for £ = 0.1 and the
proposed model providing better estimates when & = 0. The difference between the 2
models becomes smaller for larger sample sizes with a slight superiority for the quantiles
proposed here.

Table 3 provides the fit measures BIC and DIC in the different configurations used.
There seems to be a balance when comparing the two models. Fit results were very similar
for larger sample sizes.

The results seem to indicate that little is lost in estimation efficiency when using the
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Table 2: Extreme quantile of simulations

n = 1,000
£=0 £=0.1
Prob T E M P T E M P
0.95 10.04 | 10.18 | 10.02 | 9.96 | 10.24 | 10.41 | 10.34 | 10.45
0.99 13.26 | 13.29 | 12.96 | 13.06 | 14.25 | 14.12 | 14.33 | 14.27
0.999 | 17.86 | 17.20 | 16.81 | 17.42 | 21.23 | 20.64 | 21.11 | 19.98
0.9999 | 22.47 N/A 20.37 | 21.76 | 30.03 | N/A | 29.72 | 26.18
n = 10, 000
£=0 £=0.1
0.95 992 | 995 | 9.98 | 9.93 | 10.12 | 10.01 | 10.04 | 10.02
0.99 13.14 | 13.19 | 13.19 | 13.16 | 14.13 | 13.89 | 13.92 | 13.9
0.999 | 17.74 | 17.29 | 17.61 | 17.78 | 21.12 | 21.01 | 20.68 | 20.66
0.9999 | 22.35 | 23.86 | 21.87 | 22.41 | 29.91 | 27.37 | 29.21 | 29.21
T-True, E-Empirical, M-MGPD, P-Proposed
Table 3: Measures of fit for the simulations
n—=1,000 n=2,500 1n=10,000
Model | DIC | BIC | DIC BIC DIC BIC
&E=—-0.4| Prop. | 4163 | 4210 | 10421 | 10498 | 41663 | 41759
MGPD | 4184 | 4219 | 10422 | 10507 | 41661 | 41768
§=—-0.1| Prop. | 4300 | 4333 | 10738 | 10820 | 42825 | 42924
MGPD | 4278 | 4342 | 10740 | 10828 | 42824 | 42933
£E=0 Prop. | 4319 | 4352 | 10736 | 10821 | 43403 | 43502
MGPD | 4298 | 4361 | 10734 | 10829 | 43402 | 43509
£=0.1 Prop. | 4376 | 4414 | 10948 | 11042 | 43601 | 43700
MGPD | 4362 | 4424 | 10948 | 11041 | 43602 | 43709
£E=04 Prop. | 4517 | 4535 | 11269 | 11352 | 44764 | 44864
MGPD | 4487 | 4546 | 11273 | 11362 | 44768 | 44873

Prop. - Proposed Model, MGPD - MGPD Model

models proposed here. In addition, these models are able to identify and quantify well
the possible regimes for tail behavior. So, they seem to provide a useful alternative for

handling and identifying extreme values.

3.2 BMA x BMC: empirical results

The estimation approaches described in Section 2.3 are evaluated empirically in this
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section. Estimation with BMC is performed with the regime with larger posterior prob-
ability amongst the possible 3 regimes.

Table 1 shows that the posterior probability for the correct regime is basically 1 for
all situations considered, when ¢ is away from 0. This means that inference via BMA or
BMC will return the same values. Thus, a more detailed study is only required when the
2 approaches may differ, ie when £ is close or equal to 0.

Table 4 presents a comparison of the 2 approaches for the estimation of high quantiles.
The table shows a clear superiority of the BMA in all scenarios considered. The largest
advantage is observed when ¢ = 0.1. Note that differences between the 2 approaches
get smaller as sample size increases, as expected. Based on these findings, it seems more
reasonable to use BMA to report the results of the applications of the next section.

Table 4: Summary of comparison BMA x BMC:
proportion of simulations (based on 30 independent runs) where the true value of the
quantile was included in the 95% credibility interval

n = 1,000
£=-0.1 £=0 £=0.1
Prob | BMA | BMC | BMA | BMC | BMA | BMC
095 | 0.97 | 093 | 1 1 1 | 096
0.99 | 0.90 | 0.90 | 0.90 | 0.87 | 1 1

0.099 | 0.90 | 0.80 | 0.93 | 0.77 | 0.93 | 0.90
0.0999 | 0.90 | 0.73 | 0.93 | 0.67 | 0.90 | 0.83
Total | 0.92 | 0.84 | 0.94 | 0.83 | 0.96 | 0.93
n = 2,500
£=-0.1 £=0 £€=0.1

Prob | BMA | BMC | BMA | BMC | BMA | BMC
0.95 | 0.97 | 0.97 | 0.96 | 0.93 | 0.97 | 0.90

0.99 0.97 | 0.97 1 1 0.93 | 0.93
0.999 1 1 1 0.90 | 0.83 | 0.83
0.9999 1 1 1 0.70 | 0.70 | 0.70

Total | 0.98 | 098 | 0.99 | 0.88 | 0.86 | 0.84

BMA-Bayesian Model Averaging, BMC - Bayesian Model Choice

4 Applications
This section shows results of real data analyses of extreme data from Environmental

Sciences. The same datasets used in the applications of Nascimento et al. (2012) were
considered for comparative purposes. They consist on datasets where the shape parameter
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¢ was around 0 and thus there was a reasonable degree of uncertainty about the tail
behavior. One would expect that the proposed model would assign substantial probability
to the Gumbel regime in these cases.

The first analysis is based on dataset consisting on the measurement of the levels
of flow of two rivers located in Northeast Puerto Rico: Fajardo and Espiritu Santo.
The data was recorded daily from April 1967 to September 2002, and is freely available
from waterdata.usgs.gov. A total of 864 fortnightly maxima was analyzed. The second
analysis is based on datasets consisting on the measurement of the amount of rain in two
monitoring stations in Portugal: Barcelos, in the North, and Grandola, in the South. The
data was recorded daily from 1931 to 2008, and is freely available from www.snirh.pt.
The complete dataset has a large number of missing values, leading to a total of 918
monthly maxima data points for Barcelos station and 925 monthly maxima data points
for Grandola station.

Figure 5 illustrates the estimation of £ in the four applications considered. Only in
the Fajardo river application the distribution of ¢ is significantly positive, around 0.5. In
all other applications, more than half of the distribution is concentrated in the Gumbel
regime (§ = 0). More specifically, for the Espiritu Santo river, P(z¢ = 1|x) = 0.61,
while for the Barcelos station P(z{ = 1|x) = 0.69 and for the Grandola station P(z¢ =
1]x) = 0.70. One can conjecture that similar results would be obtained in some of the
other environmental applications of Tancredi et al. (2006), Castellanos & Cabras (2007),
Mcdonald et al. (2011) and Mahmoudi (2011), for example.

Figure 6 shows the estimation of extreme quantiles for two applications. For the
Espiritu Santo river, the 99.9% quantile is estimated close to the data maximum. Taking
the posterior mean as an estimator of the quantile, it is expected that a river flow greater
than or equal to 2,531 ft3/s occurs once every 40 years. This is close to the estimated
value of 2,726 ft3/s obtained for the MGPD model. The 99.99% quantile for Barcelos
station goes beyond the observed maximum, well above the observations. This means
that rain levels greater than or equal to 180 mm will occur on average once every 820
years.

Table 5 shows the fit measures for the applications. In most applications, the proposed
model provides a lower BIC, compared with the MGPD model, whereas the lower DIC
are obtained for the MGPD model. The difference is very small in both cases, indicating
that the estimation by both methods give similar results, particularly for the central part
of the data, which has a very large percentage of the observations, resulting in a much
greater weight in the calculation of the fit measures than the tail.

Table 6 shows the posterior mean of extreme quantiles for the applications, comparing
the MGPD and the proposed model. The 0.95 and 0.99 quantiles of both models are
close. There is greater difficulty in estimation of more extreme quantiles, because these
quantiles are already extrapolating beyond the observed data. In these situations, the
difference between the models increases. Based on simulation results, which showed that
very high quantiles for the proposed model are more efficient than the MGPD, we can
safely make inferences about rare events with the quantiles proposed in this paper. The
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Figure 5: Posterior distribution for ¢ in the applications

Table 5: Fit measures for the applications

Espirito Santo Fajardo Barcelos Grandola
Model | DIC BIC DIC | BIC | DIC | BIC | DIC | BIC
Prop. | 11264 | 11335 | 11264 | 11339 | 7641 | 7709 | 4319 | 4389
MGPD | 11255 | 11329 | 11264 | 11380 | 7612 | 7709 | 4304 | 4397
Prop. - Proposed Model, MGPD - MGPD Model

quantiles in the table respectively represent the probability of an event greater than or
equal to the estimated every 10 months, 4 years, 40 years and 400 years for applications
in rivers and twice of these values respectively for the applications of the rainfalls. For
example, a river flow greater than or equal to 857 ft3/s in Fajardo river will occur on
average once every 10 months, and the level of rainfall at Grandola station will be greater
than or equal to 51.1 mm on average once every 20 months, based on the estimation of
the quantile 0.95 using the proposed model.
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Figure 6: Posterior histogram of high quantiles of applications, under MGPD3. Left:
Espirito Santo river, quantile 99.9%. Right: Barcelos station, quantile 99.99%. Vertical lines:
full - posterior mean; dashed - maximum observed data.

Table 6: Extreme quantile of aplications

Espirito Santo Fajardo Barcelos Grandola
MGPD | Prop. | MGPD | Prop. | MGPD | Prop. | MGPD | Prop.
0.95 813 818 858 857 77.5 75.5 53.9 51.1
0.99 1450 1444 1836 2002 105.4 103.1 75.2 71.7
0.999 2726 2531 4706 8181 139.9 | 1429 94.8 103.2
0.9999 | 4734 4292 | 11631 | 23387 | 176.1 | 185.3 | 110.4 | 139.7

Prop. - Proposed Model, MGPD - MGPD Model

5 Conclusions

This paper presented a new approach to estimate extreme events, using the GPD dis-
tribution for the exceedances, where the distribution of the shape parameter £ has a mixed
nature, assigning probabilities to the 3 different extreme regimes. These probabilities are
estimated based on the data.

It was observed through the simulations that the model is effective in estimating
the central part of the distribution, the threshold and the GPD parameters. It was
also possible to obtain good estimates for the tail behaviors. The only restrictions were
observed in situations where the simulated value of £ is close to 0 and the sample size
is small, where there was greater uncertainty on the parameter, and large probability of
& = 0 were obtained. These problems however occur for many of the other approaches and
we conjecture they will occur for all approaches unless very informative prior distributions
are used. Extreme quantile and fit measures showed the advantage of proposed model,
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specifically with respect to the BIC, and when the quantiles are very high.

Applications results showed datasets that exhibit high probability of the Gumbel
regime (£ = 0). These findings emphasize the importance of the models proposed here
where special attention is given to this regime, usually discarded or overlooked in other
formulations. This work can serve as a basis for all other models derived from the use of
the GPD distribution and exceedances for the study of extreme value. These include re-
gression models (Nascimento et al., 2011a), time series models (Nascimento et al., 2011b)
and spatial models.
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Appendix: MCMC algorithm

Sampling was made in blocks with Metropolis-Hastings proposals for each block due to
unrecognizable form of the respective full conditionals. Each GPD parameter was sampled
separately, the pair (u,n) for each mixture component was sampled in a block and the
weights p were sampled in a single block.

Details of the MCMC sampling scheme are given below. At iteration s, parameters
are updated as follows:

Sampling ()¢: it can be seen from the posterior distribution in (5) that the full con-
ditional distribution of )¢ is a Dirichlet distribution and it will be sampled in step s + 1
from

(s) (s) _(s)
QéSH) | © ~ Ds (Z; + oz+,zg + aw, 2 +a_) )
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Sampling &, Z¢: The parameters § and Z; must be sampled jointly because these

parameters are highly correlated and it is also simpler to sample them jointly. The
proposed kernel is (&, Z¢) = q(& | Ze)q(Ze). The proposal for ¢(Z¢) is a Multinomial
Ms(1,1/3,1/3,1/3) and provides a value Z; = (2 25, 2%, 2%).
If z+* =1, & is obtained from a Gamma dlstrlbutlon G(ag, be). If zg* =1, then & =0
With probability 1. If z.* = 1, then " is generated from the Uniform U(—4,0), where
§ =0 /(M —u®) e M =max(zy,...,2,). So, TV = ¢* and Zésﬂ) = Z; are jointly
accepted with probability ag, where

R {1 T(©*]x)q(£¢ Z“))}
¢ GG

where
O = (u, 9, p), ul, 00, &, Z¢, Q) and

é = (ILL(S)7 17(8)7 p(8)7 u( )? 0—(8)7 5(8)7 Zg(S)7 QESJF]-))'
Sampling o, u, u,n,p: The algorithm to sample these parameters is similar to the

algorithm for the MGPD model of Nascimento et al. (2012).
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