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1 Introduction

Differential Item Functioning (DIF) occurs when individuals from different groups and

same proficiency have different probability of correctly answering an item. These groups

may be defined in terms of cultural, geographical, ethnical, social or economical differ-

ences. For example, in an international test, groups may be defined as developed and

non-developed countries.

DIF analysis is a very important issue in educational research. Not considering DIF

when this exists may lead to considerably distorted results in terms of individual and even

population characteristics. For example, studies presented in O’Neil and McPeek [1993],

Schmitt and Bleistein [1987], Berberoglu [1995], Gierl et al. [2003] showed differences

in performance of items of educational assessment tests (like GRE, SAT, GMAT, etc.)

for different groups associated with ethnic characteristics, gender, and/or socioeconomic

status.

DIF may be uniform or not. DIF is said to be uniform when it is independent of

the abilities, that is, the probability of correctly answering an item is uniformly greater

for one group than the other, for all ability levels. In IRT models, this means that the

characteristic curves of the item from the two groups are parallel. More specifically, in

the 3PL model, it means that a difference is only found in the difficulty parameter. On

the other hand, for a nonuniform DIF, there is interaction between DIF and ability.
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There are basically two different approaches to deal with DIF in a test. In the first one,

items with significant DIF are identified using some method and discarded from the main

analysis which proceeds with the remaining ones in a DIF free context. However, item

with DIF may contain important information about the groups, from cultural aspects to

problems or differences in the teaching/learning system. The second approach then, does

not discard item with DIF and incorporates DIF detection, quantification and maybe even

explanation to the main analysis.

There are several well-established methods for DIF analysis in the literature that vary

from each other in a variety of ways. They may differ in terms of the two different

approaches described above, they may or not be based on IRT models, consider or not

more than two groups or more than one factor (group division), deal or not with only

uniform DIF, split or not the analysis into different steps. Ideally, a method should be

as robust as possible to deal with all sorts of different DIF situations and, preferably,

incorporate the DIF analysis to the main one using as much as possible the information

present in the data.

The aim of this chapter is to provide an overview of some of the most well-known

methods for DIF analysis, highlighting their main features, advantages and disadvantages.

Special attention is given to model-based methodologies, that allows not only for DIF

detection, but also its quantification and possible explanation.

The presentation follows the classification proposed by Wainer [1993], that separates

empirically-based procedures from model-based procedures. Thus, the chapter is orga-

nized as follows: Section 2 presents empirically-based procedures for testing for the pres-

ence of DIF; Section 3 presents methodologies based on IRT models that are designed to

test for and accommodate the presence of DIF, if it exists. Section 4 provides guidance on

the use of an encompassing approach for DIF detection, quantification and explanation.

Section 5 shows some simulation results to compare the efficiency of some of the methods

presented. Section6 discusses some possible extensions and draws final conclusions.
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2 Empirically based methods

Some of the most well-known empirically based methods for testing DIF are now pre-

sented. We have opted to present the Mantel-Haenszel procedure, perhaps the most

well-known of them, and methods using random effects and logistic regression. Other

methods can be found in Clauser and Mazor [1998] and Wang and Yeh [2003].

In order to present each of the methods and make the presentation as clear as possible

we establish now the IRT and DIF notation used throughout the chapter. Typically, in a

DIF analysis, one group is fixed as reference group and the other one(s) as focal group(s).

We define Yij as the indicator variable that examinee j has correctly answered item i.

We also define Pij = P (Yij = 1) as the probability that examinee j correctly answers

item i. For IRT models, ai, bi and ci represent the discrimination, difficulty and guessing

parameters of item i, respectively. Finally, θj is the ability of examinee j.

2.1 The Mantel-Haenszel procedures

The Mantel-Haenszel (MH) procedure is based on the Mantel-Haenszel statistics [see Man-

tel and Haenszel, 1959] and was proposed in Holland and Thayer [1988]. It is particulary

appealing because of its simplicity and low computational cost. The method is restricted

to the comparison of two groups (reference and one focal) and, in principle, the abilities of

the examinees ought to be known prior to the analysis, as the method requires the groups

divided in matched comparable subgroups. As that is not the case in real situations, the

groups may be matched using the total test score, which includes the item being studied.

Some studies have shown that this is a good approximation when all the items follow the

3PL model for sufficiently long tests, but significant breakdowns may occur if the number

of items is small (less than 25) and the difference between the mean score of reference and

focal groups is large [see Stout, 1990, Allen and Donoghue, 1996, Donoghue et al., 1993,

Roussos and Stout, 1996, Shealy and Stout, 1993b, Uttaro and Millsap, 1994]. Also, this

matching procedure however is not dissociated from the DIF existence and, therefore,
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the ability purification in successive stages is frequently recommended, where the items

detected with DIF (in each stage) are eliminated from the ability calculation for the next

analysis [see Holland and Thayer, 1988, Wang and Su, 2004].

Although very simple and practical, the MH procedure is not designed for and may

not be powerful in detecting nonuniform DIF [see Hambleton and Rogers, 1989].

For the item under investigation, called studied item here, the MH procedure arranges

the data of the studied item into 2×2 tables and the null hypothesis of no DIF is tested

via Chi-square procedures. The test however does not measure the magnitude of the DIF

(in a given scale) exhibited by the item in study.

Each one of the 2×2 tables refers to one matched set of examinees from reference and

focal groups. For example, if examinees are matched using the total test score, there will

be one table for each total test score found in the data. The tables are constructed as

shown in table 1.

Y = 1 Y = 0 Total

R nR1k nR0k nRk

F nF1k nF0k nFk

Total n1k n0k nk

Table 1: Table constructed with data from examinees from the kth matched set on the

studied item. Entries are the number of occurrences in each subgroup. R and F refer to

reference and focal groups, respectively. Y = 1 and Y = 0 correspond to correct and wrong

answers, respectively.

Under the null hypothesis H0 of no DIF in the studied item, nR1k and nF1k are in-

dependent hypergeometric random variables with parameters (nRk, n1k) and (nFk, n1k),

respectively.

The MH procedure tests this null hypothesis against the alternative hypothesis

Ha :
pRk

qRk
= α

pFk

qFk
, ∀k,
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for α 6= 1, where pRk and pFk are the probabilities of correct answer (Y = 1) for the ref-

erence and focal groups, respectively. Note that α = 1 corresponds to the null hypothesis

H0. Parameter α is called the common odds-ratio and the MH chi-square statistics is

given
(|
∑

k nR1k −
∑

k E[nR1k]| − 1/2)2
∑

k V ar[nR1k]
, (1)

where

E[nR1k] =
nRkn1k

nk

and V ar[nR1k] =
nRknFkn1kn0k

n2
k(nk − 1)

.

Under H0, the MH statistics has an approximate χ2
1 distribution and the MH test of size

γ rejects H0 if the MH statistic is larger than the (1− γ) quantile of the χ2
1 distribution.

If H0 is rejected, the intensity and direction of DIF may be calculated. Assuming that

DIF is uniform across strata k, one can compute an estimate of α given by

α̂MH =

∑

k nR1knF0k/nk
∑

k nR0knF1k/nk
, (2)

which re-scaled to

∆MH = −2.35 log(α̂MH) (3)

is a measure of the amount of DIF in the scale of differences in the item difficulty as

measured in the ETS “delta scale” [see Holland and Thayer, 1985]. This estimate can

be used to classify the magnitude and direction of DIF: favorable to the reference (focal)

group if ∆MH < 0 (∆MH > 0, respectively) and high if |∆MH | > 1.5.

The standard error of ∆MH is given by [see Phillips and Holland, 1987] as

se(∆MH) =

[

(2.35)2
∑

k

(nR1knF0k +∆MHnR0knF1k)

2R2n2
k

[nR1k + nF0k +∆MH(nR0k + nF1k)]

]1/2

,

(4)

where R =
∑

k

(
nR1knF0k

nk
). Based on the asymptotic normality of ∆MH , Zwick et al.

[1999] followed an approximate Bayesian procedure admitting that

∆MHi
|δi ∼ N(δi, S

2
i ) (5)
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where δi = E(∆MHi
) is the DIF parameter of interest. Assuming additionally a prior

distribution δi ∼ N(δ,Γ2), gives the posterior distribution for δi given by

δi|∆MHi
∼ N(Wi∆MHi

+ (1−Wi)δ,WiS
2
i ) where Wi =

Γ2

S2

i +Γ2
.

The above authors assume the quantities S2
i , Γ

2 and δ known and given respectively

by the estimated values of se(∆MHi
), mean and variance of the estimates of ∆MHi

in an

empirical Bayes procedure [see Zwick et al., 1999].

Finally, the method can be extended to account for polytomous items and/or multiple

groups with generalized MH procedures. Two different extensions are more common to

the case of polytomous items: generalized Mantel-Haenzel test - GMH [see Mantel and

Haenszel, 1959, Zwick et al., 1993] for nominal responses and the Mantel test [see Mantel,

1963, Zwick et al., 1993] for ordinal responses. The latter is briefly described below. GMH

test may also be found in the above references and generalizations for multiple groups

may be found in Fidalgo and Madeira [2008].

Consider the generalization below for Table 1 for the case of items with more than 2

responses:

Y = 1 · · · Y = i · · · Y = p Total

R nR1k · · · nRik · · · nRpk nRk

F nF1k · · · nF ik · · · nFpk nFk

Total n1k · · · nik · · · npk nk

Table 2: p - number of categories

Under the hypothesis H0 of no DIF, {nF ik, i = 1, . . . , p} and {nRik, i = 1, . . . , p}

are independent and follow multivariate hypergeometric distributions with parameters

(nFk, nik, i = 1, . . . , p.) and (nRk, nik, i = 1, . . . , p.), respectively. Let Rk =
p
∑

i=1

nRiki and

Fk =
p
∑

i=1

nF iki be the sums of scores of reference and focal groups respectively. Then,

E[Rk] =
nRk

nk

p
∑

i=1

i nik , E[Fk] =
nFk

nk

p
∑

i=1

i nik
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V ar(Rk) = V ar(Fk) =
nRknFk

n2
k(nk − 1)

[

(nk

p
∑

i=1

i2nik)− (
p
∑

i=1

i nik)
2

]

The Mantel statistics

(
∑

k

Rk −
∑

k

E[Rk])
2

∑

k

V ar(Rk)
has χ2

1 distribution, under H0 [see Mantel,

1963] and the Mantel test of size γ rejects H0 if the MH statistic is larger than the (1−γ)

quantile of the χ2
1 distribution.

2.2 Random effects models

This method decomposes the variation of the MH D-DIF statistics in (3) to address

issues related to different administrations of the test. The authors argue that a separate

DIF analysis of administrations of the same test are bound to be very inefficient due to

sampling variation, which motivated their variance decomposition approach.

The random effects model for the MH D-DIF statistics from a single administration

is given by

yi = µ+ ξi + ǫi (6)

where, in this section, yi = −2.35 log(α̂MH), µ is an unknown constant (usually close to

0), and ξi and ǫi are random terms.

The term ξi is the deviation of DIF in item i from the average DIF µ. The ξi’s are

considered to be random, all independent and identically distributed with distribution

N (0, τ 2). Furthermore, the ǫi’s are independent with distribution N (0, s2i ), where s2i is

the conditional variance of log(α̂MH) (conditional on ξi).

Finally, it is assumed that the administration of the test involves a large number of

examinees in both groups so that the estimate of each s2i has negligible sampling variance,

which is therefore ignored. This way, the DIF in a test can be characterized by the variance

of the ξi’s, τ
2. The case where τ 2 = 0 corresponds to complete absence of DIF, whereas

large values of τ 2 implies that either a very large proportion of items have moderately

large DIFs or a small number of items have very large DIFs.
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The analysis with the model in (7) consists of four steps. Firstly, the yi’s and si’s

are obtained. Then, the global parameters µ and τ 2 are estimated. On the third step,

the posterior distributions of the coefficients µ + ξi are computed. Finally, the final step

consists of deciding for each item whether to retain or replace it, based on the chances of

reduction in the value of τ 2.

If the same test is administered on more than one occasion, say K, the variation of the

MH D-DIF coefficient across the administrations can be represented by an extra random

term in the model. Denoting yik as the MH D-DIF statistic for item i in administration

k, the new model is given by

yik = µ+ ξi + αik + ǫik (7)

where ξi + αik = ξik is the population-specific random effect. It is assumed that the αik’s

are i.i.d. with N (0, σ2) distribution. The variance σ2 measures the variation in DIF across

the administrations.

2.3 Logistic regression method

The logistic regression method was proposed in Swaminathan and Rogers [1990] and is

more robust than the MH procedure in the sense that it considers the continuous nature

of the abilities and is suitable to detect non-uniform DIF. The method is based on the

following logistic regression model for predicting the probability of a correct response to

an item:

logit [P (Yjg = 1)|θ] = β0g + β1gθjg, j = 1, . . . , ng, g = 1, 2, (8)

where Yjg is the answer given by examinee j from group g and θjg is his/her ability. β0g

and β1g are the intercept and slope parameters in group g, respectively.

Under this formulation, if the studied item exhibits no DIF, then β01 = β02 and

β11 = β12. On the other hand, if β01 6= β02 and β11 = β12, the curves are parallel and the

item exhibits uniform DIF. For any other case, non-uniform DIF is present.
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The model in (8) can be conveniently reparameterised as

logit [P (Yjg = 1)|θ] = τ0 + τ1θj + τ2g1 + τ3(θjg1), (9)

where g1 is the indicator variable of examinee j belonging to group 1. This implies that

τ2 = β01 − β02 and τ3 = β11 − β12

The model requires prior knowledge of the abilities. Once again, these may be fixed

as the total test scores or, preferably, some abilities purification procedure ought to be

adopted. Given that the abilities are known, we have in hands a logistic regression model

for with we observe some data (answers given to the studied item) and need to estimate the

coefficients to come to a conclusion about the DIF. The original paper adopts a maximum

likelihood approach and uses asymptotic theory for MLE’s to carry out a hypothesis test

for τ2 and τ3. Nevertheless, other inference methods may be also adopted, for instance,

Bayesian methods.

Various extensions and adaptations of logistic regression were proposed for the case of

polytomous data. Miller and Spray [1993] suggest its use with the grouping indicator gR

(gR = 1 indicates the reference group and gR = 0 indicates the focal group) as response

variable as

logit[P (gR = 1|θj)] = γ0 + γ1θj + γ2Yj + γ3θjYj (10)

where Yj is the item response, θj is the proficiency, when it is known or the total test score,

otherwise. Note that both cases disregard measurement errors. γ3 = γ2 = 0 indicates no

DIF; γ3 = 0 and γ2 6= 0 indicates the presence of uniform DIF; any other case indicates

the presence of non-uniform DIF. The authors suggest choosing the model according to

a series of likelihood ratio tests, but other methods may also be used.

French and Miller [1996] considered the case of ordinal responses and suggested the

replacement of response Yj, with p categories, by p − 1 dichotomous variables Y i
j , i =

1, . . . , p − 1, each representing a different contrast between categories. They suggested
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three schemes for construction of Y i
j : continuation ratio, cumulative and adjacent cate-

gories schemes. The first one admits that Y i
j = 0 if Yj = i and Y i

j = 1 if Yj > i, i =

1, . . . , p − 1. In the second one, Y i
j = 0 if Yj ≤ i and Y i

j if Yj > i. In the latter scheme

Y i
j = 0 if Yj = i and Y i

j = 1 if Yj = i + 1. DIF detection tests can be obtained from

inference about the regression coefficients γ2 and γ3 of model

logit[P (Y i
j = 1|θj)] = γ0 + γ1θj + γ2gF + γ3θjgR, i = 1, . . . , p− 1. (11)

A simultaneous test for all p − 1 variables may be only carried out for the first scheme

because it is the only scheme that yields independent Y i
j variables.

2.4 Hierarchical logistic regression method

This method was proposed in Swanson et al. [2002] and consists of a hierarchical logistic

regression model. The main contribution of the paper lies on the second level of the model

where the coefficients of the logistic regression are explained by covariates related to item

characteristics. This approach helps to identify consistent sources of DIF across items and

to quantify the proportion of variation in DIF explained by the covariates. This models

is related to the one described in Rogers and Swaminathan [2000], where the authors use

examinees characteristics at the second level to improve the matching of reference and

focal groups.

The hierarchical logistic regression model of Swanson et al. [2002] is given by

logit [P (Yij = 1)] = b0i + b1iθj + b2i ∗ groupj, (12)

where θj is the ability of examinee j and groupj is the indicator variable of examinee j

belonging to the focal group. Note that the discrimination of the items are constrained

to be the same for both groups and b2i reflects the deviation of the item difficulty in the

focal group from the reference group.

The second level of the model treats the coefficients of (12) as random variables where
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item characteristics are used to explain DIF, for example:

b0i = β00 + ǫ0i

b1i = β10 + ǫ1i

b2i = β20 + β21I1 + β22I2 + . . .+ β2nIn + ǫ2i,

where I1, . . . , In are interval or dummy-coded item characteristics and the ǫ’s are the

unexplained variances.

Estimation is performed using empirical Bayes methods with estimates of the abilities

assumed to be known and fixed.

3 Methods based on IRT Models

Let us assume that the response to an item is governed by the IRT model family. Then,

differential item functioning could be verified by allowing the model parameters to vary

across groups of respondents. Substantial difference in these estimates would provide

evidence in favor of the presence of DIF. for example, in the 2PL model one may assume

for item i that

log

(

Pijg

1− Pijg

)

= 1.7[aig(θj − big)] (13)

where Pijg is the probability of correctly answering the question for item i by respondent

j in group g, g = 1, . . . , G.

One problem that emerges in these contexts is the identifiability of these models. If a

test has I items and it is admitted that the parameters of all items vary across groups,

then it is easy to show that for any constants c1g, c2g:

aig(θj − big) = aig · c1g(
θj−big+c2g−c2g

c1g
) = aigc1g[

(θj+c2g)

c1g
− (big−c2g)

c1g
]

The above non-identification of the model reflects the problem of maintaining the

comparability of the proficiency scales across groups when DIF is present. For example,
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it is difficult to tell whether the better result of a group when compared to another group

was due to an improved proficiency of the first group or due to the presence of positive

DIF for this group, making the items easier. So, identification of these models is related

to further assumptions regarding the presence and intensity of DIF.

One example if the method proposed by Zimowski et al. (1996) for the 3PL model.

The assume that DIF occurs only in the difficulty parameter (as also available in the

BILOG-MG software) and impose the restriction that the average item difficulty 1
I

I
∑

i=1

big

is the same for all groups. This restriction ensure identifiability but pays the price of

assuming that DIF is always compensated, that is, is there are easier items for one group

there must be more difficult items when compared to another group. Another common

identification restriction is to assume from the start that a few items do not present DIF.

These items are usually refereed to as anchor items.

3.1 IRT-LR methods

The IRT-LR methods were proposed in Thissen et al. [1993] and one of them was imple-

mented in the software IRTLRDIF v.2.0b [see Thissen, 2001], for two models (3PL and

Samejimas’s (1969, 1997) graded model). These methods are IRT model based and, gener-

ally speaking, detect items with DIF by first estimating then testing the item parameters

for the reference and focal groups. Thissen et al. [1993] proposes three different IRT-LR

procedures that differ in the methods used to estimate the parameters and in the IRT

model being used, but that all use LR tests. The authors also propose an alternative to

LR tests, the IRT-D2, that uses maximum likelihood estimation and ratios of parameter

estimates to their standard erros to test the DIF hypothesis.

The IRT-LR methods fix the distribution of abilities for the reference group, generally

N (0, 1), and estimates these parameters for the focal group. Naturally, some strategy

must be adopted to match the examinees from different groups. Typically, a set of anchor

items (those which do not exhibit DIF) is fixed and the procedures are applied to each of
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the remaining items, separately. Alternatively, IRTLRDIF also offers the option of fixing

the parameters of all the other items apart from the one being studied. This last option

may not be very efficient, specially if many items exhibit DIF and mostly to the same

direction.

The IRT-LR methods proceed as follows: given that an item i is at study, the param-

eters of the IRT model adopted are estimated using some estimation method - IRTLRDIF

uses the Bock and Aitkin [1981] algorithm. The parameters to be estimated are those

of item i and the items of the anchor set (if this is fixed) or of all the other items, the

abilities and the parameters from the focal group ability distribution. Two models are fit

here - the compact model [C], where the item parameters are assumed to be the same for

both groups, and the augmented model [A], for which the parameter(s) of item i differ

between the groups. The next step consists of obtaining the LR test statistic given by

G2(d.f.) = 2 log
Likelihood[A]

Likelihood[C]
, (14)

where Likelihood[·] is the likelihood of model [·] given the estimates of the model pa-

rameters. It is well documented that, under very general assumptions, G2(d.f.) follows a

X 2(d.f.) distribution under the null hypothesis that model [C] is “correct”, where d.f. is

the difference between the number of parameters in [A] and the number of parameters in

[C].

Depending on the IRT model in hands, successive tests may be performed to test pa-

rameters individually, see, for example, the procedure adopted by the IRTLRDIF software

for the 3PL model. In the simplest case of the 1PL model, the null hypotheses states

that the studied item has no DIF against the alternative hypotheses that the difficulty

parameter of this item is different for the reference and focal groups.

3.2 The SIB test

The SIB test, proposed in Shealy and Stout [1993a], is an statistical test designed to

simultaneously detect DIF present in one or more items of a test. It was the first IRT
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based method to simultaneously detect DIF in more than one item, but has limited power

to detect nonuniform DIF.

The SIB test looks at the DIF problem from a multidimensionality perspective using

a multidimensional non-parametric IRT model. The ability vector θ is decomposed into

{θ,η}, where θ is the ability intended to be measured by the test and η are nuisance

abilities not meant to be measured in the test but that do influence in the answer to

one or more items. This way, DIF items are those which, apart from the target ability,

measure one or more nuisance abilities.

In order to statistically detect DIF for a subset of items, it is necessary to identify a

subset of anchor items, i.e. items that only measure the target ability, in order to match

the examinees of equal target ability. The SIB test proceeds by constructing a DIF index

βU against the focal group considering the studied item subset. More specifically:

βU =

∫

Θ

B(θ)fF (θ)dθ, (15)

where fF (θ) is the probability density function of θ for the focal group and

B(θ) = TSR(θ)− TSF (θ) = E[h(U)|θ, g = R]− E[h(U)|θ, g = F ], (16)

where U is the vector of answers given to the subset of studied items by an examinee

chosen at random and h(U) is a test score.

The SIB test is carried on by testing the hypothesis:

H0 : βU = 0 vs H1 : βU > 0.

The test statistics, which is essentially an estimate of βU normalized to have unit variance,

is given by

B =
β̂U

σ̂(β̂U)
. (17)

See Shealy and Stout [1993b] for the full expression. Finally, B is approximately standard

normal when βU = 0 and the target ability distributions are the same.
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3.3 Multilevel Bayesian IRT method

May [2006] proposes a multilevel Bayesian IRT model to compared SES scores across

different nations. A set of anchors items are fixed and the remaining ones are allowed

to operate differently across nations. This way, the resultant scores are internationally

comparable.

The proposed model consists of the standard graded response model of Samejima

[1997] with the discrimination and threshold parameters being specific to each nation in

the non-anchor items:

log

(

Ωhjki

1− Ωhjki

)

= 1.7 [ahi(θj − bhi + δki)] , (18)

where Ωhjki is the cumulative probability that student j from nation h responds in category

k or higher on item i, θj is the SES score of student j, ahi is the discrimination power for

item i in nation h, bhi is the overall threshold for item i in nation h and δki is the category

parameter for response category k on item i.

Inference is conducted via MCMC in a Bayesian framework with vague priors. This

approach also allows the treatment of the missing data problem encountered in SES data

by simply sampling these data values from their sampling distribution in a Gibbs sampler

step.

3.4 Integrated Bayesian DIF model (IBDM)

The main idea behind the integrated DIF model is to reconcile the two contrasting ac-

tivities of testing and estimating DIF into a single, unified framework. In passing, it also

reconciles with simultaneous estimation of all model parameters (item characteristics, in-

dividual proficiencies and DIF magnitude). This task is achieved more naturally under

the Bayesian paradigm but its use under the frequentist paradigm may be possible, albeit

substantially more cumbersome.

The model that serves as a basis for this proposal can be viewed as an extension and
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generalization of (18). The presentation here will concentrate on the 2PL IRT model with

dichotomous responses but it can be generalized to other IRT settings. The model has

observational equation with DIF quantification

logit [P (Yjg = 1)|θ] = ag(θjg − βg), j = 1, . . . , ng, g = 1, ..., G, (19)

where ag = adag and bg = b + dbg, with dag = 1 and dbg = 0, for the reference group g = 1.

The choice of multiplicative DIF effect for the discrimination a and additive DIF effect

for the difficulty seem to make sense given their respective natures but these effect could

have been defined to act differently.

These models allow for DIF explanation and DIF detection. DIF explanation is

achieved in a (mixed) regression setting

dhg = z′gγ( + wh
g ), g = 2, ..., G, h = a, b (20)

where zg are characteristics associated with group g and the item under consideration, γ

is their coefficient and the added random terms wh
g ∼ N(0, τhg ) may account for extra-

variability. A typical example is a question involving monetary issues in Mathematics

exam at an elementary level. Our experience shows that children from rural areas appear

to be less exposed to money and end up having more difficulty in correctly answering

than urban children, irrespective of their mathematical ability.

DIF detection is achieved by assuming that the explanation in 20 is only valid with

probability πh
g . The complementary probability 1 − πh

g is associated with a DIF model

concentrated around 0, representing no DIF. Soares et al. [2009] use the representation

dhg ∼ N(0, cτhg ), where c is set at a suitably large value to ensure dhg remains close to 0.

This provides an indication that dhg is a reasonable hypothesis and thus DIF is assumed

not to exist in this case.

The model is quite general and solves many previously existing difficulties. It only

requires a single anchor item even in the presence of vague prior information. When prior

information exists, no anchor item may be required. The prior definition of an anchor
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item does not impose that all other items are not anchor and have DIF. The mixture

component above allows only the detection of items with DIF. The other items will then

be set as anchor as well. The integrated model also allows for different distributions for

the proficiencies of each group, with the standard normal distribution retained for the

reference group. A possible generalization is suggested by Fox and Verhagen [2010] where

a regression model for the mean proficiencies explains their differences across groups.

Some of the above characteristics of the integrated model are detailed in the simulations

of the next sections.

4 Practical Guidance for IBDM

The integrated model of the previous section can be used in many different ways to

detect DIF. Many of the existing models previously presented are recovered with suitable

restrictions on this formulation, depending on the choice of πh
ig. The model is general

enough to circumvent many limitations of traditional DIF mehodologies. All methods

below will only differ in the specification of πh
ig, h = a, b. Note that πh

ig = 0, for h = a, b,

implies item i is an anchor item and πh
ig = 1, for h = a, b, implies that item i is non-anchor

and its DIF must be estimated. Finally, 0 < πh
ig < 1, for h = a, b is the uncertain scenario

where the item may be identified as anchor or non-anchor.

A few practical points are better illustrated empirically. A simulated data set consist

of a typical setup with 20 items from which 5 (and 2) of them have DIF in difficulty

(discrimination, respectively). There will be assumed 1,000 respondents at each of 2

groups (reference and focal). Results are obtained via MCMC with OpenBUGS ([Lunn

et al., 2009]) and are based on the code provided in the Appendix A. 25,000 iterations were

required to ensure convergence. Additional 10,000 iterations were obtained and a final

sample of 1,000 values was used for inference after thinning at every 10 iterations. Readers

are referred to Gamerman and Lopes [2006] for more details on MCMC algorithms.

Among the most important situation in practice, one may list:
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1. General Case (Non informative prior for DIF existence);

In this case, πh
ig = 0.5 may be set for all items or non-informative prior distributions

may be set form them. DIF identification will then depend on the estimation of the

parameters associated with dhig, h = a, b. DIF can be detected in a number of ways.

The simplest ones are by comparison of the posterior mean or median of πh
ig against

a chosen cutoff point (eg 0.5) or by assessing whether the credibility intervals of

dhig include 0. Generally, more sensitivity is obtained with smaller prior variances

for the components of dhig (eg τhg ). Table 2 presents the results obtained with the

estimation procedures. It clearly shows good recovery of the simulated values of the

parameters and good DIF detection. The model correctly identified 4 out of 5 items

with difficulty DIF and 1 out of 2 items with discrimination DIF. The not identi-

fied DIF discrimination for item 20 had very small DIF values implying very little

difference between analyses with and without DIF for this item. For item 11, the

difficult parameter for focal group is very small and the method identified the DIF in

discrimination parameter, what may be reasonable. Generated (estimated) values

for means and standard deviations were 0.00 (0.00) and 1.00 (1.01) for reference

group and -0.73 (-0.75) and 1.00 (0.98) for focal group.

Difficulties associated with correct DIF identification may occur in some situations.

This typically occurs when the focal group mean was substantially larger than the

the reference group mean and vice versa or when DIF is substantially asymmetric.

This problem may be mitigated by using more informative priors for πh
ig or for the

other DIF parameters. A simulated example illustrating this point will be presented

in Appendix B.

2. Fixing Anchor Items

One may assume that some items do not have DIF. These items form the Fixed
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Table 3: Results for simulated dataset

item
Reference group Focal group

DIF detection for a DIF detection for b

Credibility limits
πa
i2

Credibility limits
πb
i2

a b c a b 5% 95% 5% 95%

1 0,98(0,92) -0,76(-0,74) 0,10(0,11) 0,98(0,92) -0,76(-0,74) 0,00 0,00 0,06 -0,02 0,00 0,10

2 0,70(0,76) -0,63(-0,52) 0,16(0,21) 0,70(0,78) -0,63(-0,53) 0,00 0,24 0,16 0,00 0,10 0,13

3 1,47(1,50) 0,50(0,51) 0,24(0,25) 1,47(1,49) 0,50(0,51) -0,22 0,03 0,19 0,00 0,00 0,10

4 0,89(0,81) 1,96(2,27) 0,39(0,37) 0,89(0,83) 1,96(2,35) -0,74 0,20 0,33 -1,18 0,56 0,40

5 1,49(1,36) 1,02(1,14) 0,17(0,19) 1,49(1,41) 1,02(1,15) -0,08 0,24 0,20 -0,08 0,00 0,12

6 0,77(0,77) -1,81(-1,92) 0,26(0,23) 0,77(0,76) -1,81(-1,85) -0,12 0,00 0,12 -0,35 0,00 0,33

7 1,45(1,34) 0,17(0,14) 0,19(0,19) 1,45(1,37) 0,17(0,15) 0,00 0,20 0,15 -0,09 0,01 0,14

8 1,56(1,27) -2,17(-2,18) 0,24(0,23) 1,56(1,36) -2,17(-2,19) 0,00 0,38 0,18 0,00 0,13 0,17

9 1,42(1,31) -0,35(-0,33) 0,25(0,23) 1,42(1,56) -0,35(-0,32) 0,00 0,65 0,40 -0,03 0,00 0,08

10 0,92(1,06) 0,35(0,37) 0,28(0,26) 0,92(0,95) 0,35(0,28) -0,55 0,00 0,36 0,00 0,35 0,38

11 1,52(1,50) -2,43(-2,48) 0,11(0,20) 1,52(4,62) -3,03(-2,60) 0,00 1,93 0,79 0,00 0,64 0,30

12 2,02(2,01) -0,56(-0,51) 0,21(0,22) 2,02(1,98) -0,56(-0,50) -0,19 0,02 0,15 -0,05 0,00 0,10

13 0,67(0,86) -0,91(-0,68) 0,06(0,12) 0,67(0,85) -0,91(-0,74) -0,11 0,00 0,10 0,00 0,27 0,35

14 1,73(1,68) -0,65(-0,57) 0,22(0,22) 1,73(1,77) -0,41(-0,33) 0,00 0,36 0,23 -0,35 -0,13 1,00

15 1,05(1,22) 0,17(0,24) 0,23(0,23) 1,05(1,20) 0,17(0,25) -0,25 0,00 0,18 -0,01 0,00 0,09

16 0,83(0,90) -0,68(-0,51) 0,12(0,17) 0,83(0,89) -1,03(-0,90) -0,18 0,00 0,14 0,20 0,56 0,97

17 0,66(0,95) 1,26(1,09) 0,21(0,23) 0,66(0,85) 1,26(1,42) -0,85 0,00 0,36 -1,43 0,00 0,51

18 0,68(0,81) -0,71(-0,45) 0,13(0,22) 0,47(0,44) -1,70(-1,46) -0,87 -0,39 1,00 0,70 1,31 1,00

19 1,16(1,24) 0,53(0,70) 0,34(0,37) 1,16(2,25) 1,11(1,42) -0,18 1,55 0,34 -1,20 -0,26 1,00

20 0,95(0,85) 1,01(1,12) 0,12(0,11) 0,75(0,76) 1,01(1,12) -0,48 0,00 0,40 -0,19 0,18 0,21

DIF values: simulated (estimated). Bold represents DIF items.

Anchor Item Set and πh
ig = 0, if item i belong to this set. The remaining items may

be imposed to have DIF (πh
g = 1) or may allow to have DIF detected and possibly

explained via regression. Soares et al. [2009] showed a superior performance in

identification when the Fixed Anchor Item Set increases.

3. Imposing Prior Information about DIF Existence

Fixing one or more items to be anchor items ensures model identifiability and leads

to good estimation is this assumption is correct. However, absolute certainty is

rarely achieved in practice. It seems more reasonable to set as many non-DIF items
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as possible. If there is some prior information, it may be included in the model

when specifying the prior for πh
g . Relevant prior information may also lead to model

identification. This point will be illustrated in the results for the simulated data of

Appendix B.

5 Comparison of methods

This section presents presents a simulation study to compare the performance of different

procedures to detect DIF. This exercise was performed with a set of 30 databases generated

from 3PL models with 2 groups with 1,000 respondents each. The average proficiency

in the reference group was set to 0 for identification and average proficiency in the focal

group were randomly chosen in the interval [−1.5, 1.5].

Table 4: Results for 30 tests with 20 items each
discrimination difficulty Error

percentage
number of

items with-

out DIF

number of

items with

DIF

number of

items with-

out DIF

number of

items with

DIF

Real 600 0 469 131

IRTLRDIF
Without DIF 506 (84.3%) – 359 (76.5%) 22 (16.8%)

20%
With DIF 94 (15.7%) – 110 (23.5%) 109 (83.2%)

MH
Without DIF – – 422 (90,0%) 39 (29,8%)

19.9%
With DIF – – 47 (10.0%) 92 (70.2%)

BILOG-MG
Without DIF – – 450 (95.9%) 40 (30.5%)

17.3%
With DIF – – 19 (4.1%) 91 (69.5%)

IBDM πh
i2 = 0.5

Without DIF 557 (92.8%) – 426 (90.8%) 33 (25.1%)
17.1%

With DIF 43 (7.2%) – 43 (9.2%) 98 (74.9%)

IBDM πb
12

= 0.1 Without DIF 557 (92.8%) – 438 (93.4%) 31 (23.7%)
15.2%

πh
i2 = 0.5, i > 1 With DIF 43 (7.2%) – 31 (6.6%) 100 (76.3%)

Soares et al. [2009] evaluate the methods by comparing the estimated values of DIF

against their generated values, as suggested by Zwick et al. [1993]. Here, comparison is
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based on the percentage of correct DIF detection in a effort to simplify the comparison

and thus help the practitioner. This comparison is obviously affected by the significance

levels chosen to declare that DIF was detected. The significance levels adopted for DIF

detection were chosen as the default value in the software IRTLRDIF v2.0b and 0.05

for Mantel-Haenszel procedures and the cases that were run in BILOG-MG. An item was

identified with DIF in IBDM when the posterior mean of πh
ig was larger than 0.5.

The choice of the significance levels reflects a trade-off between sensitivity and speci-

ficity, making it difficult to define an universally accepted level. Assuming that sensitivity

and specificity are equally important, the average percentages of misclassified items were

20%, 19.9%, 17.3%, 17.1% and 15.2%, respectively for methods IRTLRDIF, MH, BILOG-

MG, IBDM with πh
i2 = 0, 5 and IBDM with πb

12 = 0, 1. This study shows some evidence of

superior performance of IBDM when informative prior is assumed for a given item. Since

this amount of prior information is usually encountered in real studies, it seems safe to

recommend its use in practical studies. Appendix A details the code required to perform

the analysis with these models with open source software.

6 Concluding remarks

There are a number of outstanding issues related to DIF that were not addressed in this

chapter for conciseness. Some of them will be briefly touched upon in this Section.

There is clearly a connection between DIF and multidimensionality. Consider the

responses of students paired according to their proficiencies but belonging to different

groups. A DIF analysis aims at ascertaining whether their probability of correct answer

remains the same and quantifying their diference otherwise. In the multidimensional case

more than one cognitive ability is measured. It is likely that students paired according to

one ability may not match at their other abilities, even when the selected ability is the

most important. The responses will be different and the multidimensionality may be an

obvious cause of DIF. One must verify whether the probability of correct answer remains
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the same for students in different groups but paired according to all their proficiencies in

these multidimensional settings. Thus, the presence of DIF may be an indication that an

important dimension is not being considered. The DIF analysis may help unveiling the

existence of other dimensions in these cases. The most common scenario is that DIF is

caused by a special skill or knowledge, that is required for a subset of items. These special

abilities commonly end up influencing the pattern of responses of items even when the

test was not intended to be multidimensional. The SIB test is an example of procedures

that analyze DIF under multidimensionality, considering these additional dimensions as

nuisance.

The ideas of this chapter were restricted to a single factor for classification of groups.

There are practical situations that may lead to the presence of many classification factors,

such as type of school (public/private), race, socio-economic background, ... There are

many possible models to be entertained here. The most complete is usually referred to as

saturated model which considers a different DIF for all possible combination of the groups

at each factor. This setup can be seen as equivalent to a single classification factor where

each group consists on a given combination of the groups associated with the classification

factor (eg white, middle-class, public schools pupils). Other model configurations are

possible however if some or all of the interactions are removed. They lead to a more

parsimonious model formulation. Different configurations can be tested against each

other as performed in ANOVA tables. Gonçalves et al. [2013] provide the details of this

extension.

It was clear from the presentation that the model is overparameterised and some

form of additional information is required. The options within the realm of frequentist

inference are inherently more limited and involve deterministic assumptions about some

model components. The Bayesian approach allows for lighter restrictions in the form of

probability statements. These can be seen as favoring (rather than imposing) a given set

of restrictions. Thus, they may offer substantial improvements because data can overturn
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prior information but will never be able to change a deterministic restriction. In any case,

the problem is aggravated when different distributions are assumed for the proficiencies

at each group. There is no simple solution to this problem and the most promising

alternatives seem to be in the form of prior information but further research is clearly

required on this subject.
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Appendix A

OpenBUGS code

model{

for (i in 1:I[1]) {

theta[i, 1] ∼ dnorm(0,1)

}

for (k in 2:K) {

mu[k] ∼ dnorm(0,1)

tau[k] ∼ dgamma(0.1, 0.1)

sigma[k] <- 1/sqrt(tau[k])

for (i in 1:I[k]) {

theta[i, k] ∼ dnorm(mu[k],tau[k]).

}

}

for (j in 1:J) {

a.geral[j] ∼ dlnorm(0, 2.778)

b.geral[j] ∼ dnorm(0, 0.25)

c[j] ∼ dbeta(5, 17)

}

for (j in 1:J) {

d.a[j,i.group[j, 1]] <- 0

d.b[j,i.group[j, 1]] <- 0

for (k in 2:n.group[j]) {

Zb[j,i.group[j, k]] ∼ dbern(piZb[j, i.group[j, k]])

Za[j,i.group[j, k]] ∼ dbern(piZa[j, i.group[j, k]])

auxd.a[j,i.group[j, k]]∼ dnorm(0, 1)

auxd.b[j,i.group[j, k]]∼ dnorm(0, 1)

d.a[j,i.group[j, k]] <- Za[j,i.group[j, k]]*auxd.a[j,i.group[j, k]]

d.b[j,i.group[j, k]] <- Zb[j,i.group[j, k]]*auxd.b[j,i.group[j, k]]

}

}

for (j in 1:J) {

for (k in 1:n.group[j]) {

a[j,i.group[j,k]] <- a.geral[j]*exp(d.a[j,i.group[j,k]])

b[j,i.group[j,k]] <- b.geral[j]-d.b[j,i.group[j,k]]

}

}

for (k in 1:K) {
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for (i in 1:I[k]) {

for (l in 1:n.item[G[i,k]]) {

Y[i,item.i[G[i,k],l],k] ∼ dbern(p[i,item.i[G[i,k],l],k])

p[i,item.i[G[i,k],l],k] <- c[item.i[G[i,k],l]] +((1-c[item.i[G[i,k],l]])*

*phi(a[item.i[G[i,k],l],k]*(theta[i,k]-b[item.i[G[i,k],l],k])))

}

}

}

}

list(

I=c(2000, 2000), J=30, K=2,

Y= structure(

.Data= c(

0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1,

0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0,

1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0,

...

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1),

.Dim=c(2000, 30, 2)),

piZa= structure(

.Data= c(

NA, 0.5,

NA, 0.5,

NA, 0.5,

...

NA, 0.5,

NA, 0.5,

NA, 0.5),

.Dim=c(30, 2)),

piZb= structure(

.Data= c(

NA, 0.5,

NA, 0.5,

NA, 0.5,

...

NA, 0.5,

NA, 0.5,

NA, 0.5),

.Dim=c(30, 2)),
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item.i= structure(

.Data= c(

1, 2, 3,... , 28, 29, 30,

1, 2, 3,... , 28, 29, 30),

.Dim=c(2, 30)),

n.item=c(30, 30),

i.group= structure(

.Data= c(

1, 2,

1, 2,

1, 2,

...

1, 2,

1, 2,

1, 2),

.Dim=c(30, 2)),

n.group=c(2, 2,..., 2, 2),

G= structure(

.Data= c(

1,1,

1,1,

1,1,

...

1,1,

1,1,

1,1)

.Dim=c(2000, 2))

)

Database details:

J: Number of items

K: Number of groups

I: Vector with number of respondents per group

piZa: Prior probability of DIF in parameter a for item i (πa
ig)

piZb: Prior probability of DIF in parameter b for item i (πb
ig)

i.group: Matrix with each row corresponding to an item and each column to the group

it belongs to. First row is reserved for the reference group in case of DIF. Remaining blank

26



slots must be filled with NA.

n.group: Vector of length J with number of groups that responded each item. Its

elements are equivalent to the valid rows of matrix i.group.

item.i: Matrix in which each row corresponds to a form of a test. Rows are filled

with the number of items that the different formats were presented.

n.item: Vector indicating how many items were presented in each form.

G: Matrix where each column corresponds to a group and each row corresponds to a

respondent from this group. It indicates the form of the test taken by each respondent.
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Appendix B

This is an example with simulated data on a test containing 20 items. Table 4 below

presents the results with the non-informative prior πh
ig = 0.5 for all items. The model

identified almost all items as presenting DIF and the average proficiency for the focal

group was substantially underestimated.

Table 5: πh
ig = 0.5

item
Reference group Focal group

DIF detection for a DIF detection for b

Credibility limits
πa
i2

Credibility limits
πb
i2

a b c a b 5% 95% 5% 95%

1 1,26(1,30) -0,40(-0,35) 0,11(0,20) 1,26(1,58) -0,40(-0,99) 0,00 0,45 0,48 0,58 0,72 1,00

2 1,41(1,32) -0,13(-0,23) 0,25(0,19) 1,41(1,29) -0,13(-1,00) -0,33 0,00 0,15 0,56 0,94 1,00

3 1,67(1,41) -1,36(-1,40) 0,14(0,15) 1,67(1,41) -1,36(-2,03) 0,00 0,00 0,00 0,43 0,78 1,00

4 0,59(0,62) 0,05(0,03) 0,24(0,23) 0,59(0,55) 0,05(-0,67) -0,75 0,00 0,32 0,32 1,00 1,00

5 1,90(1,68) 0,44(0,39) 0,25(0,23) 1,90(1,86) 0,44(-0,38) -0,06 0,89 0,20 0,54 0,95 1,00

6 0,98(0,85) 0,29(-0,07) 0,39(0,33) 0,98(0,83) 0,29(-0,24) -0,41 0,04 0,18 0,00 0,54 0,46

7 0,92(0,93) -0,10(-0,25) 0,22(0,18) 0,92(0,91) -0,10(-0,86) -0,25 0,09 0,16 0,35 0,79 1,00

8 1,54(0,91) 1,30(1,30) 0,26(0,23) 1,54(0,80) 1,30(0,76) -0,71 0,10 0,44 0,00 1,08 0,83

9 1,19(1,15) 1,43(1,76) 0,33(0,35) 1,19(1,16) 1,43(0,93) -0,56 0,26 0,13 0,00 1,30 0,95

10 1,07(0,92) 1,01(1,08) 0,19(0,20) 1,07(0,92) 1,01(0,44) -0,23 0,11 0,11 0,00 0,96 0,92

11 1,59(1,23) 1,47(1,64) 0,31(0,31) 1,59(1,87) 2,98(1,82) -0,85 1,63 0,30 -1,58 0,40 0,39

12 1,39(1,47) -0,11(-0,09) 0,28(0,28) 1,39(1,42) 0,85(-0,02) -0,46 0,09 0,22 -0,51 0,01 0,30

13 1,84(1,31) -0,78(-1,13) 0,39(0,23) 1,84(1,32) -0,78(-1,79) -0,06 0,12 0,10 0,48 0,83 1,00

14 1,18(0,90) 1,29(1,21) 0,28(0,23) 1,18(0,64) 1,29(1,14) -1,25 0,00 0,62 -1,46 0,81 0,59

15 1,08(0,57) 1,86(2,29) 0,23(0,18) 1,08(0,55) 1,65(1,75) -0,55 0,37 0,36 -0,15 1,50 0,72

16 1,05(0,78) -0,29(-0,73) 0,35(0,21) 1,05(0,78) -0,29(-1,34) -0,11 0,03 0,07 0,35 0,85 1,00

17 1,09(0,90) -1,85(-2,01) 0,21(0,27) 1,09(0,90) -1,85(-2,58) 0,00 0,00 0,00 0,36 0,76 1,00

18 2,11(2,17) 0,28(0,28) 0,13(0,13) 2,11(2,84) 1,18(0,50) 0,00 0,60 0,65 -0,59 0,00 0,71

19 1,32(1,31) -1,58(-1,70) 0,23(0,19) 1,32(1,04) -1,58(-2,48) -0,79 0,00 0,48 0,48 1,25 1,00

20 0,99(0,89) -1,09(-1,34) 0,23(0,18) 0,99(0,92) -1,54(-2,40) 0,00 0,30 0,23 0,83 1,29 1,00

DIF values: simulated (estimated). Bold represents DIF items.

Average proficiency of the focal groups: -0.522 (-1.225)

Analysis was repeated with the same data sets and same prior but for item 1 where it
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was assumed now that πb
12 = 0.1, giving a small (but positive) probability for the presence

of DIF in the difficulty parameter for this item. Table 5 presents the estimation results.

These are clearly better results than those obtained in Table 4 with non-informative priors.

These results show that stronger and typically unverified restrictions of fixing items as

anchor ones are not needed. Use of appropriate prior distributions avoids their use while

providing good recovery of all model parameters, including DIF.

Table 6: πb
12 = 0.1

item
Reference group Focal group

DIF detection for a DIF detection for b

Credibility limits
πa
i2

Credibility limits
πb
i2

a b c a b 5% 95% 5% 95%

1 1,26(1,31) -0,40(-0,39) 0,11(0,16) 1,26(1,32) -0,40(-0,38) 0,00 0,13 0,05 -0,14 0,00 0,07

2 1,41(1,34) -0,13(-0,23) 0,25(0,21) 1,41(1,32) -0,13(-0,25) -0,28 0,02 0,14 0,00 0,18 0,18

3 1,67(1,45) -1,36(-1,36) 0,14(0,14) 1,67(1,45) -1,36(-1,36) 0,00 0,00 0,03 -0,04 0,01 0,07

4 0,59(0,65) 0,05(0,07) 0,24(0,24) 0,59(0,55) 0,05(0,06) -0,71 0,00 0,45 -0,08 0,21 0,14

5 1,90(1,69) 0,44(0,36) 0,25(0,22) 1,90(1,70) 0,44(0,35) -0,22 0,24 0,15 0,00 0,19 0,15

6 0,98(0,92) 0,29(0,07) 0,39(0,35) 0,98(0,90) 0,29(0,38) -0,39 0,14 0,17 -0,65 0,00 0,87

7 0,92(0,95) -0,10(-0,21) 0,22(0,18) 0,92(0,90) -0,10(-0,20) -0,44 0,00 0,25 -0,12 0,00 0,09

8 1,54(0,92) 1,30(1,33) 0,26(0,24) 1,54(0,88) 1,30(1,34) -0,51 0,03 0,22 -0,33 0,21 0,20

9 1,19(1,24) 1,43(1,64) 0,33(0,35) 1,19(1,31) 1,43(1,59) -0,41 0,65 0,19 -0,10 0,52 0,25

10 1,07(0,98) 1,01(1,10) 0,19(0,21) 1,07(0,99) 1,01(1,10) -0,12 0,20 0,13 -0,13 0,16 0,14

11 1,59(1,22) 1,47(1,68) 0,31(0,31) 1,59(2,11) 2,98(2,39) -0,63 2,12 0,33 -2,23 0,00 0,83

12 1,39(1,51) -0,11(-0,06) 0,28(0,28) 1,39(1,44) 0,85(0,71) -0,50 0,05 0,23 -1,03 -0,56 1,00

13 1,84(1,37) -0,78(-1,06) 0,39(0,26) 1,84(1,37) -0,78(-1,06) -0,08 0,09 0,09 -0,06 0,06 0,09

14 1,18(1,05) 1,29(1,35) 0,28(0,28) 1,18(1,21) 1,29(1,37) -0,34 0,96 0,25 -0,34 0,10 0,19

15 1,08(0,56) 1,86(2,34) 0,23(0,18) 1,08(0,56) 1,65(2,31) -0,16 0,09 0,10 -0,21 0,45 0,23

16 1,05(0,80) -0,29(-0,70) 0,35(0,19) 1,05(0,78) -0,29(-0,70) -0,30 0,01 0,16 -0,11 0,05 0,10

17 1,09(0,89) -1,85(-2,00) 0,21(0,24) 1,09(0,88) -1,85(-1,99) -0,11 0,00 0,07 -0,19 0,05 0,14

18 2,11(1,96) 0,28(0,27) 0,13(0,13) 2,11(5,59) 1,18(1,26) -0,02 3,18 0,40 -1,26 -0,74 1,00

19 1,32(1,19) -1,58(-1,72) 0,23(0,20) 1,32(1,06) -1,58(-1,78) -0,58 0,00 0,36 -0,11 0,49 0,28

20 0,99(0,87) -1,09(-1,34) 0,23(0,19) 0,99(0,91) -1,54(-1,71) 0,00 0,41 0,17 0,00 0,62 0,92

DIF values: simulated (estimated). Bold represents DIF items.

Average proficiency of the focal groups: -0.522 (-0.550)
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