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Abstract. Clustering represents an important class of data mining prob-
lems of which Bayesian approaches to Gaussian mixture models represent
one of the most statistically mature approaches. Bayesian approaches
are particularly attractive when the number of clusters and therefore the
dimension of the model are unknown as Bayesian model selection tech-
niques can be employed. Two distinct Bayesian approaches have been
proposed. The first is to use Bayesian model selection based upon the
marginal likelihood, the second is to use an infinite mixture model which
‘sides step’ model selection. In this study it is empirically demonstrated
that in both of these approaches the number of clusters or apparent
clusters is prior sensitive. Explanations for the prior sensitivity are given
in order to give practitioners guidance in solving this difficult problem.
Suggestions are made for testing prior sensitivity by varying the prior
over one parameter at a time with conjugate set ups.
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1 Introduction

The Gaussian mixture model is a powerful modelling for clustering and in its
finite form semi-parametric density estimation and in its infinite form non-
parametric density estimation. A range of computational methods are available
for this model for maximum likelihood including the EM algorithm [5] and for
Bayesian inference Markov chain Monte Carlo (MCMC) in particular the Gibbs
sampler [8] and variational Bayes [1].

As the number of clusters (K) indexes the dimension of the model infer-
ence of K naive model selection concepts such as model fit will always favor
more complex models. In contrast Bayesian model selection [2] can be applied to
models of differing dimension. Alternatively as Bayesian methods do not overfit
model selection can be avoided all together by using infinite mixture models[12]
. Together these represent the two Bayesian methods for clustering where the
number of clusters are unknown.

In the last 15 years a number of computational methods have been introduced
for solving this problem including MCMC [7] such as Gibbs sampling [8] or
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for computing marginal likelihoods a number of other Monte Carlo algorithms
such as annealed importance sampling (AIS) [10]. Another alternative again are
variational methods [1] [3].

Despite this algorithmic progress a significant challenge for the practioner is
the possible sensitivity of the inference including the number of clusters K to
prior distributions. Most machine learning approaches try to avoid prior sensitiv-
ity by the use of sophisticated techniques such as hierachichal Bayes or empirical
Bayes. On the other hand there is some theoretical work showing that inference
of the number of clusters is prior sensitive [9] which suggests that prior judge-
ments can not be completely avoided. Bayesian theory suggests that the value
of the marginal likelihood of a model is prior sensitive but the consequence of
this in a mixture model setting where the goal is to find K remains unclear.

The contribution of this paper is to study how the choice of K is affected
by the prior distributions. Our methodology involves applying state of the art
computational techniques AIS and variational Bayes for computing marginal
likelihoods and Gibbs sampling for infinite mixtures. In particular the sensitivity
of the most likely K or in the case of the infinite mixture effective K are tested
with respect to different prior distributions.

The prior distribution for a Gaussian mixture model can be broken into three
parts a prior on the coefficients, a prior on the mean and the prior on the variance.
The experimental study here shows that the prior on the variance is informative
and in cases where the prior permits small variances more clusters often result.
The prior on the coefficients has long known to be informative particularly in the
infinite mixture model setting. Finally the marginal likelihood of models with
different K is relatively insensitive to the prior on the means, yet the infinite
mixture models effective K is quite sensitive. An explanation is offered for these
observations.

2 Gaussian Mixture Models

2.1 The Model

The finite Gaussian mixture model is a probabilistic model that assumes all the
data points are generated from a mixture of a finite number of Gaussian distri-
butions with unknown parameters. The model can be written in the following
way using so called lazy-completion

K

p(yn“ll, MKy e TR Ty e e ’TK) = Z’/TkpN(yn|ﬂk,T];1)~
k=1

The parameters p and 7 are the mean and the precision (inverse of the covari-
ance matrix) of the normal distribution respectively and 7 are the coefficients
and we have the constraint Zle 7w = 1 and py is the normal distribution.
The lazy-completion form of the model is intuitive and is useful for generic
algorithms such as Metropolis Hastings and it is used in this study for annealed
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importance sampling, however by augmenting the observations with latent data
the model is put into complete data exponential family form which enables a
number of efficient algorithms. In order to do this a data point ¥, is augmented
with a discrete latent variable which takes values from 1 to K and identifies
which cluster y,, belongs to, the model then has the following form

p(yn7 Zn|ﬂ17 MK Ty ey TR, T ~-~7TK) = ﬁvapN(ynllu’Z,uT;l)'

In a Bayesian setting an infinite mixture model can also be derived in which
case K — oo and the coefficients 7 are given a Dirichlet process prior distribu-
tion. The usefulness of an infinite parameter model is of course dependent on
there being tractable algorithms available, in a later section following [12] it is
demonstrated that a Gibbs sampler for this model can be derived as a limiting
case of the standard Gibbs sampler.

2.2 The Prior

The Gaussian mixture model has three sets of parameters 7 which is a vector on
a K — 1 simplex, u1, ..., ux each of which is a vector with the same dimension
as the dataset and 7y, ..., 7 each of which is a semi-definite square precision
matrix of the same dimension as the data. Here the standard conjugate prior
distribution is analyzed with particular interest in both the tractability and
interpretability of the model. An important aspect of interpretability is that it
is possible to modify the prior over 7 without modifying the prior over y, within
some formulations this is easier and more flexible than others.

Indpendant prior over expectation and precision An interpretable prior
distribution is the following

T ~ W(vo,wo), i ~ N (po, ¥ ")

7 ~ Dirichlet(ag/K)

An advantage of this set up is that the priors are specified independently for
all the parameters. This prior distribution results in a complete data exponential
family representation which enables the Gibbs sampler, EM algorithm and the
variational EM algorithm (although we are not aware of any implementation).

A disadvantage of this setup is that updates for p must be computed condi-
tional on 7 and updates for 7 must be computed conditional on pu.

Joint prior over expectation and precision The following prior involves a
joint specification for p and 7 and similarly enables joint inference for p and 7.

T ~ W(vg,wo), k| Tk NN(pO,(ﬂoTk)il)
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7 ~ Dirichlet(ag/K)

The advantage of this setup is computational, it is more efficient to infer p
and 7 jointly than independently.

The disadvantage is that the prior is specified for p and 7 jointly and it
becomes difficult to modify the prior for 7 while keeping the prior for p constant,
which is useful for understanding prior sensitivity to 7 alone. While it is difficult
to make such a modification it is possible by modifying V' and Sy in the following
way. If one model has parameters ©1 = [vy,wo, po, Bo, a0, a different model
can be set up with the same priors over all parameters except 7 with Oy =
[vo,wo/h, po, hBo, ap] where h is a parameter adjusting the prior on 7, the vg
hyper-parameter must be common to both models which is the main limitation
of this set up. The only variational Bayes methods for mixtures that we are
aware of use this set up.

Hierachichal models Another approach to setting priors is to put a hier-
achichal model over some or all the hyper-parameters e.g. [12]. In these models
the prior for uq, ..., ux and 71,..., T are not independent but rather exchange-
able. The affect of this is to change the way the model operates, in particular
the model will include the ability to “borrow strength” i.e. the top layer of the
model will have a (possibly weak) ability to make all the clusters similar in mean
and precision/variance.

These models replace the need to set hyper-parameters with the need to
set hyper-hyper parameters. These hyper-hyper parameters must be set either
using prior knowledge or in a (perhaps weak) violation of Bayesian principles
using empirical Bayes. While these models are very interesting claims that these
models avoid prior sensitivity should therefore be treated with skepticism.

3 Algorithms

3.1 Gibbs sampling for individual of p and 7

The individual Gibbs sampler for y and 7 is given by

|y, 2, ik ~ W(o + Ni, (wo + D (yn — o) (yn — pi)") ™)

n:zpn—=~k

fly, 2, 7k ~ N (o + Ni7ie) ™ (WopoTiie), (Yo + Nemie) ™)

where Ny, is the number of observations belonging to class k and g, = N%V Zn:ZK:k Yn -
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3.2 Gibbs sampling for joint sampling of 4 and T

The conditional posterior distributions for the means and the precision are

Ty, 2z ~ W (vo + Ni,wy)

vo N

_O TR )T
vo + Ni

wie=wo+ (D> (Wn—T)(wn —3)") + (ox — Tk) (k= T

n:znp=k

wely, 2,7 ~ N(pf, (Bimie) ™)

where the occupation number, N, is the number of observations belonging to
class k, and g is the mean of these observations. where

vopo + Ni ik

: 5 = By + N
S Br = Bo &

P =

3.3 Sampling of Z and =«

There are two approaches to sampling Z and 7 a standard Gibbs sampling ap-
proach and a Rao-Blackwelized approach that has the advantage that it enables
a Gibbs sampler for the infinite mixture model.

Standard Gibbs Setup The conditional posterior distributions for the weights
are

T,...,TK|z ~ Dirichlet(a/ K + Ny,...,a/K + Nk).
The latent variables distribution is given by

P(zn = k|Yn, s T Tk) o T (il b, 7).

Rao-Blackwelized Sampler In order to be able to Gibbs sampling for the
(discrete) indicators, z;, we will consider the probability of one indicator variable
conditional on all the others with m marginalized out

an,k: + a/K

where the subscript n— indicates all indexes except n and N,_ j is the number
of observations, excluding y,,, that are associated with component k.

The main advantage of the Rao-Blackwelized sampler is that it is still valid
when K — oo and results in a sampler based upon the Chinese restaurant
process [13]. Allowing K — oo the conditional prior becomes
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Nn77k
N-1-«

P(zn # 2u vn' # nlzn_,a) =

p(zn = klzp—) = LA Ny >0,

@
—— all other components combined..
N-1+a«

In each individual sample of the indicator variables a datapoint is assigned either
to one of the existing clusters or alternatively to a new cluster, the parameters
for the new cluster are drawn from the prior distribution.

3.4 Variational Bayes

The variational Bayes for mixtures is given in detail in [3] and exploits expo-
nential family form in a way that is analogous to the Gibbs sampler for joint
sampling of y and 7, as complete data exponential family form.

3.5 Annealed Importance Sampling (AIS)

Standard Monte Carlo algorithms sample from the posterior as predictive quan-
tities of interest can be approximated from posterior samples, this is however not
true for the computation of the marginal likelihood which requires more sophis-
ticated Monte Carlo methods. Annealed Importance sampling is one possible
method.

In a Bayesian application the AIS operates on a hierarchy of distributions of
size M that interpolate smoothly between the prior f,, and the unnormalized
posterior fo. An annealing parameter controls the rate at which the interpolation
occurs. An expression for the mth hierarchy of the distribution is given by

fm(e) = fO(Q)Kj fm(Q)l_Kj

where 1 = kg > K1 > -+ > Kk = 0, and the values of k control the annealing
schedule.

The algorithm operates by constructing a complex proposal distribution on
this hierarchy of distributions including the target distribution (the posterior).
The proposal distribution consists of drawing from the prior and then applying
a standard MCMC kernel T'() to each of the M —1 hierarchies of the distribution
after M — 1 steps applying the kernel to the posterior.

Generate Oy from fas.
Generate O (y/_z) from O ;1) using T'()

Generate O(g)y from Oy using T'().
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A single AIS sample involves drawing from the prior and applying an MCMC
kernel M — 1 times to annealed sequence of distributions, if M is large and the
Markov chain and the annealing heuristic are operating well a sample from © )
might be close to a sample from the posterior. After the annealing is applied M
steps the algorithm remains a standard importance sampling algorithm consist-
ing of samples from a (complex) proposal distribution and associated importance
weights.

o Im-1@mi—1)) fu—20@mi—2))  f1(Bny) fo(O))
fr(@mi—ny) fu—1(Opi—2)  f2(On)) f1(O))

The mean of the weights converges to the marginal likelihood as with any
importance sampling method.

AIS is vulnerable to catastrophic failure if the proposal distribution is not
capable of finding areas of high probability e.g. in the case that it fails to find
important modes in the he posterior in order to avoid this the Markov chain
length (m) must be long and the annealing heuristic satisfactory. Like other
Monte Carlo approaches it can be difficult to diagnose catastrophic failure.

4 Results

All simulations are applied to the Galaxy velocity dataset which is a classic
dataset in the context of mixtures e.g. [4]. This dataset is one dimensional and
as such all of the Wishart distributions could be replaced with Gamma distri-
butions.

4.1 Finite Mixture Models Independent Prior Specification
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Fig. 1. Prior distribution for wo = 1/40, wo = 1/800, wo = 1/4000

In the case of specifying the priors for a finite mixture model with indepen-
dent specification for the mean and the variance it becomes straight forward
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Fig. 2. Marginal Likelihoods approximated for different values of K and different priors
left, ©1, centre ©2 and right ©3. Approximations computed with 100 samples of AIS
with a 95% confidence interval.

to test the sensitivity to one parameter while leaving the other fixed. As an-
nealed importance sampling does not make use of exponential form, there is no
computational cost for considering arbitrary independent priors. The marginal
likelihoods was approximated with 100 samples. For each sample an annealing
schedule kg =1 > ... > k, = 0 was used with &,, = e~"/%00 for n = 1,...,3500.
The 95% confidence interval is produced in order to assess the Monte Carlo error
using 10000 bootstrap samples [6].

Two random walk normal proposal distributions were used, one with small
variance equal to 0.005 for m and 7, and set 0.25 to u; and other with large vari-
ance equal to 0.03 for 7 and 7, and set 1.5 to p. This gave reasonable acceptance
throught the annealing schedule.

For all experiments the prior on the mean was fixed to p, ~ N(20,10?%),
the prior on 7 ~ Dirichlet(1) and variations on the prior on 7 were considered
with ©; being 7, ~ W(6,1/40), @1 being 7, ~ W(6,1/800) and ©; being
T, ~ W(6,1/4000). In order to visualise the prior plots of the more intuitive
o= \/%_7 are used see Figure 1. In order to consider the implications of the prior
we first note that the standard deviation of the data is & 4, this suggests that if
there are multiple clusters they each must have o smaller than 4. We note that
the prior for ©; favors small values of ¢ and the prior for @; less so and O3
much less so again. This gives a clear interpretation of the marginal likelihood
selection of K under each of the three priors shown in Figure 2 where ©; favours
4 clusters (and does so strongly), Oz also favours 4 clusters (but 3 clusters has
similar marginal likelihood) and @3 which favours 2 clusters.



Title Suppressed Due to Excessive Length 9

4.2 Infinite Mixture Models Independent Prior Specification

Fig. 3. Samples from the posterior of the effective K for three different priors ©1,
centre ©> and right Os.

In order to test the sensitivity to the effective K in an infinite mixture model
the following experiment was carried out. The same priors for @1, O3 and O3
for the components were used again here. The prior for the coefficients was a
Dirichlet process with hyper parameter ag = 1. The Gibbs sampler was run
for 10000 samples in order to find the distribution over the effective K i.e. the
number of clusters within the finite dataset.

Applying the same logic that prior distributions favouring small values of o
will result in more clusters it is possible to explain the posterior on K shown in
Figure 3. Analogous to the finite mixture model prior belief about scale is an
important factor in the effective K in an infinite mixture model.

4.3 Finite Mixture Models Joint Prior Specification

In the context of the finite mixture model employing a joint specification on
the mean and the variance we compare the marginal likelihood for the following
prior distributions @ with wy = %, vg = 30, By = 1 and py = 20 and O,
with wg = ﬁ, vy = 30, By = 20 and py = 20. By considering the plots in
Figure 4 it is clear that the prior for the two models is identical except for the
difference in the prior on o = % which for @; favours low values of o and
which for ©, favors values around 6. Recall that the standard deviation of the
galaxy dataset is &~ 4 so that if there are multiple components in the mixture it
makes sense for o to have values smaller than 4. Consistent with this argument
it is seen that the marginal likelihood in Figure 5 approximated with AIS and
the bound approximated with variational Bayes selects 5 clusters with ©; and
just one cluster with ©5. The AIS marginal likelihood is approximated using the
previously described Markov chain set up and 260 samples per model (per value
of K). The variational Bayes bound is the largest computed after 5 tries of the
algorithm it is seen that this is consistently a lower bound. As the variational
Bayes algorithm fits a single mode of the posterior a plot of the variational bound
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multiplied by the minimum K! modes expected due to symmetry alone, this is
also observed to be much lower than the marginal likelihood suggesting that the
posterior also contains modes not due to symmetry.

Fig. 4. Two prior distributions @; with wp = %, vo = 30, fo =1 and po = 20 and O,
with wo = 155, ¥0 = 30, Bo = 20 and po = 20.

log marginal likelihood

Fig. 5. Approximated Marginal likelihood as a function of K computed using AIS and
a bound computed with variational Bayes for two different prior distributions left ©;
and right ©s.

4.4 Infinite Mixture Models Joint Prior Specification

In this experiment three different prior distributions (01, @2 and O3) were con-
sidered all of which had py = 20,19y = 6 and o = 1, the priors for ©; and
O3 both had Sy = 1 but ©; had w = 1/40 and O3 had w = 1/400. O3 had
B = 0.1 and w = 1/400. The three joint priors are illustrated in Fig 6. It is
noteworthy that all three have different prior (marginal) distributions on g, but
the prior for @3 and @3 are the same on o = % When we consider the pos-
terior distribution on the effective K in Figure 7 two observations are striking.
Firstly the posterior effective K while the prior on 7 for ©; and @3 is the same
the posterior effective K is different this suggests that the effective number of
clusters is sensitive to the prior on the mean. As the creation of a new cluster
is dependent on draws from the prior distribution this is perhaps unsurprising
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Fig. 6. Prior samples from the joint model for ©1, ©2 and Os.
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Fig. 7. Histograms of Effective K.

and priors which are constantrated near the data should result in more clusters.
A second striking observation is that the posterior effective K on ©; and 6,
are very similar despite the fact that they have very different joint priors on
the mean and the variance. The effect on the posterior K on the change in the
prior on the mean in the case seems to be offset by a change in the prior on
o. This example illustrates the difficult in conducting sensitivity analysis when
the prior to both the mean and the variance are changed simultaneously, this
is a particular difficulty in the joint prior set up (although see Section 2.2 for
ways of independently changing priors within this setup). Our simulations also
suggest that prior sensitivity to the prior on the mean seems to be much more
important when considering the posterior effective K of the infinite model.
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5 Conclusion

The number of clusters within a mixture model whether selected using Bayesian
model comparison with finite mixture models or considering the effective number
of clusters in an infinite model is prior sensitive. In particular it is demonstrated
that more clusters result if the prior favours small variances. It is recommended
that sensitivity analysis be carried out by fixing the prior on the mean and chang-
ing the prior on the variance, this is easier and more flexible with independent
prior distributions but is possible with the joint prior.

This observed prior sensitivity has wider implications for Bayesian machine
learning where an engineering approach to problem solving may in some situa-
tions need to be augmented with subjective Bayesian tools which may help in
setting prior distributions through introspection.
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