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Abstract. Astronomical telescopes increasingly operate in surveyasaveeping the sky systemat-
ically and producing highly processed data products suestasnomical catalogues which are lists
of objects with positional information and other measuretsesually including flux in a particular
band. An important problem in electronic astronomy is therapriate way to combine information
from different catalogues produced by different telessopekey problem in combining this infor-
mation is to establish different observations of the sanjeobin the two catalogues i.e. the problem
of catalogue matching. Positional information is not alevayfficient in establishing matches reli-
ably in these cases additional information from the noritfprsl measurements may also be used.
This non-positional information is often scientificallytémesting and its inter-catalogue properties
may be the main object of study. In previous studies it is atghat while models of non-positional
properties may assist in catalogue matching if these ptiegare scientifically interesting then the
conclusions drawn from the analysis may be distorted byguiis non-positional information. In
this paper it is demonstrated that by employing a predidBsgesian formalism it is possible to
use all available information to assist in obtaining the mmekable matches and still obtain undis-
torted conclusions. Distortions are avoided because gieglidistributions are computed where all
the configurations of matches are marginalized over, rattar other approaches which choose a
single most likely configuration of matches.
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INTRODUCTION

Increasingly telescopes operate in survey mode, sweepaghky systematically and
producing highly processed data products, one of the mgsiyhprocessed of these
data products is the astronomical catalogue which conefsts list of objects with
two dimensional positions and measurements of flux and atigbutes depending
on the telescope such as colour, shape or redshift. An engepgoblem in electronic
astronomy is that of combining information from two or moretbese catalogues
together. An important statistical problem emerges intifigng different observations
in each of the catalogues of the same object.

The most common approach is to use the position alone andhrtregclosest objects
together. While this approach is often very effective, tteeeimportant problems where
this method is not satisfactory. Here we focus on problemsre/hive would like to
employ non-positional information in order to match morkatdy. An illustration of
the problem is given in Figure 1.
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FIGURE 1. An example of a matching problem. An HI detection from the ABS catalogue is
matched to an optical object in SuperCOSMOS. The object frloensparse HIPASS catalogae is
located at the centre of this image, the circle represest@dhimit of the positional uncertainty. There
are a number of candidate optical counterparts from theede®sperCOSMOS catalogul,: . ..b; 7,
(circled).

Improving in sophistication upon finding the closest matebther common approach
in the astronomy literature is that of [9] which develops aljabilistic model, and
suggests a histogram subtraction procedure for produdtignates. The probabilistic
model is a useful framework for developing catalogue matgkihich has been used and
extended here and elsewhere, but the histogram subtrgotbmedure has been found
to give noisy unsatisfactory estimates in [3]. Supervisedimme learning methods may
also be an option which can exploit large number of cataldgatires both positional
and non-positional but are only applicable in the unusuakoahere a training set
or subset of pre-matched examples are available [6] [7]. 8lapeapproaches have
also been suggested in [1] which focuses on identifyingviddal matches assuming
knowledge of physical properties such as the spectral grdisgribution which is not
a probability distribution, but rather the physical praps of an astronomical object
at every flux band. Here the authors suggest rigid a priogangific knowledge could
be used on the non-positional properties, however rigidrgific knowledge on non-
positional properties may rarely be available, and in fditaiming information about
this may be the purpose in performing catalogue matchinigaritst place.

All of these approaches take as there goal establishinga tise most likely matches
as an end goal, however in previous work it has been demeoedttiaat this can lead
to distorted analysis. In particular if only the most likatyatches are obtained and
an analysis of this follows not considering that this is boe gossible configuration
of matches that distorted conclusions will follow from thealysis. These problems



are particularly acute when positional information is iffisient to establish matches
reliably and scientifically interesting quantities sucHlages are used in the matching
process. This distortion issue is extensively discussed]irand the issue is nicely
captured by [1] when they state:

Picking the correct combination of sources from variougiapg similar con-
figurations is a degenerate problem that requires extranrgton to resolve.
The use of photometric (flux) information is a natural chdardts wide avail-
ability; however, its application requires further asstions on the spectral
energy distributions (SEDs). Often models exist to helpvath the solution,
but extra caution is needed to avoid any undesirable effeciexample, when
the goal is to discover new types of objects with unknown SEs should
not apply known SEDs as priors but rather look for combimeithat are
likely matches based on spatial detections but excluded3hy i8odeling.

According to these authors if the spectral energy distidouis the object of study
then this information must be ignored in the matching prec@sese authors follow
a Bayesian approach where the probability of matches areénebtaising a Bayesian
framework, however they apparently advocate ignoringulseformation even when it
could in fact help in establishing correct matches.

The main contribution here is to demonstrate that it is ds40 incorporate knowl-
edge of non-positional information in particular the spalotnergy distribution into the
model without causing distortions. This is achieved by rpooating the matching state
for each astronomical object a latent variable, that willnbarginalized out. This is
achieved by combining two ideas. Firstly we introduce a ortmodel where matches
and non-matches are mixtures (of different dimensionskamaoy standard Gibbs sam-
pling methods for the mixture model. Secondly we suggestttiemastronomer adopt a
predictive framework using current observations to maleglijgtions of future observa-
tions, this means we are able to make the establishing ofn@stcot an end in itself
but an intermediate step and as such the matching state aaarg@alized out. This
allows Bayesian tools to use flexible prior information ofestific relevant quantities
such as the spectral energy distribution and update thesnretion by conditioning on
unmatched or partially matched catalogues. This marks gkeyt of departure from
[1], which does not update information about the spectratgndistribution, but may
uses a rigid model.

The model introduced here is a fully Bayesian refinement ofntloglel presented
in [8]. Where they introduce a maximum likelihood approacingghe Expectation
Maximisation (EM) algorithm based on a histogram modelgheefully Bayesian ap-
proach using Gibbs sampling to a mixture based model. Theemottoduced here is
also more general as inter-catalogue properties are atepporated. The inclusion of
inter-catalogue properties is particularly importanteghing about these properties are
often the main motivation for the whole matching processaddition the inclusion of
the inter-catalogue properties require a slight elabandtieyond standard mixture mod-
els. These enhancements allow us to show that matching cardéall information
without distortion in a fully Bayesian predictive approaéis. noted this contrasts with
previous approaches, including Bayesian approaches whighduggested in some cir-
cumstances it may be good to discard relevant informationtthe joint flux properties



(spectral energy distribution) as it may distort the matgtprocess. The key contribu-
tion we make is to demonstrate that by changing the goal oattadysis from estab-
lishing correct matches to computing a predictive distidy then in agreement with
common sense all information can and should be used in thegsima

MIXTURE MODEL FORMULATION OF MATCHING

Difficult catalogue matching problems usually consist oftchang a catalogue with
a relatively large number of objects per unit solid anglee (ttense catalogue) and
a relatively sparse catalogue (the sparse catalogue).fiemework and terminology
is adopted throughout this paper. The measurements aththelement of the sparse
catalogue is denoteat. In our studies this is a three dimensional vector includirtgyo
dimensional position right ascensiofy,, and declinatioroj,,. and flux in a particular
banda/. Within a reasonable positional distance of tlfe sparse object there ah¢
dense candidates that due to position alone are plausihtidzdes for a match. The
jth of theseN; dense candidates near sparse ohjastdenotedS j again it is three
dimensional with a two dimensional position again consgiof right ascension and
declination and a flux in a different band the position thesedanoteds; j;,, i, jp.. aNd
B/ ; respectively.

ln the model the distribution of positional separation of Rid&ec is assumed to
be a symmetrical bivariate normal distribution, the digttion on positional separation
is independent of flux properties and also of other entrigbéncatalogue i.e. the co-
variance matrix of the distribution is assumed a prioris tten often be obtained from
astronomical papers that present the characteristicseofelescope and its catalogue.
In contrast the distribution over the inter-catalogue fldixhe objects represents sci-
entifically relevant knowledge about the spectral energyribution that we assume is
the main goal of this study as such the distribution of maighubjects is given a semi-
parametric Gaussian mixture model form. This results in

P(Gliga — Biiras Qivec — Bi.jves: 011> B j1Z1,j = 1,01) =
N(Qigs — Biira:0; OZ)N(aiDec — Biipec: 0, UZ)PJ(ai/vBi/,j [S3))

whereZ; j is latent indicator variable which is one only if sparse abjanatches dense
objectj and is zero otherwise arfj is the parameters of the semi-parametric density on
the joint or matching catalogue properties, and similargt 6 are the semi-parametric
density on the dense non-matching catalogue propertiede\&iy semi-parametric, or
non-parametric Bayesian model could be employed here weansalGaussian Mixture
model, bivariate in the case 8§(ay, B/ ;|©;) and univariate in the case B (3 ;|Or)
which will be used shortly. It follows the&)J andOg are the parameters of a mlxture of
normal i.e. coefficients, means and covariances bivariadeuaivariate respectively.

We note that because strong prior knowledgecors often available this may be
sufficient to establish likely configurations of matches trateby informative inference
about®; may result be possible even if relatively vague priors ateop®;. A uniform
prior over the matche2 is usually appropriate such that all matches are equakylik



although on occasions there may be a subset of known matchiésde as in the dataset
in [7], here we also assume that a subset of matches areldeaila

In order to formulate a complete likelihood for the modes$ialso necessary to specify
the probability for non-matching objects. The model usee laeparts slightly from the
standard mixture model framework in that while the matclubgpcts have a distribution
over botha andf the non-matching objects only have ‘dense’ propeifieand as such
there is only a distribution oved’ the dense flux. This can be handled in a fully Bayesian
framework again by employing a semi-parametric model @/ere. P(3'|OF).

These two expressions can be combined in order to producaple® model speci-
fication for unmatched astronomical catalogues.

P(Z,05,0:D)0 [ [] P(aiBiil©)*1F:(Bj|OF)  #IP(©s)P(OF). (1)
i=1.M j=1.N;

This fixed dimensional model consists of a mixture model Giédent dimensions for
the sparse and dense objects, with slightly altered canttran the indicator variables
such that exactly one object in the sparse catalogue matshebject in the dense
catalogue. In practice a fully Bayesian model for the fluxrthstion of the dense objects
may not be necessary as the number of dense dataset is afydarge and uncertainty
about®; can be neglected and maximum likelihood can be used to dst®a

Positional information is always of high importance in niag. In this problemx
andp will contain position information. It is reasonable for tRéa;, 5 j|©;) to factor
such thabs(ai,5,j|©3) = Normal((giRA> — (g"RA> , (8) ,Z) P(ori’,Bi’j]GJ) where

IDec I,]Dec ’
a/ and Bif j are the parameters with positional information removed thedpositional
information for the sparse object @&, iy, and for the dense catalogue object is
Bi,jRAv BiJDec'

A Markov chain with a stationary distribution of the postercan be simulated in the
following way, hereD is used to abbreviate all the data.

1. Sample fronP(Z|©;,0g,D).
2. Sample fronP(©;|D, Z).

3. Sample fronP(Og|D, Z).

4. Repeat from step 1.

Step 1, samples a possible configuration of matches and atches conditional
on the parameters. It is very close to the standard procddusampling from latent
indicator variables, but differs slightly because it is axtmre of distributions with
different dimensions i.e. matching objects have a jointsitgnof sparse and dense
properties where non-matching objects only have denseeptiep. The slightly modified
expression for sampling the matching or non-matching sate

P(z,i|©,0f,0i,B 1, Bin) OP(ai, 5j1©)%  [] PBKON"2 (2)
kLN kA

In our work a constrain oR(Z) is that there is exactly one dense match for every sparse
object.
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FIGURE 2. The unmatched data are overlaid over the estimated distiburhe vertical streaks are
all the dense candidates to a sparse object. The ‘true’ nictarked in red — the other candidates are
marked in blue. Often the true match will not be given the bighprobability and a non-match will be
detected instead.

Step 2 and Step 3 are standard methods for sampling from tterjmo of a finite
normal mixture model bivariate in the case of Step 2 and Stepi8h are extensively
discussed in the literature e.g. see [4] or [5].

APPLICATION OF MODEL

Although simulations were also applied to a real datasetjémonstration of a Bayesian
predictive approach overcoming distortion when employatfigavailable information
is most easily achieved using a contrived matching problEne. true matches in the
matching problem is based upon real dataset used for cohaguhe Hertzsprung-
Russell (HR) diagram which has a distinctive shape. Althotgghis a real dataset [2]
in practice it does not require matching to get the relevaeadsurements of the flux
in different bands. We construct a partially matched datadech consists of 2246
matches, the remaining 749 are considered in the unmataridmp The flux of the
background objects are given a uniform distribution betwaagnitudes 0 and 20. This
is not physically motivated, but is chosen so as to maketitition of distortions from
a naive analysis as clear as possible. For the unmatchedmptiie number of dense
candidates is given a Poisson distribution with expeatchi.

Using the maximum likelihood fit of the joint distributionig possible to determine
the most likely matches and to see how these must be disttrtesaggerate the
model see Fig. 2. These are shown with the pre-matched d&tg.irl8. A systematic
distortion is evident where the most likely matches are $pssad out than the original
pre-matched dataset. For the purposes of this discussiamsleonsider the spread
of objects perpendicular to the line shown in Fig. 3 . This adcalated by taking
V —(B—V) x 5.0305—1.6285 and discarding all objects wilit> 9, this is subsequently
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FIGURE 3. The pre-matched data (training set) and most likely matches
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FIGURE 4. lllustration of distortion from using the most likely matsh

referred to as the line width.

A histogram of the spread of the original data, the most yikeatch and MCMC
samples from the predictive distribution is shown in Figlt4s visually obvious that
the most likely matches are much more concentrated tharréhmptched data and the



predictive distribution is broader than both the pre-matthnd most likely matches.
This shows the Bayes-MCMC approach does not have the distatiect seen in Fig.
3, the predictive distribution is not sharply peaked like thost likely matches.

The sample standard deviation of the line width of the ogg@fata isdpre = 1.2365,
however the standard deviation of the most likely match isimawer atg,,,m = 0.5060.
This is considerably distorted because when errors are matthe most likely match
they always happen in systematic ways. The predictiveildigton on the other hand
gives a standard deviation 6freq= 1.2552 which is in reasonable agreement with the
true matches. As the histogram of the line width shape wa&aassian it was necessary
to use a number of components to capture the shape.

Comparing the histogram with the predictive distribution fivel better agreement
with the most likely match although there remains some degabetween the two.
These difference might be seen as a good reason to condileradives to the Gaussian
Mixture Model. The successful implementation of this tage requires workable use
of Bayesian semi-parametric or non-parametrics of whichsSiam Mixture Models
might be considered just one possibility.

The simulation was implemented in Matlab, the sampling dfdator variables re-
quired using interpreted Matlab this executed slowly anohgle sample took up to 10
minutes to generate, although the speed of this was veryndepé on the number of
dense candidate objects. A large speed up could be achigved/hting this portion of
the code in a compiled language, although we opted for lamglsition times instead.

It is also interesting to consider how the model specificatiad prior specification
impacts on the results. In general the impact of the prioth®@imixture model i.e. the
priors over the means and covariances seemed to have lidléaiive impact on the
outcome of the algorithm. On the other hand two elementsithe¢ a strong impact
for related reasons are the prior orand the general difficulty of the problem, i.e. the
number of dense candidates and the amount of the datasestpihetmatched. It appears
that a certain minimal amount of information is requiredr@asonable inferences to be
drawn, if the amount of information is too small the algamiswanders around a large
posterior distribution.

The algorithm was also quite sensitive to the initial coiodis of the Markov chain.
The following relatively standard procedure was adaptethitocontext where the EM
algorithm was applied to the subset of the data that was jatetrad, being applied to the
matched or non-matched components individually in ordgetdnitial estimates 0®;
andO©g. Of course such a procedure is only possible when there is-enptched subset
of the data available, in other situations other heurigtiosh as clustering algorithms
or closest match algorithms may be employed, but as theuliffiof the problem will
increase it is expected that much larger MCMC runs will be eddubth for burn in and
for averaging.

Judging convergence and discarding a suitable burn-ingesia challenging problem
for MCMC methods particularly for mixture models which areolam to have multiple
separated modes due to symmetries. In general it is nofstieald expect that an
MCMC algorithm applied to a mixture model will mix between aflthese modes, but
rather the algorithm should concentrate on the most impbrtendes and mix between
these. The symmetries that are responsible for making teeepor so complex and
difficult become advantageous when computing a predictistiloution as adequate



local mixing can be sufficient to approximate the predictiisribution.

FIGURE 5. Samples of the matches at various points on the Markov chdifl @erations (left), 100
iterations (middle) and 150 iterations (right).

While there is a large literature on assessing convergencleding examining trace
plots of a particular parameter, autocorrelation or foineal tests we found that a par-
ticularly useful and intuitive means of assessing convargend algorithm behaviour is
available in this context in the form of analyzing scattentplof the matches at different
steps of the algorithm. A graphical diagnosis of convergeten be seen in Figure 5
which shows the configuration of matches on the 10th, 100th1&@th iteration, note
that Absolute V Magnitude is equal to negative log flux, suddt targe numbers are
fainter than small numbers. The 10th iteration shows thextetlare many faint objects
that are misclassified as matches, on the 100th iteratiory mamne of the matches lie
on the standard HR diagram after 150th objects a typical Eaohpsely resembles the
HR diagram and shows its distinctive features and there emefew faint objects clas-
sified as matches. Depending on the difficulty of the probleaten investigation i.e. the
number of dense candidates within a reasonable positiowartainty and the propor-
tion of the catalogue that is pre-matched then the behavittrecalgorithm changes. If
a lot of information is available then the samples 1-150 idltail area of the poste-
rior and the algorithm need only escape this configuratiazteand the algorithm will
iterate locally between configurations of matches with \&@nyilar shape. On the other
hand if less information is available then it may be that tlgp@thm will revisit these
configurations after many iterations as under the modelnagsans put forward these
are plausible configurations. By varying the difficulty of preblem both of these cases
where observed in our work. Although the first case might leentiost satisfactory to
astronomers, statistically both are interesting cases pfoblem represented in Figure 5
is in fact a relatively easy problem where there are a largeb®&u of faint non-matching
dense objects.

Every iteration of the Gibbs sampling algorithm producespiical output of com-
bined matches and non-matches, matches and non-matclaeatedpnd graphs of the
predictive distribution of both the matches and non-matcfithese were valuable for
diagnosing convergence and understanding both the dlgobehaviour and the infer-
ence on the particular dataset. In particular it is inténgsto consider how much the
configuration of matches varies between iterations.



CONCLUSION

Catalogue matching was formulated as a mixture model problera predictive
Bayesian framework. It was demonstrated that by operatirgpredictive framework
rather than establishing the most likely matches it is fmssand desirable to include
all information in the model. This contrasts with other aggwhes including other
Bayesian approaches which focus on the goal of establishingibst likely matches.
This is particularly evident in the example shown in Figurevdere the line width
estimated using an ideal most likely match algorithm isaesiy distorted, but the
predictive Bayes approach is undistorted. Alternative apgines encourage discarding
useful information in order to avoid distorted interpraias of the most likely matches.
It is demonstrated by example that these distortions areevident in the predictive
distribution.
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