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Abstract. Astronomical telescopes increasingly operate in survey mode sweeping the sky systemat-
ically and producing highly processed data products such asastronomical catalogues which are lists
of objects with positional information and other measurements usually including flux in a particular
band. An important problem in electronic astronomy is the appropriate way to combine information
from different catalogues produced by different telescopes. A key problem in combining this infor-
mation is to establish different observations of the same object in the two catalogues i.e. the problem
of catalogue matching. Positional information is not always sufficient in establishing matches reli-
ably in these cases additional information from the non-positional measurements may also be used.
This non-positional information is often scientifically interesting and its inter-catalogue properties
may be the main object of study. In previous studies it is argued that while models of non-positional
properties may assist in catalogue matching if these properties are scientifically interesting then the
conclusions drawn from the analysis may be distorted by using this non-positional information. In
this paper it is demonstrated that by employing a predictiveBayesian formalism it is possible to
use all available information to assist in obtaining the most reliable matches and still obtain undis-
torted conclusions. Distortions are avoided because predictive distributions are computed where all
the configurations of matches are marginalized over, ratherthan other approaches which choose a
single most likely configuration of matches.
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INTRODUCTION

Increasingly telescopes operate in survey mode, sweeping the sky systematically and
producing highly processed data products, one of the most highly processed of these
data products is the astronomical catalogue which consistsof a list of objects with
two dimensional positions and measurements of flux and otherattributes depending
on the telescope such as colour, shape or redshift. An emerging problem in electronic
astronomy is that of combining information from two or more of these catalogues
together. An important statistical problem emerges in identifying different observations
in each of the catalogues of the same object.

The most common approach is to use the position alone and match the closest objects
together. While this approach is often very effective, thereare important problems where
this method is not satisfactory. Here we focus on problems where we would like to
employ non-positional information in order to match more reliably. An illustration of
the problem is given in Figure 1.



FIGURE 1. An example of a matching problem. An HI detection from the HIPASS catalogue is
matched to an optical object in SuperCOSMOS. The object fromthe sparse HIPASS catalogueai is
located at the centre of this image, the circle represents the 2σ limit of the positional uncertainty. There
are a number of candidate optical counterparts from the denser SuperCOSMOS catalogue,bi,1 . . .bi,7,
(circled).

Improving in sophistication upon finding the closest match another common approach
in the astronomy literature is that of [9] which develops a probabilistic model, and
suggests a histogram subtraction procedure for producing estimates. The probabilistic
model is a useful framework for developing catalogue matching which has been used and
extended here and elsewhere, but the histogram subtractionprocedure has been found
to give noisy unsatisfactory estimates in [3]. Supervised machine learning methods may
also be an option which can exploit large number of cataloguefeatures both positional
and non-positional but are only applicable in the unusual case where a training set
or subset of pre-matched examples are available [6] [7]. Bayesian approaches have
also been suggested in [1] which focuses on identifying individual matches assuming
knowledge of physical properties such as the spectral energy distribution which is not
a probability distribution, but rather the physical properties of an astronomical object
at every flux band. Here the authors suggest rigid a priori scientific knowledge could
be used on the non-positional properties, however rigid scientific knowledge on non-
positional properties may rarely be available, and in fact obtaining information about
this may be the purpose in performing catalogue matching in the first place.

All of these approaches take as there goal establishing a list of the most likely matches
as an end goal, however in previous work it has been demonstrated that this can lead
to distorted analysis. In particular if only the most likelymatches are obtained and
an analysis of this follows not considering that this is but one possible configuration
of matches that distorted conclusions will follow from the analysis. These problems



are particularly acute when positional information is insufficient to establish matches
reliably and scientifically interesting quantities such asfluxes are used in the matching
process. This distortion issue is extensively discussed in[7] and the issue is nicely
captured by [1] when they state:

Picking the correct combination of sources from various spatially similar con-
figurations is a degenerate problem that requires extra information to resolve.
The use of photometric (flux) information is a natural choicefor its wide avail-
ability; however, its application requires further assumptions on the spectral
energy distributions (SEDs). Often models exist to help outwith the solution,
but extra caution is needed to avoid any undesirable effect.For example, when
the goal is to discover new types of objects with unknown SEDs, one should
not apply known SEDs as priors but rather look for combinations that are
likely matches based on spatial detections but excluded by SED modeling.

According to these authors if the spectral energy distribution is the object of study
then this information must be ignored in the matching process. These authors follow
a Bayesian approach where the probability of matches are obtained using a Bayesian
framework, however they apparently advocate ignoring useful information even when it
could in fact help in establishing correct matches.

The main contribution here is to demonstrate that it is possible to incorporate knowl-
edge of non-positional information in particular the spectral energy distribution into the
model without causing distortions. This is achieved by incorporating the matching state
for each astronomical object a latent variable, that will bemarginalized out. This is
achieved by combining two ideas. Firstly we introduce a mixture model where matches
and non-matches are mixtures (of different dimensions) andemploy standard Gibbs sam-
pling methods for the mixture model. Secondly we suggest that the astronomer adopt a
predictive framework using current observations to make predictions of future observa-
tions, this means we are able to make the establishing of matches not an end in itself
but an intermediate step and as such the matching state can bemarginalized out. This
allows Bayesian tools to use flexible prior information of scientific relevant quantities
such as the spectral energy distribution and update this information by conditioning on
unmatched or partially matched catalogues. This marks a keypoint of departure from
[1], which does not update information about the spectral energy distribution, but may
uses a rigid model.

The model introduced here is a fully Bayesian refinement of themodel presented
in [8]. Where they introduce a maximum likelihood approach using the Expectation
Maximisation (EM) algorithm based on a histogram model, here a fully Bayesian ap-
proach using Gibbs sampling to a mixture based model. The model introduced here is
also more general as inter-catalogue properties are also incorporated. The inclusion of
inter-catalogue properties is particularly important as learning about these properties are
often the main motivation for the whole matching process. Inaddition the inclusion of
the inter-catalogue properties require a slight elaboration beyond standard mixture mod-
els. These enhancements allow us to show that matching can include all information
without distortion in a fully Bayesian predictive approach.As noted this contrasts with
previous approaches, including Bayesian approaches which have suggested in some cir-
cumstances it may be good to discard relevant information about the joint flux properties



(spectral energy distribution) as it may distort the matching process. The key contribu-
tion we make is to demonstrate that by changing the goal of theanalysis from estab-
lishing correct matches to computing a predictive distribution, then in agreement with
common sense all information can and should be used in the analysis.

MIXTURE MODEL FORMULATION OF MATCHING

Difficult catalogue matching problems usually consist of matching a catalogue with
a relatively large number of objects per unit solid angle (the dense catalogue) and
a relatively sparse catalogue (the sparse catalogue). Thisframework and terminology
is adopted throughout this paper. The measurements of theith element of the sparse
catalogue is denotedαi . In our studies this is a three dimensional vector includinga two
dimensional position right ascensionαiRA and declinationαiDec and flux in a particular
bandα ′

i . Within a reasonable positional distance of theith sparse object there areNi
dense candidates that due to position alone are plausible candidates for a match. The
jth of theseNi dense candidates near sparse objecti is denotedβi, j again it is three
dimensional with a two dimensional position again consisting of right ascension and
declination and a flux in a different band the position these are denotedβi, jRA, βi, jDec and
β ′

i, j respectively.
In the model the distribution of positional separation of RA and Dec is assumed to

be a symmetrical bivariate normal distribution, the distribution on positional separation
is independent of flux properties and also of other entries inthe catalogue i.e. the co-
variance matrix of the distribution is assumed a priori, this can often be obtained from
astronomical papers that present the characteristics of the telescope and its catalogue.
In contrast the distribution over the inter-catalogue flux of the objects represents sci-
entifically relevant knowledge about the spectral energy distribution that we assume is
the main goal of this study as such the distribution of matching objects is given a semi-
parametric Gaussian mixture model form. This results in

P(αiRA −βi, jRA,αiDec−βi, jDec,α
′
i, j ,β ′

i, j |Zi, j = 1,ΘJ) =

N(αiRA −βi, jRA,0,σ
2)N(αiDec−βi, jDec,0,σ

2)PJ(α ′
i ,β ′

i, j |ΘJ)

whereZi, j is latent indicator variable which is one only if sparse object i matches dense
object j and is zero otherwise andθJ is the parameters of the semi-parametric density on
the joint or matching catalogue properties, and similarly thatθF are the semi-parametric
density on the dense non-matching catalogue properties. While any semi-parametric, or
non-parametric Bayesian model could be employed here we use here a Gaussian Mixture
model, bivariate in the case ofPJ(α ′

i ,β ′
i, j |ΘJ) and univariate in the case ofPF(β ′

i, j |ΘF)
which will be used shortly. It follows thatΘJ andΘF are the parameters of a mixture of
normal i.e. coefficients, means and covariances bivariate and univariate respectively.

We note that because strong prior knowledge onσ is often available this may be
sufficient to establish likely configurations of matches andthereby informative inference
aboutΘJ may result be possible even if relatively vague priors are put onΘJ. A uniform
prior over the matchesZ is usually appropriate such that all matches are equally likely



although on occasions there may be a subset of known matches available as in the dataset
in [7], here we also assume that a subset of matches are available.

In order to formulate a complete likelihood for the model it is also necessary to specify
the probability for non-matching objects. The model used here departs slightly from the
standard mixture model framework in that while the matchingobjects have a distribution
over bothα andβ the non-matching objects only have ‘dense’ propertiesβ ′ and as such
there is only a distribution overβ ′ the dense flux. This can be handled in a fully Bayesian
framework again by employing a semi-parametric model overβ ′ i.e.P(β ′|ΘF).

These two expressions can be combined in order to produce a complete model speci-
fication for unmatched astronomical catalogues.

P(Z,ΘJ,ΘF |D) ∝ ∏
i=1..M

∏
j=1..Ni

PJ(αi ,βi, j |ΘJ)
zi, j PF(βi, j |ΘF)

1−zi, j P(ΘJ)P(ΘF). (1)

This fixed dimensional model consists of a mixture model of different dimensions for
the sparse and dense objects, with slightly altered constraints on the indicator variables
such that exactly one object in the sparse catalogue matchesan object in the dense
catalogue. In practice a fully Bayesian model for the flux distribution of the dense objects
may not be necessary as the number of dense dataset is often very large and uncertainty
aboutΘ f can be neglected and maximum likelihood can be used to estimate ΘF .

Positional information is always of high importance in matching. In this problemα
andβ will contain position information. It is reasonable for theP(αi ,βi, j |ΘJ) to factor

such thatPJ(αi ,βi, j |ΘJ) =Normal

((

αiRA

αiDec

)

−

(

βi, jRA

βi, jDec

)

,

(

0
0

)

,Σ
)

P(α ′
i ,β

′
i,j|ΘJ) where

α ′
i andβ ′

i, j are the parameters with positional information removed andthe positional
information for the sparse object isαiRA,αiDec and for the dense catalogue object is
βi, jRA,βi, jDec.

A Markov chain with a stationary distribution of the posterior can be simulated in the
following way, hereD is used to abbreviate all the data.

1. Sample fromP(Z|ΘJ,ΘF ,D).
2. Sample fromP(ΘJ|D,Z).
3. Sample fromP(ΘF |D,Z).
4. Repeat from step 1.

Step 1, samples a possible configuration of matches and non-matches conditional
on the parameters. It is very close to the standard procedurefor sampling from latent
indicator variables, but differs slightly because it is a mixture of distributions with
different dimensions i.e. matching objects have a joint density of sparse and dense
properties where non-matching objects only have dense properties. The slightly modified
expression for sampling the matching or non-matching stateis

P(zi, j |Θ j ,Θ f ,αi,βi,1, ...,βi,Ni) ∝ P(αi ,βi, j |Θ j)
zi, j ∏

k=1..Ni ,k6= j

P(βi,k|Θ f )
1−zi,k. (2)

In our work a constrain onP(Z) is that there is exactly one dense match for every sparse
object.
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FIGURE 2. The unmatched data are overlaid over the estimated distribution. The vertical streaks are
all the dense candidates to a sparse object. The ‘true’ matchis marked in red – the other candidates are
marked in blue. Often the true match will not be given the highest probability and a non-match will be
detected instead.

Step 2 and Step 3 are standard methods for sampling from the posterior of a finite
normal mixture model bivariate in the case of Step 2 and Step 3which are extensively
discussed in the literature e.g. see [4] or [5].

APPLICATION OF MODEL

Although simulations were also applied to a real dataset, the demonstration of a Bayesian
predictive approach overcoming distortion when employingall available information
is most easily achieved using a contrived matching problem.The true matches in the
matching problem is based upon real dataset used for constructing the Hertzsprung-
Russell (HR) diagram which has a distinctive shape. Although this is a real dataset [2]
in practice it does not require matching to get the relevant measurements of the flux
in different bands. We construct a partially matched dataset which consists of 2246
matches, the remaining 749 are considered in the unmatched portion. The flux of the
background objects are given a uniform distribution between magnitudes 0 and 20. This
is not physically motivated, but is chosen so as to make illustration of distortions from
a naive analysis as clear as possible. For the unmatched portion the number of dense
candidates is given a Poisson distribution with expectation 50.

Using the maximum likelihood fit of the joint distribution itis possible to determine
the most likely matches and to see how these must be distortedto exaggerate the
model see Fig. 2. These are shown with the pre-matched data inFig. 3. A systematic
distortion is evident where the most likely matches are lessspread out than the original
pre-matched dataset. For the purposes of this discussion let us consider the spread
of objects perpendicular to the line shown in Fig. 3 . This is calculated by taking
V−(B−V)×5.0305−1.6285 and discarding all objects withB> 9, this is subsequently
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FIGURE 3. The pre-matched data (training set) and most likely matches.

FIGURE 4. Illustration of distortion from using the most likely matches.

referred to as the line width.
A histogram of the spread of the original data, the most likely match and MCMC

samples from the predictive distribution is shown in Fig. 4.It is visually obvious that
the most likely matches are much more concentrated than the pre-matched data and the



predictive distribution is broader than both the pre-matched and most likely matches.
This shows the Bayes-MCMC approach does not have the distortion effect seen in Fig.
3, the predictive distribution is not sharply peaked like the most likely matches.

The sample standard deviation of the line width of the original data isσ̂pre= 1.2365,
however the standard deviation of the most likely match is much lower atσ̂mlm= 0.5060.
This is considerably distorted because when errors are madein the most likely match
they always happen in systematic ways. The predictive distribution on the other hand
gives a standard deviation ofσ̂pred= 1.2552 which is in reasonable agreement with the
true matches. As the histogram of the line width shape was notGaussian it was necessary
to use a number of components to capture the shape.

Comparing the histogram with the predictive distribution wefind better agreement
with the most likely match although there remains some distance between the two.
These difference might be seen as a good reason to consider alternatives to the Gaussian
Mixture Model. The successful implementation of this technique requires workable use
of Bayesian semi-parametric or non-parametrics of which Gaussian Mixture Models
might be considered just one possibility.

The simulation was implemented in Matlab, the sampling of indicator variables re-
quired using interpreted Matlab this executed slowly and a single sample took up to 10
minutes to generate, although the speed of this was very dependent on the number of
dense candidate objects. A large speed up could be achieved by rewriting this portion of
the code in a compiled language, although we opted for long simulation times instead.

It is also interesting to consider how the model specification and prior specification
impacts on the results. In general the impact of the priors ofthe mixture model i.e. the
priors over the means and covariances seemed to have little qualitative impact on the
outcome of the algorithm. On the other hand two elements thathave a strong impact
for related reasons are the prior onσ and the general difficulty of the problem, i.e. the
number of dense candidates and the amount of the dataset thatis pre-matched. It appears
that a certain minimal amount of information is required forreasonable inferences to be
drawn, if the amount of information is too small the algorithms wanders around a large
posterior distribution.

The algorithm was also quite sensitive to the initial conditions of the Markov chain.
The following relatively standard procedure was adapted tothis context where the EM
algorithm was applied to the subset of the data that was pre-matched, being applied to the
matched or non-matched components individually in order toget initial estimates ofΘJ
andΘF . Of course such a procedure is only possible when there is a pre-matched subset
of the data available, in other situations other heuristicssuch as clustering algorithms
or closest match algorithms may be employed, but as the difficulty of the problem will
increase it is expected that much larger MCMC runs will be needed both for burn in and
for averaging.

Judging convergence and discarding a suitable burn-in period is a challenging problem
for MCMC methods particularly for mixture models which are known to have multiple
separated modes due to symmetries. In general it is not realistic to expect that an
MCMC algorithm applied to a mixture model will mix between allof these modes, but
rather the algorithm should concentrate on the most important modes and mix between
these. The symmetries that are responsible for making the posterior so complex and
difficult become advantageous when computing a predictive distribution as adequate



local mixing can be sufficient to approximate the predictivedistribution.
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FIGURE 5. Samples of the matches at various points on the Markov chain at 10 iterations (left), 100
iterations (middle) and 150 iterations (right).

While there is a large literature on assessing convergence, including examining trace
plots of a particular parameter, autocorrelation or formalized tests we found that a par-
ticularly useful and intuitive means of assessing convergence and algorithm behaviour is
available in this context in the form of analyzing scatter plots of the matches at different
steps of the algorithm. A graphical diagnosis of convergence can be seen in Figure 5
which shows the configuration of matches on the 10th, 100th and 150th iteration, note
that Absolute V Magnitude is equal to negative log flux, such that large numbers are
fainter than small numbers. The 10th iteration shows that there are many faint objects
that are misclassified as matches, on the 100th iteration many more of the matches lie
on the standard HR diagram after 150th objects a typical sample closely resembles the
HR diagram and shows its distinctive features and there are very few faint objects clas-
sified as matches. Depending on the difficulty of the problem under investigation i.e. the
number of dense candidates within a reasonable positional uncertainty and the propor-
tion of the catalogue that is pre-matched then the behavior of the algorithm changes. If
a lot of information is available then the samples 1-150 willbe tail area of the poste-
rior and the algorithm need only escape this configuration once and the algorithm will
iterate locally between configurations of matches with verysimilar shape. On the other
hand if less information is available then it may be that the algorithm will revisit these
configurations after many iterations as under the model assumptions put forward these
are plausible configurations. By varying the difficulty of theproblem both of these cases
where observed in our work. Although the first case might be the most satisfactory to
astronomers, statistically both are interesting cases. The problem represented in Figure 5
is in fact a relatively easy problem where there are a large number of faint non-matching
dense objects.

Every iteration of the Gibbs sampling algorithm produces graphical output of com-
bined matches and non-matches, matches and non-matches separated and graphs of the
predictive distribution of both the matches and non-matches. These were valuable for
diagnosing convergence and understanding both the algorithm behaviour and the infer-
ence on the particular dataset. In particular it is interesting to consider how much the
configuration of matches varies between iterations.



CONCLUSION

Catalogue matching was formulated as a mixture model problemin a predictive
Bayesian framework. It was demonstrated that by operating ina predictive framework
rather than establishing the most likely matches it is possible and desirable to include
all information in the model. This contrasts with other approaches including other
Bayesian approaches which focus on the goal of establishing the most likely matches.
This is particularly evident in the example shown in Figure 4where the line width
estimated using an ideal most likely match algorithm is seriously distorted, but the
predictive Bayes approach is undistorted. Alternative approaches encourage discarding
useful information in order to avoid distorted interpretations of the most likely matches.
It is demonstrated by example that these distortions are notevident in the predictive
distribution.

ACKNOWLEDGMENTS

David Rohde was partially supported by a University of Queensland Confirmation
Scholarship and the Programa Professor Visitante do Exterior from the Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior(CAPES).

REFERENCES

1. T. Budavari and A. S. Szalay. Probabilistic Cross-Identification of Astronomical Sources.The
Astrophysical Journal, 679(1), July 2008.

2. W. Gliese and H. Jahreiss. Nearby Stars, Preliminary 3rd Version (Gliese+ 1991).VizieR Online Data
Catalog, 5070, November 1995.

3. R. G. Mann, S. J. Oliver, S. B. G. Serjeant, M. Rowan-Robinson, A. Baker, N. Eaton, A. Efstathiou,
P. Goldschmidt, et al. Observations of the Hubble Deep Fieldwith the Infrared Space Observatory -
IV. Association of sources with Hubble Deep Field galaxies.Monthly Notices of the Royal Astronmical
Society, 289:482–489, August 1997.

4. J.M. Marin, K. Mengersen, and C.P Robert. Bayesian modelling and inference on mixtures of
distributions.Handbook of Statistics 25, 2006.

5. G. J McLachlan and D. Peel.Finite Mixture Models. John Wiley and Sons Inc, 2000.
6. D. J. Rohde, M. J. Drinkwater, M. R. Gallagher, T. Downs, and M. T. Doyle. Applying machine

learning to catalogue matching in astrophysics.Monthly Notices of the Royal Astronomical Society,
360(1):69–75, 2005.

7. D. J. Rohde, M. R. Gallagher, M. J. Drinkwater, and K. A. Pimbblet. Matching of catalogues by
probabilistic pattern classification.Monthly Notices of the Royal Astronmical Society, 369:2–14, June
2006.

8. A. Storkey, C. Williams, E. Taylor, and B. Mann. An expectation maximisation algorithm for one-
to-many record linkage, illustrated on the problem of matching far infra-red astronomical sources
to optical counterparts. Technical Report EDI-INF-RR-0318, School of Informatics, University of
Edinburugh, 2005.

9. W. Sutherland and W. Saunders. On the likelihood ratio forsource identification.Monthly Notices of
the Royal Astronmical Society, 259:413–420, December 1992.


