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Abstract. The estimation of latent factor models are treated in an integrated maximum likelihood
context where one parameter is marginalized and another is estimated. An extension to the online
Expectation Maximization (EM) algorithm is employed the simulated online Expectation Maxi-
mization algorithm. Both these algorithms apply to exponential family models, but the simulated
version of the algorithm can make use of Monte Carlo simulation to compute the stochastic E-steps
while maintaining the convergence properties of the original online EM algorithm. A class of im-
portant latent factor models are identified that can be expressed in complete data exponential family
form, the algorithm is applied to one of these models Itakura-Saito Non-negative Matrix Factorisa-
tion. An additional parameter is introduced into this modeland it is conjectured if this is set to a
high value the posterior variance of the parameters is reduced and estimation becomes easier. Sim-
ulations are provided that support this conjecture, although online estimation for models with even
a modest number of components continues to be hampered by thepresence of local minima.
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INTRODUCTION

The online EM algorithm is a variant of the EM algorithm that preserves many of the
appealing features of the original EM algorithm in an onlinesetting [4, 2], it is of
particular relevance when the data being analysed is large and perhaps growing and
the conventional or batch EM algorithm may be too slow. The online EM algorithm is
applicable to complete data exponential family models in which there is the availability
of an analytical E-step which computes the expectation of the complete data sufficient
statistics. The simulated online EM algorithm studied hereallows estimation when
an analytical E-step is not available using Monte Carlo methods, this algorithm also
converges albeit with a higher variance[13].

In this paper we study the applicability of this algorithm tolatent factor models.
Latent factor models find applications in many fields, non-negative matrix factorization
models are a prominent example which are widely applied to decompose images or
audio spectra into components, an advantage of a non-negative constraint is that the
decomposition is often readily interpretable [11]. Other prominent applications of latent
factor models include topic modelling where documents in a corpus are clustered into
topics where any document may have multiple topics [1] and collaborative filtering
applied to recommender systems [14].

As the online EM algorithm is based on the exponential familyof distributions, a



modelling framework based upon the exponential family is required. Such a framework
is developed for latent factor models in [10] which show thatthree important matrix fac-
torization models can be put in exponential family form by augmenting with appropriate
latent data. These authors use this framework to demonstrated how a Gibbs sampler can
be constructed which exploit the exponential family in two distinct places. In our work
here, the first use of the exponential form is necessary for allowing estimation in an on-
line EM framework. The second is useful although not necessary for using the Gibbs
sampler as the sampling procedure. We also consider the Metropolis-Hastings sampler.

In latent factor models it is possible to estimate all parameters including the latent
factors and a large literature is devoted to this approach much of it inspired by the sem-
inal work in [11]. Although these methods which estimate allparameters are widely
deployed with some success this approach does have some problems in particular the
the number of parameters grows with the number of data points, which makes analysis
of convergence difficult and requires the employment of heuristics to apply and validate
the model on unseen data. A growing literature shows that improved statistical perfor-
mance is obtained by operating in a semi-Bayesian frameworkwhere the latent factors
are marginalized out and other parameters are estimated [1,6, 7]. The online EM al-
gorithm developed here operates in such a semi-Bayesian framework. The E-step must
marginalize both over the introduced latent data as well as the latent factor models. This
is in contrast to typical EM algorithm approaches to matrix factorisation that simply
marginalize over introduced latent data and estimate all other parameters including the
latent factors e.g. the SAGE algorithm in [9].

In this contribution we apply one model from [10], Itakura-Saito Non-negative Matrix
Factorisation or IS-NMF. The simulated online EM algorithmhas already been applied
to this model in [3] (in French). Our contribution here is to show that with a trivial
modification to the model and applying a slightly modified computational procedure
we obtain an algorithm with lower posterior variance. Simulations demonstrate that
estimates converge to a local minima much more quickly and with less noise. For
example images that are learned are cleaner in appearance ifM is high compared toM
low. Unfortunately in our simulation studies the local minima is rarely a global minima.

SIMULATED ONLINE EM ALGORITHM

The online em algorithm is applicable to a latent data problem where(x,y) are the latent
and real data of a complete data exponential family model i.e. where the model has the
following exponential family form

P(x,y|θ) = h(x,y)exp{φ ′(θ)s(x,y)−A(θ)}
wherey is observed,x = [H C] is latent,φ(·) maps the parameterθ to the natural
parameters ands(·) maps(x,y) to the sufficient statistic andA(·) is the log partition
function. The online EM algorithm then operates by alternating the following steps.

The stochastic E-step

Sn = (1− γn)Sn−1+ γnEθ̄(Sn−1)
[s(Xn,Yn)|Yn]



The stochastic M-step

θn = θ̄(Sn)

WhereSn is the current estimate of the complete data sufficient statistics for the data
setY1, ...Yn, as it is an online algorithmn indexes both the amount of data observed so
far and the number of iterations;θn similarly denotes the parameter estimate aftern iter-
ations,γn is a decaying sequence satisfying∑∞

n=0 γn = ∞ and∑∞
n=0 γ2

n < ∞, empirically a
good choice isγn = n−0.6.

The algorithm and proof of convergence is described in detail in [4, 2]. The simu-
lated online EM algorithm replacesEθ̄(Sn−1)

[s(Xn,Yn)|Yn] with a Monte Carlo simulation
with the same expectation. This algorithm also converges albeit with higher variance
[13]. A straightforward means to produce samples with this expectation is to takeR
samples ofX̃r

n ∼ P(Xn|Yn,θ) and then to compute1R ∑R
r=1s(X̃r

n,Yn). Alternatively Rao-
Blackwelization may be available to reduce the variance, inparticular it maybe conve-
nient to sample only a sub-component ofX̃n i.e. whereXn= [Hn Cn] sample onlyH̃n|θ ,Yn
and then computeEθ̄(Sn−1)

[s(Xn,Yn)|H̃n] which has reduced variance, and avoids directly
samplingCn.

In practice instead of generating independent samples fromHn or Xn a Markov chain
Monte Carlo algorithm is used with a carefully chosen initial state and long burn in to
reduce the bias. In the discussion here we assume that the bias can safely be neglected.

LATENT FACTOR MODELS

The models we consider have the following structure: we model the observed dataY
which is anF ×N matrix, with a parametric model such that there is a parameter θ f
for every one of theF columns of the matrix and such that there is a parameterHn for
ever one of theN rows of the matrix. We can therefore model the dataP(Yf ,n|θ f ,Hn),
and conditional on the parameters, the elements ofY are independent. In order to obtain
exponential family form it is required to augment eachYf ,n with latent dataC.

A fully Bayesian treatment of these models can be approximated with the following
Gibbs sampling algorithm [10] which can be applied efficiently to models that make use
of the exponential family of distribution in two distinct places.

1. P(θ |Y,C,H) ∝ P(θ)∏n=1..N P(Yn,Cn,Hn|θ)
2. P(H|Y,C,θ) ∝ P(H)∏F

f=1P(Yf ,Cf ,θ f |H)

3. P(C|Y,θ ,H)

In order for step 1 to be (easily) sampled using a Gibbs sampler P(Yn,Cn,Hn|θ) must
be in exponential family form whereY,C,H are treated as data observed (Y) or latent
(C,H) andθ is the parameter. Similarly in order for step 2 to be (easily)sampled using a
Gibbs samplerP(Yf ,Cf ,θ f |H) must also be in exponential family form whereY,C,θ are
treated as being data real (Y) and latent(C,θ) andH is the parameter. In this framework
the exponential family model is being used in two distinct places in the first caseH is
seen as latent data andθ as a parameter and in the secondH is seen as a parameter
andθ as latent data. In a fully Bayesian treatment this double useof exponential family



models is advantageous in allowing the use of Gibbs samplingin turn samplingθ and
then H. The use of two exponential family models are similarly useful in our semi-
Bayesian framework because it allows estimation ofθ in an online EM setting and
Gibbs sampling can again be used for the integration ofC,H (required for computing
E[s(Y,C,H)|Y] for the online EM stochastic E-step), although other samplers such as
random walk Metropolis-Hastings may also be used.

Itakura-Saito NMF

Lazy completion

The IS NMF model has the following form

Vf ,n =Y2
f ,n ∼ Γ(M/2,

2
M

K

∑
k=1

θ f ,kHk,n) (1)

whereVf ,n is observed directly andYf ,n is its square. This equation refers to individual
elements of theV ×F matrices and an individual element of theF ×K matrix θ . The
following parameterization of the Gamma distribution is used

f (x;ν,λ ) = xν−1 e−x/λ

θ ν Γ(ν)
.

which has expectationνλ , so that we have E[Vf ,n|θ f ,k,Hk,n] = ∑K
k=1 θ f ,kHk,n, giving the

justification of the name probabilistic matrix factorization.

Full completion, exponential family form

For every observedYf ,n, aK ×M matrix of latent data is introduced, the latent dataC
is therefore indexedCf ,k,m,n. Conditional onθ andH the elements ofCf ,k,1,n, ...,Cf ,k,M,n
are independent and have the following distribution

Cf ,k,1,n, ...,Cf ,k,M,n|θ f ,kHk,n ∼ N (0,
θ f ,kHk,n

M
).

which means we can say

M

∑
m=1

Cf ,k,m,n|θ f ,kHk,n ∼ N (0,
∑k θk,nHk,n

M
).

If V is the matrix of observations and its elements are defined asVf ,n =Y2
f ,n where

Y2
f ,n =

K

∑
k=1

(
M

∑
m=1

Cf ,k,m,n)
2,



by the definition of theχ2
M distribution we can say that

M|Yf ,n|2
∑k θk,nHk,n

∼ χ2
M().

Using the equivalence between gamma distribution andχ2 distributions and the scaling
property of the gamma distribution we recover the matrix factorization model given in
Equation 1. Due to the semi-Bayesian treatment a prior is needed onHn, for compu-
tational convenience an independent inverse gamma prior isput on eachHk,n. The full
semi-Bayesian expression for the model then becomes

Pθ (C1,1,1,n, ...,CF,K,M,n,H1,n, ...,HK,n)

= (
K

∏
k=1

(Hk,n)
−α−1exp{− β

Hk,n
})

F

∏
f=1

M

∏
m=1

1√
2π

exp{
−C2

f ,k,m,nM

2θ f ,kHk,n
− log(

θ f ,kHk,n

M
)}

= (
K

∏
k=1

(Hk,n)
−α−1exp{− β

Hk,n
})(2π)−

FM
2

exp{
F

∑
f=1

M

∑
m=1

−C2
f ,k,m,nM

2θ f ,kHk,n
− log(

θ f ,kHk,n

M
)}

which is in exponential family form with sufficient statistics:








C2
1,1,1,n

H1,nM

.
C2

F,1,1,n
H1,nM









, ...,









C2
1,K,M,n

HK,nM
.

C2
F,K,M,n

HK,nM









which isK ×M vectors of lengthF.

Stochastic E-step

Practical implementations of the simulated online EM algorithm proceeds by using
MCMC samples ofC,H in order to approximate the E-step. One possible sampler is
the block Gibbs sampler which exploits the exponential family form given above and
the derivation for which is given in [10]. These authors focus upon cases whereM = 1
andM = 2, this means that the size ofC at F ×K ×M is manageable, but it is clear
that for largeM thenC becomes a large array requiring significant memory. This model
is often applied to signal processing problems,M = 1 is therefore the simplest form
of the model the so called real IS NMF model as it is easy to formulate with a real
normal distribution. SimilarlyM = 2 is referred to as the complex model and can be
formulated using the spherical complex normal distribution. In signal processing this is



an intuitively attractive model because spectra are complex. The properties of the model
with M > 2 are unexplored in the current literature.

In this paper we propose usingM large but avoid the extravagant representation ofC
by using the Metropolis algorithm on the lazy form of the model. The exponential family
form is still required for the online EM algorithm however the expected sufficient statis-
tics Eθ [s(X,Y)|Y,H] can be computed either with a Gibbs sampler using the exponential
family model or another MCMC algorithm using the lazy form ofthe model. The extrav-
agant representation onC can again be avoided by making use of a Rao-Blackewelized
expression of the sufficient statistics.

The Metropolis-Hastings algorithm [12] constructs a Markov chain with move pro-
posals which are taken with an acceptance probability. As the parameters for this model
are constrained to be non-negative a multiplicative log normal proposal is used in-
stead of the normal additive Gaussian random walk. So the proposalQ() has the form
Q(H∗|H) ∼ H × logN(µ,σ2). This results in the following factor modifying the usual
random walk Metropolis acceptance ratio

min

(

Q(H,H∗)P(H∗|Yn)

Q(H∗,H)P(H|Yn)
,1

)

= min

(

H∗ P(H∗|Yn)

H P(H|Yn)
,1

)

.

Rao-Blackwelized formula for computing Expectation of sufficient
statistics

AsCf ,1,m,n, ...,Cf ,K,m,n|Hn,θ f ∼N () thenCf ,1,m,n, ...,Cf ,K,m,n,∑K
k=1Cf ,k,m,n|Hn,θ f is

a reduced rank normal distribution and its form can be computed by using the Affine
transform rule for multivariate normal distributions. This results in











Cf ,1,m,n
.
.

Cf ,K,m,n

∑K
k=1Cf ,k,m,n











|θ ,H ∼

N

















0
.
.
0






,











θ f ,1H1,n
M 0 .

θ f ,1H1,n
M

0
θ f ,2H2,n

M .
θ f ,2H2,n

M
. . . .

θ f ,1H1,n
M

θ f ,2H2,n
M . ∑K

k′=1
θ f ,k′Hk′,n

M





















From this we can see that

Cf ,k,m,n|
K

∑
k=1

Cf ,k,m,n,θ ,H

∼ N (
θ f ,kH1,n

∑K
k′=1 θ f ,k′Hk′n

(
K

∑
k=1

Cf ,k,m,n),
θ f ,kHk,n

M
(1− θk,nHk,n

∑k′1θ f ,k′Hk′,n
)



By using the identity that E[X2] = E[X]2+Var[X], we can conclude that

Eθ [
M

∑
m=1

C2
f ,k,m,n|

K

∑
k=1

Cf ,k,1,n, ...,
K

∑
k=1

Cf ,k,M,n,Hk,n]

=

(

θ f ,kHk,n

∑K
k′=1θ f ,k′Hk′n

)2

(
M

∑
m=1

(
K

∑
k=1

Cf ,k,m,n)
2)+θ f ,kHk,n(1−

θk,nHk,n

∑k′=1 θ f ,k′Hk′,n
)

or more usefully

Eθ [
M

∑
m=1

C2
f ,k,m,n|Yf ,n,Hk,n]

=

(

θ f ,kHk,n

∑K
k′=1θ f ,k′Hk′n

)2

Y2
f ,n+θ f ,kHk,n(1−

θk,nHk,n

∑k′=1 θ f ,k′Hk′,n
)

Finally this allows the following Rao-Blackwelized expression for the expected suffi-

cient statistics,Sf ,k,n = Eθn−1[
∑M

m=1C2
f ,k,m,n

Hk,n
|Yf ,n,Hk,n] =

Eθn−1
[∑M

m=1C2
f ,k,m,n|Yf ,n,Hk,n]

Hk,n
.

Stochastic M step

In the online EM setting stochastic approximation will approximate the expected

sufficient statisticsS̃f ,k,n ≈ 1
n ∑n

n′=1 ∑M
m=1

C2
f ,k,m,n

Hk,nM , and will equal this value asn → ∞,
assuming the approximation is good we obtain

θ f ,k|Cf ,k,1,1, ...,Cf ,k,M,n ∼ I G(α +n,β +nSf ,k,n).

θ̄ (Sf ,k,n) =
β +nSf ,k

α +n+1
=

β/n+Sf ,k
α+1

n +1

The effect of the M parameter

If we consider the model in lazy form thenVf ,n ∼ Γ(M/2, 2
M λ ) where

λ = ∑K
k=1 θ f ,kHk,n), we find that Eθ [Vf ,n|Hn] = β and the variance is given by

Varθ [Vf ,n|Hn] = 2λ 2

M , it is apparent thatM controls the variance of the predictive
distribution. It is conjectured that usingM large may increase the identifiability of the
parameters and make estimation easier.

A simple way to investigate if the conjecture is correct is todraw samples of data from
the model with different values ofM. In Fig 1 data is compared to the noiseless signal
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FIGURE 1. Data simulated from two models that differ only in the parameter M, left M = 1 right
M = 60.

i.e. θHn with samples of data from the model withM = 1 andM = 60, it is very clear
that much more noise is present in theM = 1 model.

To further consider this point we can also investigate the posterior ofHn,k conditional
on the same value ofθ and the same data. This is presented in Figure 2, again it is
evident that the posterior is much narrower forM = 60 than forM = 1 orM = 2.
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FIGURE 2. Comparison of posteriors forP(Hk,n|Yn,θ ,M = 1), P(Hk,n|Yn,θ ,M = 1) and
P(Hk,n|Yn,θ ,M = 60).

Finally we consider the actual operation of the simulated online EM algorithm. As
a test problem we consider the ‘swimmer’ dataset [8] which consists of a swimmer
with 4 limbs each of which has 4 positions. A correct separation produced by a non-
negative matrix factorization algorithm consists of separating each of the limbs into 16
components, a further element, the body, is not identifiableand may be shared between
the components.

The simulated online EM algorithm was successfully appliedto this dataset in [13]
using the Latent Dirichlet Allocation model. The IS NMF model with M = 1 was also
successfully used with this model using a batch variationalBayes approach in [7]. These
authors experience difficulties with the EM algorithm getting caught in local minima,
which they deal with by using two strategies, by doing multiple runs, picking the run
with the largest marginal likelihood and by using an annealing procedure. Even when
employing these procedures the estimates of the limbs of theswimmer are noisy, see
Figure 2 in [7].

The overall result from applying the online EM algorithm to this problem with
M = 60, is that the estimates of the limbs are no longer noisy as they were when applied



to the model withM = 1, however the problem of falling into local minima i.e. failing
to separate the limbs is acute. Moreover the heuristics for avoiding local minima such as
annealing or comparing marginal likelihoods of multiple runs used in [7] are not easily
available in the online context.

The swimmer dataset was generated in the following way. If a pixel was considered
to be black then it was given the low value of 0.01, if it was white it was given a value
of 10, the 256 images (32 pixels square) were then flattened into vectors of length 1024,
data was then generated using these templates from the modelwith M = 60. It should
be noted that this results in much less noisy data than generating with M = 1 or M = 2.
The algorithm was run withK = 32, when the ground truth isK = 16. This allows
us to demonstrate the automatic order selection property observed in [7] that excessive
capacity inθ automatically gets removed by estimating these componentsas being near
zero. The algorithm was run for 20× 256 iterations i.e. for 20 (noisy) repetitions of
the 256 sized dataset, each stochastic E-step involved a burn in of 1400 iterations and
averaging over 100 samples. The estimates of the 16 highest values ofθ are shown in
Figure 3. Unfortunately the algorithm seems to inevitably get caught in local minima,
several limbs are not correctly separated. On the other handthe estimates of the limbs
are much less noisy than cases that are applied withM = 1 or M = 2. The property of
automatic order selection, is also evident here where unused components are estimated
to be zero. This is one of the advantages noted in [7] of marginalizingH.

FIGURE 3. The estimates ofθ for applying IS NMF on the swimmer problem withM = 60.

DISCUSSION

The simulated online EM algorithm is shown to be applicable to latent factor models
presented in [10].

This work considered an elaboration of the IS NMF model presented in [10] which
results in a matrix factorization model with an additional parameterM, some prelimi-
nary simulations support our conjecture that settingM to be high reduces the posterior
variance of the parameters and results in a model for which parameter estimation is eas-
ier. In addition we also observe automatic order selection where unneeded components
of θ are set to zero.

Unfortunately settingM high does not reduce the problem of local minima which
appear to be a serious difficulty for the IS NMF model. Moreover, it is unclear how
strategies used in a batch setting for avoiding local minimasuch as annealing or com-



paring the marginal likelihood of multiple runs [7] can be employed in an online setting.
Annealing is difficult because the online EM employs stochastic approximation not for
optimisation, but rather using the Robbins Monro stochastic approximation method for
finding the root of an equation. Equally comparing multiple runs requires a computation
of the marginal likelihood, it is difficult to take on this computation without employing
a completely different computational procedure such as Chibb’s method [5] for compar-
ing the output of different algorithm runs. Alternatively the variational Bayes framework
adopted in [10] could be used in order to optimise a lower bound on the integrated like-
lihood.
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