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Abstract. The estimation of latent factor models are treated in argmnated maximum likelihood
context where one parameter is marginalized and anothstimated. An extension to the online
Expectation Maximization (EM) algorithm is employed thensiated online Expectation Maxi-
mization algorithm. Both these algorithms apply to expdiafiamily models, but the simulated
version of the algorithm can make use of Monte Carlo simaitettb compute the stochastic E-steps
while maintaining the convergence properties of the oebonline EM algorithm. A class of im-
portant latent factor models are identified that can be esgaetin complete data exponential family
form, the algorithm is applied to one of these models Itaks@#o Non-negative Matrix Factorisa-
tion. An additional parameter is introduced into this moaledl it is conjectured if this is set to a
high value the posterior variance of the parameters is egtland estimation becomes easier. Sim-
ulations are provided that support this conjecture, alifoanline estimation for models with even
a modest number of components continues to be hampered pyaebence of local minima.
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INTRODUCTION

The online EM algorithm is a variant of the EM algorithm thatgerves many of the
appealing features of the original EM algorithm in an onlsedting [4, 2], it is of
particular relevance when the data being analysed is langeparhaps growing and
the conventional or batch EM algorithm may be too slow. ThinerEM algorithm is
applicable to complete data exponential family models ifctvithere is the availability
of an analytical E-step which computes the expectation @tcthmplete data sufficient
statistics. The simulated online EM algorithm studied haltews estimation when
an analytical E-step is not available using Monte Carlo mesh this algorithm also
converges albeit with a higher variance[13].

In this paper we study the applicability of this algorithm ledent factor models.
Latent factor models find applications in many fields, nogatie matrix factorization
models are a prominent example which are widely applied tmigose images or
audio spectra into components, an advantage of a non-negatnstraint is that the
decomposition is often readily interpretable [11]. Othexpinent applications of latent
factor models include topic modelling where documents imgs are clustered into
topics where any document may have multiple topics [1] anthlcorative filtering
applied to recommender systems [14].

As the online EM algorithm is based on the exponential faroilydistributions, a



modelling framework based upon the exponential family tginreed. Such a framework
is developed for latent factor models in [10] which show thate important matrix fac-
torization models can be put in exponential family form bgaenting with appropriate
latent data. These authors use this framework to demoedthatv a Gibbs sampler can
be constructed which exploit the exponential family in twstitict places. In our work
here, the first use of the exponential form is necessary fowalg estimation in an on-
line EM framework. The second is useful although not necgdsm using the Gibbs
sampler as the sampling procedure. We also consider thepeis-Hastings sampler.

In latent factor models it is possible to estimate all par@nmseincluding the latent
factors and a large literature is devoted to this approaathrotiit inspired by the sem-
inal work in [11]. Although these methods which estimatepgtameters are widely
deployed with some success this approach does have somemsoin particular the
the number of parameters grows with the number of data paoitich makes analysis
of convergence difficult and requires the employment of iséias to apply and validate
the model on unseen data. A growing literature shows thatawgal statistical perfor-
mance is obtained by operating in a semi-Bayesian framewbgke the latent factors
are marginalized out and other parameters are estimaté] [, The online EM al-
gorithm developed here operates in such a semi-Bayesiaeivark. The E-step must
marginalize both over the introduced latent data as wehasatent factor models. This
is in contrast to typical EM algorithm approaches to mategtbrisation that simply
marginalize over introduced latent data and estimate h#rgbarameters including the
latent factors e.g. the SAGE algorithm in [9].

In this contribution we apply one model from [10], Itakura#® Non-negative Matrix
Factorisation or IS-NMF. The simulated online EM algorithas already been applied
to this model in [3] (in French). Our contribution here is tfoow that with a trivial
modification to the model and applying a slightly modified gutational procedure
we obtain an algorithm with lower posterior variance. Siatieins demonstrate that
estimates converge to a local minima much more quickly arith Ve&ss noise. For
example images that are learned are cleaner in appeara¥ices iiigh compared ti/
low. Unfortunately in our simulation studies the local nmivai is rarely a global minima.

SIMULATED ONLINE EM ALGORITHM

The online em algorithm is applicable to a latent data probMhere(x,y) are the latent
and real data of a complete data exponential family modehhere the model has the
following exponential family form

P(x,y|6) = h(x,y)exp{¢/(8)s(x.y) — A(6)}

wherey is observedx = [H C] is latent, ¢(-) maps the parameté? to the natural

parameters and(-) maps(x,y) to the sufficient statistic and(-) is the log partition

function. The online EM algorithm then operates by altantathe following steps.
The stochastic E-step

S=1-WS 1+ WnEg(s, 1) [S(Xn, Yn) [Yn]



The stochastic M-step

O = 9(31)

WhereS§, is the current estimate of the complete data sufficientssiesifor the data
setYy,...Yn, as it is an online algorithm indexes both the amount of data observed so
far and the number of iteration§; similarly denotes the parameter estimate aftier-
ations,y, is a decaying sequence satisfyifif oy =« andy y? < o, empirically a
good choice ign = n~°F,

The algorithm and proof of convergence is described in detd#, 2]. The simu-
lated online EM algorithm replacéS; g, ,[S(Xn, Yn)[Yn] with a Monte Carlo simulation
with the same expectation. This algorithm also convergesitalith higher variance
[13]. A straightforward means to produce samples with thigeetation is to takdR
samples ol ~ P(Xa|Yn, 0) and then to computg 3R, (X!, Ya). Alternatively Rao-
Blackwelization may be available to reduce the varianc@airticular it maybe conve-
nient to sample only a sub-compogenb@ﬁ.e. whereX,, = [H,, C,] sample only:|n| 0, Yn
and then computBg5 ,[s(Xn, Yn)|Hn] which has reduced variance, and avoids directly
samplingCi.

In practice instead of generating independent samplestgor X, a Markov chain
Monte Carlo algorithm is used with a carefully chosen ihigi@te and long burn in to
reduce the bias. In the discussion here we assume that thedasafely be neglected.

LATENT FACTOR MODELS

The models we consider have the following structure: we rhtiteobserved dat¥
which is anF x N matrix, with a parametric model such that there is a parantite
for every one of thd= columns of the matrix and such that there is a parantétdor
ever one of theN rows of the matrix. We can therefore model the d@g¥s |6, Hn),
and conditional on the parameters, the elemen¥arie independent. In order to obtain
exponential family form it is required to augment eagh, with latent dateC.

A fully Bayesian treatment of these models can be approxachatith the following
Gibbs sampling algorithm [10] which can be applied effidetd models that make use
of the exponential family of distribution in two distinctaues.

1. P(Q‘Y7C7 H) 0 P(e) |_|n:1..N P(YI'DCI']? Hn|9)
2. P(H|Y,C,0) OP(H) %_, P(Ys,Cs, 6¢|H)
3. P(C|Y,0,H)

In order for step 1 to be (easily) sampled using a Gibbs samolg, Cn, Hn|6) must
be in exponential family form wherg C,H are treated as data observ&d 6r latent
(C,H) and@ is the parameter. Similarly in order for step 2 to be (easiéyypled using a
Gibbs sampleP(Y;,Cs, 65 |H) must also be in exponential family form whefeC, 0 are
treated as being data redl)(and laten{C, 6) andH is the parameter. In this framework
the exponential family model is being used in two distin@qgals in the first casd is
seen as latent data arfdas a parameter and in the secdthds seen as a parameter
and@ as latent data. In a fully Bayesian treatment this doubleofisgponential family



models is advantageous in allowing the use of Gibbs samplitigrn samplingd and
thenH. The use of two exponential family models are similarly uséh our semi-
Bayesian framework because it allows estimationfoh an online EM setting and
Gibbs sampling can again be used for the integratio@,bf (required for computing
E[s(Y,C,H)|Y] for the online EM stochastic E-step), although other sarspdech as
random walk Metropolis-Hastings may also be used.

[takura-Saito NMF

Lazy completion

The IS NMF model has the following form

2 K
Vin =Y~ r(M/2,2 5 61 kHkn) (1)
=1

whereVs , is observed directly and , is its square. This equation refers to individual
elements of th&/ x F matrices and an individual element of tRex K matrix 8. The
following parameterization of the Gamma distribution iedis

g X/A
ovr(v)

which has expectationA, so that we have [t n| s k, Hin] = zf((:l Bt kHi n, giving the
justification of the name probabilistic matrix factorizati

f(x;v,A)=x""1

Full completion, exponential family form

For every observe¥ ,,, aK x M matrix of latent data is introduced, the latent data
is therefore indexe@ x mn. Conditional ond andH the elements d€¢ i 1, ...,Ct kM n
are independent and have the following distribution

B kHik
Ct k105 ---Ct Mn| O kHin ~ A7 (O, ™ 0.
which means we can say
M
k Bk nHi.
> Ctimnl6t kHin ~ A47(0, %)-
=1

If V is the matrix of observations and its elements are defin& gs- YZ,, where

M
2
Yf,n Zcfkmn )
m=1

||M><



by the definition of the(,\z,I distribution we can say that

MYt n?
"~ xZ0.
>k BcnHkn

Using the equivalence between gamma distribution@hdistributions and the scaling
property of the gamma distribution we recover the matrixddzation model given in
Equation 1. Due to the semi-Bayesian treatment a prior islese®nH,, for compu-
tational convenience an independent inverse gamma prprtisn eactHy ,. The full
semi-Bayesian expression for the model then becomes

Po(Cr11n,--,Crk,MnHin, ., Hi n)

K
— H —a—lex _ B
([] e~ 2expl—5)
FMoa ~Cf xmnM Bt xH
ﬂ I—l exp{ f.kmn —Iog( f.k k,n)}
Mme V2T 29f7ka’n M
K
— Hin) % texp{— B 2m)~ 2
([ Hen) ™ expl—3 - D2
exp F M _C%,k,m,nM O (Qf,ka,n)}
17 205 kHin M

which is in exponential family form with sufficient statiss:

2 2
Cl11n ClikMn
HynM Hk nM
, s ,
Cei1n CéExkMn
HinM Hk nM

which isK x M vectors of length-.

Stochastic E-step

Practical implementations of the simulated online EM alpon proceeds by using
MCMC samples ofC,H in order to approximate the E-step. One possible sampler is
the block Gibbs sampler which exploits the exponential farfarm given above and
the derivation for which is given in [10]. These authors fecypon cases wheid = 1
andM = 2, this means that the size 6fat F x K x M is manageable, but it is clear
that for largeM thenC becomes a large array requiring significant memory. Thisehod
is often applied to signal processing probleris= 1 is therefore the simplest form
of the model the so called real IS NMF model as it is easy to tdate with a real
normal distribution. SimilarlyM = 2 is referred to as the complex model and can be
formulated using the spherical complex normal distributio signal processing this is



an intuitively attractive model because spectra are coxnjlee properties of the model
with M > 2 are unexplored in the current literature.

In this paper we propose usihg large but avoid the extravagant representatio@ of
by using the Metropolis algorithm on the lazy form of the miod@iae exponential family
form is still required for the online EM algorithm howeveetbxpected sufficient statis-
tics Eg[s(X,Y)|Y,H] can be computed either with a Gibbs sampler using the expiahen
family model or another MCMC algorithm using the lazy forntloé model. The extrav-
agant representation @can again be avoided by making use of a Rao-Blackewelized
expression of the sufficient statistics.

The Metropolis-Hastings algorithm [12] constructs a Markbain with move pro-
posals which are taken with an acceptance probability. Ap#rameters for this model
are constrained to be non-negative a multiplicative logwadrproposal is used in-
stead of the normal additive Gaussian random walk. So theosalQ() has the form
Q(H*[H) ~ H x logN(u, g?). This results in the following factor modifying the usual
random walk Metropolis acceptance ratio

. Q(H,H*)P(H*|Yn) . H* P(H*\Yn)
m'”( Q(H*, H)P(HYy) ’1) :m'”( A P(H[Ya) ’1)'

Rao-Blackwelized formula for computing Expectation oficeht
statistics

AsCst 1. mn, ---,Cf,K,m,n|Hn, Bt ~ () thenCs 1 mn, ---,Ct .k mn, Z|I(<21Cf,k,m,n|Hn7 s is
a reduced rank normal distribution and its form can be cosgbly using the Affine
transform rule for multivariate normal distributions. $hesults in

Cf,l,m,n
|0,H ~
K(:f,Km,n
2k=1Cf kmn
0t1H1n B¢ 1H1n
0 Bt 2Hon B¢ oHo
N , M ) M
0 Br1Hin  Of2Han K OrwHen
M Mo - 2K=1"M
From this we can see that
K
Cf,k7m,n| Z Cf,k7m,n, 9, H
K=1
Ot kH1in 0t kHin B nHi n
~ JV( . ’ ( Cf,k,m,n), : : ’ ’

Sk_1 0t kHen & M k10 kHin



By using the identity that X?] = E[X]? + Var[X], we can conclude that

M K K
Ee[ Z C%,k,m,n| Z Cf7k717n7 e Z Cf7k7M7n, Hk7n]
m=1 k=1 k=1

2
Ot kHkn M X 2 OcnHin
= ) ) ( ( Cf7k7 7 ) >+6f7ka7 (1_—
<ZL(/_1 B kHin m; k; m ™ Y16t ieHien

or more usefully

M
Eol Z C%,k,m,nwf,n7 Hinl
m=1

2
8¢ xH H
— K fk kyn Yfzn—i_ef’ka’n(l— ek,n k,n
Si—1 6% kHin ’ Sk=16f kHk n

Finally this allows the following Rao-Blackwelized expsémn for the expected suffi-

i it _ zmzlcg,k.m.n - Een,l[Zmzlcik,m,n|YﬂnaHk.n]
cient statisticsSs n = Egnil[T‘Yfm, Hin) = o .

Stochastic M step

In the online EM setting stochastic approximation will appmate the expected
2

~ C

s A f i ~ 1l<n M f kmn . :
sufficient statisticsSt kn ~ 3 v_1 > m-1 Fi and will equal this value aB — o,
assuming the approximation is good we obtain

Bt kICtk11,--,Ctrmn~ ZG(a+nB+nSkn).

~ B+nSk B/n+ Stk
O(Srkn) = g imr1~ @i g

The effect of the M parameter

If we consider the model in lazy form theW;p ~ F(M/Z,%A) where
A= ZE:]_ef’kayn), we find that B[Vin|Hn] = B and the variance is given by

Varg Vs n|Hn] = ZAVZ, it is apparent thatM controls the variance of the predictive
distribution. It is conjectured that usirlg large may increase the identifiability of the
parameters and make estimation easier.

A simple way to investigate if the conjecture is correct idtaw samples of data from
the model with different values dfl. In Fig 1 data is compared to the noiseless signal



FIGURE 1. Data simulated from two models that differ only in the pargan$, left M = 1 right
M = 60.

i.e. BH, with samples of data from the model with = 1 andM = 60, it is very clear
that much more noise is present in tle= 1 model.

To further consider this point we can also investigate thetqueor ofHp, x conditional
on the same value & and the same data. This is presented in Figure 2, again it is
evident that the posterior is much narrower kb= 60 than forM =1 orM = 2.

a0 " " y " ) M= —]

M=2
M=60 mm—

FIGURE 2. Comparison of posteriors forP(Hgn|Yh,6,M = 1), P(Hxn|Yn,6,M = 1) and
P(Hin[Yn, 6,M = 60).

Finally we consider the actual operation of the simulateliherEM algorithm. As
a test problem we consider the ‘swimmer’ dataset [8] whichststs of a swimmer
with 4 limbs each of which has 4 positions. A correct separatiroduced by a non-
negative matrix factorization algorithm consists of sa@piag each of the limbs into 16
components, a further element, the body, is not identifiabhttmay be shared between
the components.

The simulated online EM algorithm was successfully apptethis dataset in [13]
using the Latent Dirichlet Allocation model. The IS NMF médath M = 1 was also
successfully used with this model using a batch variatiBagles approach in [7]. These
authors experience difficulties with the EM algorithm gagticaught in local minima,
which they deal with by using two strategies, by doing mugtipuns, picking the run
with the largest marginal likelihood and by using an anmepprocedure. Even when
employing these procedures the estimates of the limbs ofwhemer are noisy, see
Figure 2in [7].

The overall result from applying the online EM algorithm ftaist problem with
M = 60, is that the estimates of the limbs are no longer noisyaswkere when applied



to the model withM = 1, however the problem of falling into local minima i.e. fag
to separate the limbs is acute. Moreover the heuristicsvimdang local minima such as
annealing or comparing marginal likelihoods of multipleswsed in [7] are not easily
available in the online context.

The swimmer dataset was generated in the following way. Ikalpvas considered
to be black then it was given the low value o0Q, if it was white it was given a value
of 10, the 256 images (32 pixels square) were then flatteied/actors of length 1024,
data was then generated using these templates from the mideM = 60. It should
be noted that this results in much less noisy data than gamgmeithM =1 orM = 2.
The algorithm was run witlkk = 32, when the ground truth iK = 16. This allows
us to demonstrate the automatic order selection propeggrebd in [7] that excessive
capacity in@ automatically gets removed by estimating these comporeiiging near
zero. The algorithm was run for 20256 iterations i.e. for 20 (noisy) repetitions of
the 256 sized dataset, each stochastic E-step involvednaimwf 1400 iterations and
averaging over 100 samples. The estimates of the 16 highksts/of6 are shown in
Figure 3. Unfortunately the algorithm seems to inevitaldy gaught in local minima,
several limbs are not correctly separated. On the other trendstimates of the limbs
are much less noisy than cases that are appliedMita 1 orM = 2. The property of
automatic order selection, is also evident here where uhcsmponents are estimated
to be zero. This is one of the advantages noted in [7] of mahgingH.

FIGURE 3. The estimates of for applying IS NMF on the swimmer problem wit = 60.

DISCUSSION

The simulated online EM algorithm is shown to be applicabléatent factor models
presented in [10].

This work considered an elaboration of the IS NMF model presgin [10] which
results in a matrix factorization model with an additionatgmeteM, some prelimi-
nary simulations support our conjecture that setih¢p be high reduces the posterior
variance of the parameters and results in a model for whicdmpeter estimation is eas-
ier. In addition we also observe automatic order selectibere unneeded components
of 6 are set to zero.

Unfortunately settingVl high does not reduce the problem of local minima which
appear to be a serious difficulty for the IS NMF model. Morapiteis unclear how
strategies used in a batch setting for avoiding local minsoneh as annealing or com-



paring the marginal likelihood of multiple runs [7] can begoyed in an online setting.
Annealing is difficult because the online EM employs stotbhagpproximation not for
optimisation, but rather using the Robbins Monro stockagtproximation method for
finding the root of an equation. Equally comparing multipleg requires a computation
of the marginal likelihood, it is difficult to take on this cgmtation without employing
a completely different computational procedure such abisimethod [5] for compar-
ing the output of different algorithm runs. Alternativehetvariational Bayes framework
adopted in [10] could be used in order to optimise a lower ldoamthe integrated like-
lihood.
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