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Abstract. An important aspect of decision support systems involves ap-
plying sophisticated and flexible statistical models to real datasets and
communicating these results to decision makers in interpretable ways.
An important class of problem is the modelling of incidence such as fire,
disease etc. Models of incidence known as point processes or Cox pro-
cesses are particularly challenging as they are ‘doubly stochastic’ i.e. ob-
taining the probability mass function of incidents requires two integrals
to be evaluated. Existing approaches to the problem either use simple
models that obtain predictions using plug-in point estimates and do not
distinguish between Cox processes and density estimation but do use so-
phisticated 3D visualization for interpretation. Alternatively other work
employs sophisticated non-parametric Bayesian Cox process models, but
do not use visualization to render interpretable complex spatial temporal
forecasts. The contribution here is to fill this gap by inferring predictive
distributions of Gaussian-log Cox processes and rendering them using
state of the art 3D visualization techniques. This requires performing
inference on an approximation of the model on a discretized grid of large
scale and adapting an existing spatial-diurnal kernel to the log Gaussian
Cox process context.
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1 Introduction

There are considerable applications for applying pattern recognition techniques
to exploring spatial-temporal datasets of incidents. Applications include mod-
elling the occurrence of disease outbreaks, modelling the observations of new
species, or the temporal occurrence of incidents such as coal mine disasters.
Another pertinent example is the occurrence in space and in the hour of day (di-
urnal) of urban fires in Australia which we use as a case study in this paper. The
goal of such a spatial-diurnal analysis can be used to evaluate the consequences
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of different operational decisions of the fire service and to direct attention to
preventative action. While a formal model may be employed for the occurrence
of fire incidents, the available decisions and their utility under different hypo-
thetical outcomes is usually not formalized. As such it can be preferable to
use advanced three dimensional visualizations of the output using 3D rendering
techniques such as the iso-surface, cut planes and volume rendering.

Statistical models of incidence are complex entities as they are doubly stochas-
tic models, i.e. identifying the probability mass function of the count of incidence
in a region involves computing two integrals instead of the usual one. These sta-
tistical models are known as point processes or Cox processes [5].

Existing research on forecasting point processes follows two main paths. The
first path is to use simple statistical approaches based on kernel smoothing ap-
plied to a point process in essentially the same way as applied to problems of
probability density estimation [7]. If a new spatial-diurnal kernel that is Gaus-
sian in space and has a 24 hour period in time is adopted spatial-diurnal surface
of the Cox process can be computed and visualized using techniques such as
the 3D isosurface [3]. There are several shortcomings in adopting such a simple
model. As predictions are obtained using a plug-in point estimate of the underly-
ing intensity of the Cox process model uncertainty is ignored. The non-Bayesian
method also does not provide principled means of bandwidth selection or for
avoiding edge effects. Finally and perhaps most compelling kernel smoothing is
just a simple function of the data which means that the computed surface is most
reasonably seen as a summary of history rather than a forecast. A more sophis-
ticated modelling approach may intelligently identified patterns in the data that
are likely to continue into the future. Using a smoothed summary of history for
forecasting can be particularly problematic in temporal models and simplifica-
tions such as only using the hour of day (i.e. diurnal time) component must be
employed. However despite the statistical shortcomings of such an approach it
is delivering something useful to decision makers in the form of comprehensible
outputs related to operational concerns.

A second path uses sophisticated Bayesian models to obtain predictions, but
usually on relatively simple problems and without sophisticated 3D visualiza-
tion in order to make the implications of these complex mathematical objects
apparent to the decision maker.

An important class of Bayesian non-parametric models of Cox processes is the
Gaussian Cox Processes which models the intensity function as a non-negative
function of a Gaussian process, usually an exponential function resulting in a
log Gaussian Cox Process.

A general expression for the count C of incidents in a region of space and
time R under a log Gaussian process is given by

C ∼ Poisson

(
∫∫∫

R

eφ(x,y,t)dxdydt

)

where φ(x, y, t) is a Gaussian Process. A further restriction is that the distribu-
tion of counts for non-overlapping regions R and R′ should be independent.
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Fully Bayesian approaches to this problem are hampered by the presence of
doubly intractable integrals [12]. That is the evaluation of the likelihood and
as such the posterior itself contains an intractable integral, this makes applying
Markov chain Monte Calro (MCMC) algorithms difficult. Two possible solutions
have been proposed, the first makes use of the fact that MCMC algorithms have
been found to handle doubly intractable integrals for the special cases where
the model can be sampled from [11] [13]. While sampling from a log-Gaussian
Cox process is not possible sampling from a modified model the sigmoidal Gaus-
sian Cox Process is possible resulting in the first MCMC algorithm to handle
Gaussian Cox Processes [1], i.e. the first MCMC algorithm with the stationary
distribution of the posterior of a Gaussian Cox process.

Although this approach appears to offer many advantages and allows MCMC
inference to be performed on a very appealing model there are some drawbacks.
The first is computational cost, this algorithm performs a matrix inversion on a
matrix that includes all observed data and additionally latent data incorporated
into the model, this is likely to be a considerable burden. Secondly the main
advantage of this approach is to avoid imposing the model on a discrete grid
as in [9] however one of our goals is to visualize the model using 3D graphical
tools such as Mayavi [14] which itself uses a discrete scalar field. Thirdly there
are comforting results that given a sufficiently fine grid the discrete model will
converge to a continuous model [16]. Finally the discrete model has a much longer
history being applied to real problems including to problems of fire incidence [10].

There exist Bayesian non-parametric models of Cox processes which do not
rely on the Gaussian process for the intensity function, but rather use a mix-
ture model for the intensity function such as [8] which uses a Dirichlet process
mixture of Beta distributions. This has the advantage of allowing a relatively
standard MCMC sampler, but the disadvantage of losing the intepretability of
the Gaussian process which has been extensively used in both spatial statistics
under the name of Krigging [4] and in machine learning [15]. Indeed one of our
goals here is to incorporate the spatial diurnal kernel developed in [3] to the log
Gaussian Cox process context, it is very unclear if a Cox process with periodicity
could be formulated in a mixture model framework.

2 Discretised Log Gaussian Cox Process Model

An outline of the model is developed first in space only and then in space and
diurnal time.

2.1 Spatial Model

The discretized spatial only model takes the following form

Ci,j ∼ Poisson(eφi,j ) (1)
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where φ is given a matrix variate normal distribution, or alternatively γ = eφ

is given a matrix variate log normal distribution. The purpose of the prior is to
impose a correlation between elements of C that are close space. For our appli-
cation the desirable dimension of C and consequently φ is I × J which in the
current context is 240 × 240 or 57600 parameters for φ. While this is large it
remains manageable, on the other hand the covariance matrix for the normal
distribution over φ is this size squared which is not easily manageable. Fortu-
nately both for conceptual and computational reasons a matrix variate normal
distribution can be employed instead. While the matrix variate distribution can
be interpreted as a special case of the multivariate normal distribution in that

vec(φ) ∼ NI×J (vec(µ), Ω ⊗ Γ ). (2)

here vec(φ) denotes that the I × J array or matrix of φ is converted to a single
vector vec(φ) = [φ1,1, ..., φ1,J , ..., φI,1, ..., φI,J ]

T , Ω is an I × I matrix and Γ
is a J × J matrix and ⊗ is the Kronecker tensor product, note that for many
applications computing Ω ⊗ Γ would require allocating very large amounts of
memory for a highly redundant array.

It is instructive to consider the covariance between φi,j and φi′,j′ which is
Ωi,i′Γj,j′ , in the context of a Gaussian process a covariance function would spec-
ify a covariance between two points (i, j) and (i′, j′), in practice there are a
number of popular forms that result in close points having high covariance such
as exponential and the more general Matern family [4] [6] . If an exponential

covariance function is adopted then Cov(φi,j , φi′,j′ ) = exp(−( i−i′

Iσ )2 − j−j′

Jσ )2),

it is easily seen that this can be obtained by letting Ωi,i′ = exp(−( i−i′

Iσ )2) and

Γj,j′ = exp(−( j−j′

Jσ )2).

The main advantage of employing a matrix normal rather than multivari-
ate normal prior is that by factorizing the covariance matrix Σ = Ω ⊗ Γ it
is possible to evaluate the prior and therefore the posterior using reasonable
amounts of memory, by using the following expression for the matrix variate
normal distribution.

P (φ|µ,Ω,Σ) =
exp

(

− 1
2 tr

[

Ω−1(φ− µ)TΣ−1(φ− µ)
])

(2π)
1

2
IJ |Ω|I/2|Σ|J/2

(3)

Alternatively λ = eφ can be given a matrix variate log normal distribution

P (λ|µ,Ω,Σ) = fλ(λ) =
exp

(

− 1
2 tr

[

Ω−1(log(λ) − µ)TΣ−1(log(λ)− µ)
])

(2π)
1

2
IJ |Ω|I/2|Σ|J/2

∏

i=1..I

∏

j=1..J λi,j

(4)

By using this expression we are able to formulate a complete expression for the
posterior
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P (λ|C) = fλ(λ)
∏

i=1..I

∏

j=1..J

Poiss(Ci,j |λi,j) (5)
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Fig. 1. Approximation of E[λ|C] = E[eφ|C] depicted graphically, the approximation
is computed using multiplicative random walk Metropolis algorithm.

Using this expression it is possible to use MCMC algorithms to generate sam-
ples from P (eφ|C). A simple random walk Metropolis algorithm can be used,
or because eφ is non-negative a multiplicative Metropolis hastings algorithm
can also be used with multivariate log normal proposals with low variance
and expectation of 1. The advantage of this procedure is that the proposals
like the target have non-negative support. This method was applied to the
model where I = J = 10 and where C is equal to the identity matrix and
Cov(φi,j , φi′,j′ ) = exp(−(i − i′)2 − (j − j′)2). A multiplicative Metropolis pro-
posal was used with an expectation of 1 and a variance of 0.25 the chain was run
for 2 million iterations, with thinning so that only 1 in 100 samples were retained
this resulted in a fraction of 0.08 samples being accepted (rather than the optimal
0.25). A visual display of E[eφ|C] is shown in Figure 1. This output shows some
pleasing features in that the highest values are where counts have been observed
on the diagonal, and it appears that the covariance is operating correctly as cells
adjacent to the diagonal also have an increased value. Very similar results are
obtained by applying a standard random walk Metropolis algorithm to φ. This
distribution can be obtained by multiplying the posterior by the Jacobian, and
in our experience resulted in a slightly more efficient algorithm.

P (φ|C) = fφ(φ) = fλ(e
φ)

∣

∣J(eφ, φ)
∣

∣ = fλ(e
φ)

∏

i=1..I

∏

j=1..J

eφi,j (6)

where J(·) is the Jacobian.

2.2 Spatial-Diurnal Model

The discretized spatial-diurnal model has the following form
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Ci,j,k ∼ Poisson(eφi,j,k) (7)

where φ is given a ‘tensor’ variate normal distribution, or alternatively γ = eφ

is given a ‘tensor’ variate log normal distribution. The purpose of the prior is to
impose a correlation between elements of C that are close space. For our appli-
cation the desirable dimension of C and consequently φ is I×J×K which in the
current context is 240× 240× 24 or approximately 1.3 million parameters for φ.
In this model like the previous model, i, j and k index cells with different spatial
co-ordinates and j index the diurnal or hourly of day component of time. The
covariance between two points is given by Cov(φi,j,k, φi′,j′,k′) = exp(−( i−i′

Iσ )2 −

( j−j′

Jσ )2− c2

σ2∆(k, k′)), where ∆(k, k′) = − 1
2 cos(

2π(k−k′)
24K )+ 1

2 , and the parameter
c is a constant which converts a distance in time of 12 hours to a distance in me-
ters, note that ∆(k, k′ + 12K) = 1, so that Cov(φi,j,k, φi,j,k+12K ) = exp(− c2

σ2 ),
an equivalent covariance can be achieved purely at a distance in this case in the

i direction as Cov(φi,j,k, φi+cI,j,k) = exp(− c2

σ2 ), so that

vec(φ) ∼ NI×J×K(vec(µ), Ω ⊗ Γ ⊗ Ψ). (8)

where, Ωi,i′ = exp(−( i−i′

Iσ )2) and Γj,j′ = exp(−( j−j′

Jσ )2), and Ψk,k′ =

exp(− 1
2 cos(

2π(k−k′)
24K ) + 1

2 ).
While a tensor variate normal distribution can be expressed using tensor

products, it can also be expressed using linear algebra and the Kronecker tensor
product available in most scientific programming languages such as GNU Octave
[2] as used here. This involves reshaping φ and µ which have I × J × K to φ′

and µ′ to dimensions I × JK. The distribution over φ′ can then be expressed as

P (φ′|µ′, Ω,Σ, Ψ) =
exp

(

− 1
2

∑I
i=1

∑J
j=1 tr

[

Ω−1(φ′ − µ′)T (Σ−1 ⊗ Ψ−1)(φ′ − µ′)
]

)

(2π)
1

2
IJK |Ω|I/2|Σ ⊗ Ψ |JK/2

.

(9)

The full posterior is then P (C′|φ′)P (φ′|µ′, Ω,Σ, Ψ), where C′ is also reshaped
from a tensor to a matrix with dimensions I×JK. The advantage of this solution
is that a compact representation of the posterior is available which can be written
in standard scientific programming languages (in this case GNU Octave). The
disadvantage is that Σ⊗Ψ will require a large amount of memory to be allocated
and this is in principle avoidable.

3 Results and Discussion

A log Gaussian Cox Process was run on a discrete I×J×K grid where I = J =
240 and K = 24 with the following covariance function. The dataset this was
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Fig. 2. Iso surfaces of E[λ|C] = E[eφ|C] for a spatial-diurnal Cox process on a di-
cretized 240× 240× 24 grid, with the expectation computed with MCMC methods.

applied to was the occurrence in time and hour of day of malicious hoax calls
within metropolitan Australia.

Cov(φi,j,k, φi′,j′,k′) = (10)

exp{−(xmax − xmin)((i − i′)/(Iσ))2 − (ymax − ymin)((j − j′)/(Jσ))2

+
c

σ2
(
1

2
cos(2π(k − k′)/(24K))−

1

2
)}

where xmax − xmin = 4000 km and ymax − ymin = 3600 km and σ = 5.

The initial value of the Markov chain was obtained by setting φ
(0)
i,j,k =

log(Ci,j,k + 1), the MCMC algorithm then proceeds using the random walk
Metropolis algorithm for 5000 iterations with a burn in of 1000, and with thin-
ning such that only every tenth sample is used.

A 3D iso surface rendered with the Mayavi library is shown in Fig 2. Incidence
of malicious hoax calls are visible in time and hour of day, with large numbers
of incidents in metropolitan regions such as Sydney and Melbourne and with
evident trends of higher and lower incidence through different parts of the day.

This surface is qualitatively similar to the spatial diurnal iso surfaces of Cox
processes used in previous studies such as [3]. As such the visual output of this
model qualitatively has the same appealing features that are useful in opera-
tional context. The work here improves the state of the art by applying the
spatial diurnal Cox process a more complex model that previously considered
and demonstrating 3D visualization techniques on this. Several aspects of this
problem deserve deeper consideration including statistical modelling issues in-
cluding inference for the bandwidth and more complex models for time i.e. that
incorporate more than the diurnal component. Computational issues are also of
interest, it seems likely that more powerful MCMC algorithms may be required
if inference is applied to a sufficiently fine grid as the approach described for
setting the initial value of the chain will become less effective on a smaller grid.
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In doing this work we sometimes encountered numerical problems where the co-
variance matricies where either singular or were not positive definite to working
precision, more work is needed in order to work out when this occurs and how to
avoid this. Finally the fact that a full posterior distribution is available should
enrich visualization possibilities. We are considering these issues in future work.
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