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Abstract

We propose a state space mixed models for binary time series where the inverse link function is

modeled to be a cumulative distribution function of the scale mixture of normal (SMN) distributions.

Specific inverse links examined include the normal, Student-t, slash and the variance gamma links.

We use the threshold latent approach (Albert and Chib, 1993) to represent the binary system as

a linear state space model. Using a Bayesian paradigm, an efficient Markov chain Monte Carlo

(MCMC) algorithm is introduced for parameter estimation. We illustrate the proposed methods with

real data set. Empirical results showed that the slash inverse link fit better over the usual inverse

probit link.

Keywords: Binary time series, longitudinal data, Markov chain Monte Carlo, probit, scale mixture

of normal links, state space models.

1 Introduction

In many areas of application of statistical modeling one encounters observations that take one of two

possible forms. Such binary data are often measured with covariates or explanatory variables that either

continuous or discrete or categorical. Time series of binary responses may adequately be described by

Generalized linear models (McCullagh and Nelder, 1989). However, if serial correlation is present or

if the observations are overdispersed, these models may not be adequate, and several approaches can

be taken. Generalized linear state space models also address those problems and are treated in a paper

by West et al. (1985) in a conjugate Bayesian setting. They have been subject to further research by
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Fahrmeir (1992), Song (2000), Carlin and Polson (1992) and Czado and Song (2008) among others.

Consider a binary time series {Yt , t = 1, . . . ,T}, taking the values 0 or 1 with probability of success

given by πt and which is related with a time-varying covariates vector xt = (xt1, . . . ,xtk)
′ and a q−

dimensional latent state variable θ t . We consider a Generalized linear state space model framework for

binary responses in the following way

Yt ∼ Ber(πt) t = 1, . . . ,T (1)

πt = F(x′tβ +S′
tθ t) (2)

θ t = Gtθ t +η t η t ∼ Nq(0,Wt). (3)

In the above setup the observed process {Yt} is described by equations (1)-(2), where πt = P(Yt = 1 |

θ t ,xt ,St) is the conditional probability of success, St is a q− dimensional vector, β is a k− dimen-

sional vector of regression coefficients and xt = (xt1, . . . ,xtk)
′ is a k×1 vector of covariates. The system

process is defined as a first order Markov process in equation (3), where Gt is the q× q transition ma-

trix, Wt is the covariance matrix of error term ηt , B(.)er and Nq(., .) indicate the Bernoulli and the

q−dimensional normal distributions respectively. In the terminology of generalized linear models (Mc-

Cullagh and Nelder, 1989), F is the inverse link function. For ease of exposition, we refer to F as the

link function in this article.

A critical issue in modeling binary response data is the choice of the links. In the context of binary

regression problems, the probit link is widely used in the literature. Albert and Chib (1993) using the data

augmentation principle introduced the threshold latent approach to deal with the symmetric probit and

Student-t links in a elegant way. Other symmetric links using normal scale mixture links in a nonpara-

metric setup are described in Basu and Mukhopadhyay (2000a) and Basu and Mukhopadhyay (2000b).

The binary state space model with probit link using the threshold approach (Albert and Chib, 1993)

have been used by Carlin and Polson (1992) and Song (2000) without including covariates. Czado and

Song (2008) introduced covariates for binary state space models with probit link and called the resulting

class as binary state space mixed models (BSSMM). They justified that including regression variables

is appealing as it would enable us to quantify the relationship between the probability of success and

covariates.
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In this paper, we extend the BSSMM with probit link (Czado and Song, 2008) by assuming the

flexible class of scale mixtures of normal (SMN) links (Lange and Sinsheimer 1993; Chow and Chan

2008) and the univariate latent states follow a first order autoregressive process. Interestingly, this rich

class contains as proper elements the normal (BSSMM–N), Student-t (BSSMM–T), slash (BSSMM-S)

and variance gamma (BSSMM–VG) links. All these distributions have heavier tails than the normal one,

and thus can be used for robust inference in these types of models. We refer to this generalization as

BSSMM–SMN. Inference in the class of BSSMM–SMN is performed under a Bayesian paradigm via

MCMC methods, which permits to obtain the posterior distribution of parameters by simulation starting

from reasonable prior assumptions on the parameters. Using the threshold latent approach (Albert and

Chib, 1993), we simulate the latent states in an efficient way by using the simulation smoother of de Jong

and Shephard (1995).

The remainder of this paper is organized as follows. Section 2 gives a brief review about the SMN

distributions and links. Section 3 outlines the general class of the BSSMM-SMN models as well as the

Bayesian estimation procedure using MCMC methods. Section 4 is devoted to the application and model

comparison among particular members of the BSSM-SMN models using a real data set. Finally, some

concluding remarks and suggestions for future developments are given in Section 5.

2 Scale mixture of normal distributions

A random variable Y belongs to the SMN family if it can be expressed as

Y = µ +κ(λ )1/2X , (4)

where µ is a location parameter, X ∼N (0,σ 2), λ is a positive mixing random variable with cdf H(. | ν)

and pdf h(.|ν), ν is a scalar or parameter vector indexing the distribution of λ and κ(.) is a positive

weight function. As in Lange and Sinsheimer (1993) and Chow and Chan (2008), we restrict our attention

to the case in that κ(λ ) = 1/λ . Given λ , we have Y |λ ∼ N (µ,λ−1σ 2) and the pdf of Y is given by

fSMN(y|µ,σ 2,ν) =
∫ ∞

−∞
ϕ(y|µ,λ−1σ 2)dH(λ |ν), (5)
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where ϕ(. | µ,σ2) denotes the density of the univariate N (µ,σ2) distribution. From equation (5), we

have that the cdf of the SMN distributions is given by

FSMN(y|µ,σ 2,ν) =
∫ y

−∞

∫ ∞

−∞
ϕ(u|µ,λ−1σ 2)dH(λ |ν)du

=
∫ ∞

−∞
Φ
(

λ 1/2[y−µ]
σ

)
dH(λ |ν), (6)

where Φ(.) is the cdf of the standard normal distribution. The notation Y ∼ SMN(µ,σ 2,ν) will be

used when Y has pdf (5) and cdf (6). As was mentioned above, the SMN family constitutes a class of

thick-tailed distributions including the normal, the Student-t, the Slash and variance gamma distributions,

which are obtained respectively by choosing the mixing variables as: λ = 1, λ ∼ G (ν
2 ,

ν
2 ), λ ∼Be(ν ,1)

and λ ∼ I G (ν
2 ,

ν
2 ), where G (., .), Be(., .) and I G (., .) denote the gamma, beta and inverse gamma

distributions respectively.

3 Binary responses state space mixed models with normal scale mixture

links

In this section we introduce the BSSM with SMN links using a latent variable representation in order to

develop an efficient MCMC algorithm for parameter estimation.

3.1 Model setup

Let Y1:T =(Y1, . . . ,YT )
′, where Yt , t = 1, . . . ,T , denote T independent binary random variables. As before,

xt is a k×1 vector of covariates. According to Albert and Chib (1993), we introduce T latent variables

Z1, . . . ,ZT , such that

Yt =


1 Zt > 0

0 Zt ≤ 0
. (7)

We assume that

πt = P(Yt = 1 | θt ,xt ,β )

= P(Zt > 0 | θt ,xt ,β ) = FSMN(x′tβ +θt) =
∫ ∞

−∞
Φ(λ

1
2

t [x′tβ +θt ])dH(λt |ν) (8)
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which is the cdf in (6) with µ = 0 and σ 2 = 1. Using the latent threshold vector Z1:T = (Z1, . . . ,ZT )
′, we

have the linear state space model with

Zt = x′tβ +θt +λ−1/2
t εt (9)

θt = δθt−1 + τηt (10)

λt ∼ p(λt |ν), (11)

where, the innovations εt and ηt are assumed to be mutually independent and normally distributed with

mean zero and unit variance and p(λt | ν) is the mixing density. We assume that | δ |< 1, i.e., the latent

state process is stationary and θ0 ∼N (0, τ2

1−δ 2 ). The equations (9) and (10), conditioned on δ , the vector

β and the mixing variable λt , represent jointly a linear state space model. Clearly θt represents a time-

specific effect on the observed process. Under a Bayesian paradigm, we use MCMC methods to conduct

the posterior analysis in the next subsection. Conditionally to λt , some derivations are common to all

members of the BSSMM-SMN family (see Appendix for details).

3.2 Inference procedure

A Bayesian approach to parameter estimation of the model defined by equations (9)-(11), techniques

using Monte Carlo simulation via Markov Chain (MCMC) is adopted. Suppose that the model depends

on a parameter vector Ψ = (β ′,δ ,τ2,ν)′. Then the likelihood function L(Ψ) is not easy to calculate.

The Bayesian approach for estimating the parameters in the model uses the data augmentation principle,

which considers Z1:T , θ0:T and λ 1:T as latent parameters. The joint posterior density of parameters and

latent variables can be written as

p(Z1:T ,θ 0:T ,λ 1:T ,Ψ | y1:T ) ∝ p(Z1:T | θ 0:T ,λ 1:T ,Ψ,y1:T )p(θ 0:T | Ψ)p(λ 1:T | Ψ)p(Ψ), (12)
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where

p(Z1:T | θ 0:T ,λ 1:T ,Ψ,y1:T ) =
T

∏
t=1

[
{1(Zt ≥ 0)1(yt = 1)+1(Zt < 0)1(yt = 0)}ϕ(Zt | x′tα +θt ,λt)

]
,

(13)

p(θ 0:T | Ψ) = ϕ(θ0 | 0,
τ2

1−δ 2 )
T

∏
t=1

ϕ(θt | δθt−1,τ2), (14)

p(λ 1:T | Ψ) =
T

∏
t=1

p(λt | ν), (15)

where 1(X ∈ A) denotes an indicator function that is equal to 1 if the random variable X is contained in

the set A and zero otherwise, and p(Ψ) indicates the prior distribution. We assume the prior distribution

as

p(Ψ) = p(β )p(δ )p(τ2)p(ν).

For the common parameters of the BSSMM-SMN class, the prior distributions are set as: β ∼Nk(β 0,Σ0),

δ ∼N(−1,1)(δ0,σ2
δ ) and τ2 ∼I G (n0

2 ,
T0
2 ), where Nk(., .), N(a,b)(., .), I G (., .) denote the k−variate nor-

mal, the truncated normal on interval (a,b) and the inverse gamma distributions respectively. The p(ν)

is specified for each member of the BSSMM-SMN class.

As the posterior distribution in (12) is intractable analytically, we draw random samples of Ψ, Z1:T ,

λ 1:T and θ 0:T from their full conditional distributions using the Gibbs sampling. The sampling scheme

is described by the following algorithm:

Algorithm 1

1. Set i = 0 and get starting values for the parameters Ψ(i) and the latent variables θ (i)
0:T , λ (i)

1:T ;

2. Draw Z(i+1)
1:T ∼ p(Z1:T |θ (i)

0:T ,λ
(i)
1:T ,Ψ

(i),y1:T );

3. Draw θ (i+1)
0:T ∼ p(θ 0:T |λ (i)

1:T ,Ψ
(i),Z(i+1)

1:T ,y1:T );

4. Draw λ (i+1)
1:T ∼ p(λ 1:T |θ (i+1)

1:T ,Ψ(i),Z(i+1)
1:T ,y1:T );

5. Draw Ψ(i+1) ∼ p(Ψ|θ (i+1)
1:T ,λ (i+1)

1:T ,Z(i+1)
1:T ,y1:T );

6. Set i = i+1 and return to step 2 until achieving convergence.
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Cycling through 2 to 5 is a complete sweep of this sampler. The MCMC sampler will require us to per-

form many thousands of sweeps to generate samples from the posterior distribution p(Z1:T ,θ 0:T ,λ 1:T ,Ψ |

y1:T ). Details on the full conditionals of Ψ, the mixing variables λ 1:T , the threshold variables Z1:T are

given in the Appendix. Conditional on λ 1:T equations (9)-(11) define a linear state space model, we sam-

ple the latent states θ 0:T in step 3 of Algorithm 1 using the simulation smother of de Jong and Shephard

(1995).

3.3 Out-of-sample forecasting

We have that K−step ahead prediction density can be calculated using the composition method through

the following recursive procedure:

p(ZT+K | y1:T ) =
∫ [

p(ZT+K | λT+K ,θT+K ,Ψ)

× p(θT+K | Ψ,y1:T )p(λT+K | Ψ)p(Ψ | y1:T )

]
dθT+KdλT+KdΨ,

p(θT+K | Ψ,y1:T ) =
∫ [

p(θT+K | Ψ,θT+K−1)p(θT+K−1 | Ψ,y1:T )

]
dθT+K−1.

Evaluation of these integrals is straightforward, by using Monte Carlo approximation. To initialize a

recursion, we use N draws {θ (i)
T ,λ (i)

T ,Ψ(i)}N
i=1 from the MCMC sample. Then given these N draws,

sample N draws θ (i)
T+k from p(θT+k | Ψ(i),θ (i)

T+k−1) and λ (i)
T+k from p(λT+k | Ψ(i)) for i = 1, . . . ,N and

k = 1, . . . ,K, by using equations (10) and (11), respectively. Finally, sample N draws {y(i)T+k}N
i=1 from

p(ZT+k | λT+k,θ
(i)
T+k,Ψ

(i)). With draws from ZT+k, θT+k and λT+k the conditional probability πT+k can

be calculated easily.

4 Application

A binary time series of infant sleep status were recorded in a 120 min electroencephalographic (EEG)

sleep pattern study (Sttoffer et al., 1998). Careful consideration should be given to the lability of state and

the disruption of the expected rapid eye movement (REM) and non-REM components of the neonatal

or infant sleep cycle. So, here it is considered that Yt = 1 if during minute t the infant was judged to

be in REM sleep cycle and otherwise Yt = 0. Two time-varying covariates are considered. Let xt1 be

the number of body movements during the minute t and xt2 the number of body movements due not to
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Table 1: Estimation results for the infant sleep data set. First row: Posterior mean. Second row: Posterior

95% credible interval in parentheses. Third row: MC error. Fourth row: CD statistics. Fifth row:

Inefficiency factors.

Parameter BSSMM-N BSSMM-T BSSMM-S BSSMM-VG

-0.0479 -0.0281 -0.0550 0.3185

(-1.9425,1.6770) (-2.3300,2.5256) (-2.2316,2.0157) (-1.7192,4.4206)

β0 0.0483 0.0944 0.0842 0.1764

1.39 1.43 0.68 1.25

6.04 15.08 14.03 31.43

0.2706 0.4336 0.3134 0.2775

(-0.0833,0.6245) (-0.0837,1.1298) (-0.0942,0.7338) (-0.0791,0.6670)

β1 0.0044 0.0115 0.0056 0.0054

0.00 -0.32 0.37 -1.27

1.12 2.97 1.33 1.29

-0.4679 -0.6755 -0.5196 -0.4647

(-0.9525,-0.0257) (-1.5048,-0.0866) (-1.0588)-0.0372) (-0.9336,-0.0207)

β2 0.0056 0.0131 0.0068 0.0060

0.11 0.28 -0.72 1.29

1.12 2.62 1.33 1.30

0.9336 0.9402 0.9349 0.9424

(0.8333,0.9868) (0.8528,0.9890) (0.8341,0.9887) (0.8512,0.9922)

δ 0.0011 0.0011 0.0012 0.0019

-0.72 0.21 -0.46 -0.18

1.67 2.25 1.72 5.47

0.3060 03423 0.3566 0.2789

(0.0663,1.0169) 0.0628,1.1807) (0.0667,1.2465) (0.0512,0.9980)

τ2 0.0149 0.0206 0.0226 0.0205

0.53 -1.27 0.14 1.51

7.04 6.82 6.85 11.66

– 7.5621 6.4002 6.2396

– (2.0410,30.6290) (2.0310,13.2640) (1.7800,12.8040)

ν – 0.4931 0.1265 0.1118

– -0.56 -1.74 1.65

– 9.19 3.94 3.15
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sucking during minute t. As in Czado and Song (2008) our objective is to investigate wether or not the

probability of being in the REM sleep status is significantly related to the two types of body movements

xt1 or xt2. Our analysis differs from them in the sense that we compare the fit of the probit (BSSMM-

N), the Student-t (BSSMM-T), slash (BSSMM-S) and variance gamma (BSSMM-VG) links. So, from

equation (8), we have that the conditional probability of succes is given by

πt = P(Yt = 1 | β ,θt ,λt) = FMSN(β0 +β1xt1 +β1xt2 +θt),

and the state equation is an AR(1) process as in equation (10). We set the prior as: δ ∼N−1,1(0.95,100),

τ2 ∼ I G (2.5,0.125) and β ∼ N3(β 0,Σ0), where β 0 = 0 and Σ0 = 5002I3, 0 indicates a 3×1 vector os

zeros and I3 the identity matrix of order 3. The prior distributions on the shape parameters were chosen

as: ν ∼ G (5.0,0.8) for the BSSMM-S and BSSMM-VG models, respectively. In BSSMM-T, we assume

a non-informative prior as in Fonseca et al. (2008). The priors’ mean and variance for δ are respectively,

0.0032 and 0.3328. So, this prior is equivalent to the uniform distribution on interval (−1,1), which

gives zero mean and variance of 0.3333. All the calculations were performed running stand-alone code

developed by us using an open source C++ library for statistical computation, the Scythe statistical library

(Pemstein et al., 2011), which is available for free download at http://scythe.wustl.edu.

We fit the BSSMM-N, BSSMM-T, BSMM-S and BSSMM-VG models. For each case, we conducted

the MCMC simulation for 50000 iterations. In all the cases, the first 10000 draws were discarded as a

burn-in period. In order to reduce the autocorrelation between successive values of the simulated chain,

only every 20th values of the chain were stored. With the resulting 2000 values, we calculated the

posterior means, the 95% credible intervals, Monte Carlo errors and the convergence diagnostic (CD)

statistics (Geweke, 1992). If the sequence of the recorded MCMC output is stationary, it converges in

distribution to the standard normal. According to the CD the null hypothesis that the sequence of 2000

draws is stationary was accepted at the 5% level, CD ∈ (−1.96,1.96), for all the parameters in all the

models considered here. Table 1 summarizes the results. The inefficiency factor is defined by 1+∑∞
s=1 ρs

where ρs is the sample autocorrelation at lag s. It measures how well the MCMC chain mixes (see, e.g,

Kim et al., 1998). It is the estimated ratio of the numerical variance of the posterior sample mean to

the variance of the sample mean from uncorrelated draws. When the inefficiency factor is equal to

m, we need to draw MCMC samples m times as many as the number of uncorrelated samples. From

Table 1 examining the inefficiency coeficients, we found that our algorithm produces a good mixing
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of the MCMC chain. As expected, Figures 1 and 2 show a rapid decay of autocorrelations for all the

parameters for the BSSMM-S on the infant sleep data sets.
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Figure 1: Estimation results for the infant sleep status data set (BSSMM-S). The top row shows plots of

sample autocorrelations and the bottom row shows posterior histograms and overlayed density estimates,

left: δ , middle: τ2 and right:ν .

For all the models, the posterior means of δ are above 0.93, showing higher persistence of the autore-

gressive parameter for states variables and thus in binary time series. The posterior means τ2 are between

0.27 and 0.34. This values are consistent with the results in Czado and Song (2008). The magnitude of

10



the tail fatness is measured by the shape parameter ν in the BSSMM-T, BSSMM-S and BSSMM-VG

models. In each case, the posterior means of ν are almost 7.5, 6.4 and 6.3, respectively. These results

seem to indicate that the measurement errors of the Zt threshold variables are better explained by heavy-

tailed distributions, as a consequence the corresponding links could be more convenient than the normal

probit link.
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Figure 2: Estimation results for the infant sleep status data set (BSSMM-S). The top row shows plots of

sample autocorrelations and the bottom row shows posterior histograms and overlayed density estimates,

left: β0, middle: β1 and right:β2

From Table 1, we found empirically that the influence of the number of body movements (x1) is
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marginal, since the corresponding 95% credible interval for β1 contains the zero value. On the other

hand, the influence of the number of body movements not due to sucking (x2) is detected to be statisti-

cally significant. The negative value of the posterior mean for β2 shows that a higher number of body

movements not due to sucking will reduce the probability of the infant being in REM sleep.
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Figure 3: Estimation results for the infant sleep status data set. Posterior smoothed mean of θt . BSSMM-

N: solid line, BSSM-T: +, BSSMM-S:∗ and BSSM-VG: −

Figure 3 shows the posterior smoothed mean of states variables, θt . The states could be considered

as an underlying continuous “sleep state”. We found some differences between the fit of the different

models, but in general the results are according with Czado and Song (2008).

To assess the goodness of the estimated models, we calculate the deviance information criterion, DIC
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(Spiegelhalter et al., 2002; Celeux et al., 2006). The minimum value of the DIC gives the best fit. In this

context, pD is a measure of model complexity. We compare the BSSMM-N, BSSMM-T, BSSMM-S and

BSSMM-VG models. From Table 2, the DIC selects the BSSMM-S model as the best model.
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Figure 4: Posterior smoothed mean of the conditional probability and 95% credibility limits for πt for

BSSMM-N (solid line) and BSSMM-S (doted line). The points are the true observations

Figure 4 shows the posterior smoothed mean and 95% credibility intervals of πt based on the MCMC

output for the BSSMM-N (solid line) and BSSMM-S (dotted line) links. We divide the entire data in

three panels with the objective to better visualization of the results. Both models show similar smoothed

probabilities.

We investigate the predictive ability of the BSSMM-N and BSSMM-S models. For this purpose, we

divide our data set in an initial group with 110 observations and in the second group, we left the next

13



Table 2: Data infat sleep: Model Comparison.

DIC pD Rank

BSSMM-N 100.17 18.52 4

BSSMM-T 99.18 18.47 2

BSSMM-S 94.76 16.86 1

BSSMM-VG 99.35 18.57 3

10 observations for out-of-sample forecast. We fit the BSSMM-N and BSSMM-S models, parameter

estimation for this data set is not reported here. We simulate out-of-sample states using the methods de-

scribed in section 3.3. As by product of the MCMC simulation, we can found the conditional probability

of success π110+k for the next 10 observations for each model considered. We report the posterior mean

an 95% credibility intervals results in Figure 5. The solid line corresponds to BSSMM-N and the dotted

line to the BSSMM-S. Both of models show a similar behavior. It is also important to emphasize that in

general, we do not advocate the use of the BSSMM-SMN models in all situations but recommend using

the models discussed here to assess the robustness of the conclusions, replacing the normal assumption

with a more flexible model if this provides a more appropriate analysis.

5 Conclusions

In this paper we proposed a class of state space mixed models for longitudinal binary data using mixture

of scale normal links as an extension of Czado and Song (2008). The models include both deterministic

and random predictors. We studied three specific sub-classes, viz.the Student-t, slash and the variance

gamma links. Under a Bayesian perspective, we constructed an algorithm based on Markov chain Monte

Carlo(MCMC) simulation methods to estimate all the parameters and latent quantities of our proposed

BSSMM-SMN links. The latent states are efficiently simulated using the simulation smoother of de Jong

and Shephard (1995). Accordingly, with the DIC criteria all the BSSMM-SMN links fit better than the

normal probit link and the BSSMM-S, the best fit.

This article makes certain contributions, but several extensions are still possible. First, we focus on

14
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Figure 5: Posterior mean of the k step forecast probability and the 95% credibility limits for πT+k for

BSSMM-N (solid line) and BSSMM-S (doted line). The points are the true observations

symmetrical links, but if the rate of zeros or ones are note the same, skewed links as the skew normal or

the skew Student-t are good alternatives. Nevertheless, a deeper investigation of those modifications is

beyond the scope of the present paper, but provides stimulating topics for further research.

Appendix : The Full conditionals

In this appendix, we describe the full conditional distributions for the parameters, the threshold variables

Z1:T and the mixing variables λ 1:T of the BSSMM-SMN class.

Full conditional distribution of β , δ and τ2

For the common parameters of the BSSMM-SMN class, the prior distributions are set as: β ∼Nk(β 0,Σ0),

δ ∼ N(−1,1)(δ0,σ 2
δ ) and τ2 ∼ I G (T0

2 ,
S0
2 ). So, the full conditional of β is given by

β | Z1:T ,θ 0:T ,λ 1:T ∼ Nk(β 1,Σ1), (16)

15



where Σ1 = [Σ−1
0 +∑T

t=1 xtx′tλt ]
−1 and β 1 = Σ1[Σ−1

0 β 0 +∑T
t=1 xt(Zt −θt)λt ].

We have the following full conditional for δ is given by

p(δ | θ0:T,τ2) ∝ Q(δ )exp{− aδ
2τ2 (δ − bδ

aδ
)2}I|δ |<1, (17)

where Q(δ ) =
√

1−δ 2 exp{− 1
2τ2 [(1−δ 2)θ 2

0 }, aδ = ∑T
t=1 θ 2

t−1 +
τ2

σ2
δ

, bδ = ∑T
t=1 θt−1θt +δ0

τ2

σ2
δ

and I|δ |<1

is an indicator variable. As p(δ | θ 0:T ,τ2) in (17) does not have closed form, we sample it by using the

Metropolis-Hastings algorithm with truncated N(−1,1)(
bδ
aδ
, τ2

aδ
) as the proposal density.

Finally, the full conditional of τ2

τ2 | θ 0:T ,δ ∼ I G (
T1

2
,
S1

2
), (18)

where T1 = T0 +T +1 and S1 = S0 +[(1−δ 2)θ 2
0 ]+∑T

t=1(θt −δθt−1)
2.

Full conditional of Z1:T

Since the latent variable Z1:T are conditional independent given θ 0:T and λ 1:T , we have that the full

conditional distribution of Z1:T is given by

p(Z1:T | Y1:T ,θ 0:T ,λ 1:T ,β ) =
T

∏
t=1

p(Zt | θt ,λt ,β )

=
T

∏
t=1

[
{1(Zt ≥ 0)1(yt = 1)+1(Zt < 0)1(yt = 0)}ϕ(Zt | x′tα +θt ,λt)

]
,

(19)

where ϕ(x | µ,σ 2) indicates the density of the normal density with mean µ and variance σ2. So, A

density p(Zt | θt ,λt ,β ) is a truncate normal density according with the value of Yt .

Full conditional of λt and ν

• BSSMM-T case As λt ∼ G (ν
2 ,

ν
2 ), then λt | Zt ,θt ,β ,ν ∼ G (ν+1

2 ,
[Zt−x′tβ−θt ]

2+ν
2 ). An important mod-

eling assumption is the regularization penalty p(ν) on the tail thickness. A default Jeffreys’ prior was

developed by Fonseca et al. (2008), with a number of desirable properties particularly when learning a

fat-tail from a finite data set. The default Jeffreys’s prior for ν takes the form

p(ν) ∝
(

ν
ν +3

) 1
2
{

ψ ′
(

ν
2

)
−ψ ′

(
ν +1

2

)
− 2(ν +3)

ν(ν +1)2

} 1
2

, (20)
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where ψ ′(a) = d{ψ(a)}
da and ψ(a) = d{logΓ(a)}

da are the trigamma and digamma functions, respectively. The

interesting feature of this prior is its behavior as ν goes to infinity and it has polynomial tails of the form

p(ν) ∝ ν−4. In this case, the tail of the prior decays rather fast for large values of ν and assessing the

degree of tail thickness can require prohibitively large samples. Then, the full conditional of ν is

p(ν | λ 1:T ) ∝ p(ν)

[
ν
2

] T ν
2

e−
ν
2 [∑

T
t=1(λt−logλt)]

[Γ(ν
2 )]

T I2<ν≤40. (21)

As (21) does not have closed form, we sample ν by using the Metropolis-Hastings algorithm. The pro-

posal density used are N(2<ν<40)(µν ,τ2
ν), with µν = x− q′(x)

q′′(x) and τ2
ν = (−q′′(x))−1, where x is the value

of the previous iteration, q(.) is the logarithm of the conditional posterior density, and q′(.) and q′′(.) are

the first and second derivatives respectively.

• BSSMM-S case

Using the fact that λt ∼ Be(ν ,1), then λt | Zt ,ht ,θ ∼ G(0<λt<1)(ν + 1
2 ,

1
2 [Zt −x′tβ −θt ]

2), the right trun-

cated gamma distribution. Assuming that a prior distribution of ν ∼ G (aν ,bν), the full conditional

distribution of ν is Gν>1(T +aν ,bν −∑T
t=1 logλt), i.e., the left truncated gamma distribution.

• BSSMM-VG case

As λt ∼ I G (ν
2 ,

ν
2 ), the full conditional of λt is given by

p(λt | Zt ,ht ,ν) ∝ λ− ν
2 +

1
2−1

t e−
1
2 (λt [Zt−x′tβ−θt ]

2+ ν
λt
), (22)

which is the generalized inverse gaussian distribution, G I G (−ν
2 +

1
2 , [Zt −x′tβ −θt ]

2,ν).

We assume the prior distribution of ν as G (aν ,bν)I0<ν≤40. Then, the full conditional of ν is

p(ν | y1:T ,h0:T ,λ 1:T ) ∝

[
ν
2

] T ν
2

νaν−1e−
ν
2 ∑T

t=1[(
1
λt
+logλt)+2bν ]

[Γ(ν
2 )]

T I0<ν≤40. (23)

Thus, we sample ν by using the Metropolis-Hastings algorithm as in the case of the BSSMM-T model

with proposal density N(0,40)(µν ,τ2
ν).
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