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Abstract

This paper aims models electricity load curves for short-term forecasting pur-

poses. A broad class of multivariate dynamic regression model is proposed to model

hourly electricity load. Alternative forecasting models, special cases of our general

model, include separate time series regressions for each hour and week day. All the

models developed include components that represent trends, seasons at different

levels (yearly, weekly etc.), dummies to take into account weekends/holidays and

other special days, short-term dynamics and weather regression effects, discussing

the necessity of nonlinear functions for cooling effects. Our developments explore

the facilities of dynamic linear models such as the use of discount factors, subjec-

tive intervention, variance learning and smoothing/filtering. The elicitation of the

load curve is considered in the context of subjective intervention analysis, which

is especially useful to take into account the adjustments for daylight savings time.

The theme of combination of probabilistic forecasting is also briefly addressed.

Keywords: Electricity load curve, Dynamic multivariate discount regression

models, Factor models, Generalized Diebold and Li factor models.

1 Introduction

Short-term load forecasting has long been an issue of major interest for the electricity

industry. Traditionally, hourly forecasts with a lead time of between one hour and seven

days are required for the scheduling and control of power systems. From the perspective

of the system operators and regulatory agencies, these forecasts are a primary input for

the safe and reliable operation of the system.

Load curve forecasting is very important for the electricity industry, especially in a

deregulated economy. It has multiple applications including energy purchasing and gen-

eration. For optimally operating the huge Brazilian electrical system, mainly composed
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of hydroelectric plants with complementary thermoelectric generation, the authorities

first need to decide daily how many megawatts to produce from each alternative. In

order to optimize the generation of power from a vast complex of hydroelectric plants,

various types of time series models have been used to describe and simulate flows into

reservoirs. For instance, a new run-off model is described in Fernandes et al. (2009),

where applications to some Brazilian basins are presented, including comparison with

alternative models.

This paper models electricity load curves for short-term forecasting purposes. Since

load curves usually exhibit long-term trends, which are caused by economic and demo-

graphic factors, they are not taken into account in this application. It has long been

known that electricity load has a large predictable component due to its very strong

daily, weekly and yearly periodic behavior, along with meteorological-based variations.

A multivariate dynamic regression model is introduced and some of its inferential

aspects are discussed, including variance learning procedure. Particular cases included

in this broad class of models are versions to deal with hourly electricity load forecasting

based on separate time series regressions for each hour and joint modeling of the weekly

data by hour. This full multivariate dynamic regression model based on the concept

of discount factor and with variance learning is a novelty in the area of electricity load

forecasting. All the models developed include components that represent trends, seasons

at different levels (yearly, weekly etc.), dummies to take into account weekends/holidays

and other special days, short-term dynamics and weather regression effects, including

nonlinear functions for cooling effects.

Special care is taken with the role played by weekends/holidays and their effect on

the estimated coefficients. In particular, we explore the similarities between the shapes

of load curves occurring on the day just before and just after weekends/holidays. Our

developments explore the facilities of dynamic linear models such as the use of discount

factors, subjective intervention, variance learning and smoothing. The elicitation of

the load curve is considered in the context of subjective intervention analysis, which is

especially useful to take into account the adjustments for daylight savings time. More

precisely, we model a suitable transformation of the electricity load at hour τ and day t

as a linear combination of the transformed load at the same hour on the previous day and

appropriate functions of the prevailing temperatures on day t. The coefficients depend

on the pair (τ, t) in a continuous nonlinear manner. The paper ends by briefly addressing

the theme of combination of probabilistic forecasting.

The remainder of the paper is organized as follows. A review of alternative models

is presented in Section 2. In Section 3 we explore the dataset analyzed. Some stylized

facts always presented in the load electricity data are also reviewed. Our application to
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Brazilian southeast hourly electricity loads is also presented. In Section 4, our general

multivariate dynamic regression model is introduced. Some aspects of the inference and

some special cases are mentioned. Our main findings are presented in Section 5 and

Section 6 concludes and mentions some extensions.

2 A Review of Alternative Models

A review and categorization of electric load forecasting techniques can be seen in

Alfares and Nazeeruddin (2002), where a wide range of methodologies and models often

used in the current literature are discussed. The categories of load forecasting techniques

considered by them, roughly in chronological order, include at least multiple regression,

exponential smoothing, iterative reweighted least-squares, stochastic time series: ARMA

type models, and some fashionable techniques like fuzzy logic and neural networks.

Most papers deal with 24 hours-ahead load forecasting or next-day peak load forecast-

ing. These methods forecast power demand by using predicted temperature as forecast

information. But, when the temperature curves change rapidly on the forecast day, loads

change greatly and the forecasting error increases (Badran et al. (2008)). Typically, load

forecasting can be long-term, medium-term, short-term or very short-term. This paper

concentrates on short-term load forecasting dynamic regression models.

The experiences of some countries are described in the recent literature. Cancelo et al.

(2008) present the building process and models used by Red Eléctrica de España (REE),

the Spanish system operator, in short-term electricity load forecasting. The methods

developed in Cottet and Smith (2003) are applied to several multiequation models of

half-hourly total system load in New South Wales, Australia. An hourly periodic state

space model for modeling French national electricity load is presented in Dordonnat et

al. (2008).

A wide variety of models, varying in complexity of functional form and estimation

procedures, have been proposed to improve load forecasting accuracy. Double seasonal

exponential smoothing models are introduced by Taylor (2003) to make univariate online

electricity demand forecasting for lead times from a half hour ahead to a day ahead.

Since the time series of demand recorded at half-hourly intervals contains more than

one seasonal pattern, they adapt the Holt-Winters exponential smoothing formulation

to accommodate two periodicities. A comparative study including the recently proposed

exponential smoothing method for double seasonality and a new method based on prin-

cipal component analysis is presented in Taylor et al. (2006). Both time series of hourly

demand for Rio de Janeiro and half-hourly demand for England and Wales were used to

compare the alternative models. The new double seasonal Holt-Winters method outper-
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forms those from traditional Holt-Winters and from a well-specified multiplicative double

seasonal ARIMA model.

More advanced methods for load forecasting are developed by Cottet and Smith

(2003), who adopt Bayesian procedures for forecasting high-dimensional vectors of time

series. A multi-equation regression model with a diagonal first-order stationary vector

autoregression for modeling and forecasting intraday electricity load is proposed. The

covariance structures in such multivariate time series are of key importance for an effective

forecasting strategy. They take account of the correlation between hourly loads when

computing their forecasts.

A dynamic multivariate periodic regression model for hourly electricity load fore-

casting based on stochastically time-varying processes was developed by Dordonnat et

al. (2008). The model consists of different equations and parameters for each hour of

the day and the dependence between the equations is introduced by covariances be-

tween disturbances that drive the time-varying processes. The implementation of the

forecasting procedure relies on the multivariate linear Gaussian state space framework.

Although the analyses are mainly illustrated for only two hours (9 and 12), the fore-

casting results are presented for all twenty-four hours. Dordonnat et al. recognize that

the unrestricted dynamic multivariate periodic regression model contains many unknown

parameters and developed an effective methodology within the state-space framework

that imposes common dynamic factors for the parameters that drive the dynamics across

different equations. The factor model approach leads to more precise estimates of the

coefficients.

Many other methodologies have been applied to forecast the electricity load curve.

Special attention has been devoted to the functional data analysis. A hierarchical model

for aggregated functional data is introduced by Dias et al., with an application to the

distribution of energy among different type of consumers. Other fashionable techniques

often used are neural networks (see Alfares and Nazeeruddin (2002)) and the Gaussian

process (Lourenço and Santos).

3 Preliminary Data Analysis - Some Stylized Facts

The data set available used in this paper pertains to the Brazilian southeastern sub-

market power consumption from 01 Jun 2001 to 20 Jan 2011. This hourly time series

covers almost ten years and consists of 3521 daily or 84504 hourly observations. The

models were implemented for a subset of data, starting on 01 Jan 2002 and going to 20

Jan 2011 (so 3307 days and 79368 hours). This region has 94 million inhabitants and

an area of 2.530 million square kilometers, corresponding to a demographic density of
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37 inhabitants per square kilometer, living predominantly in urban areas (89%), with

an average daily consumption of 35000 Mw and with a large number of plants. The

illustrations of the models developed are mainly based on the 2010 data only (from 03

Jan 2010 to 01 Jan 2011) to keep the figures clearer.

The main features of load series have been extensively reported in the literature:

trend, superimposed levels of seasonality, short-term dynamics, special days, nonlinear

effects of meteorological variables, possible nonlinear time dependence, etc. The system

load is actually a random non-stationary process composed of thousands of individual

components, whose behavior is influenced by a number of factors, as describe before, and

also includes random effects.

Electricity load has a long predictable component due to its very strong daily, weekly,

and yearly periodic behavior, along with meteorological-based variation. Although the

meteorological variables that affect load can differ according to region, temperature ap-

pears to be by far the most important meteorological factor in most locations. Apart

from the strong daily and weekly periodicity, the load profiles also vary substantially

across seasons. The overall forecasting model consists of one daily model for forecasting

the daily load up to ten days ahead, and 24 hourly models for computing hourly pre-

dictions for horizons up to three days. The daily model is aimed at producing forecasts

for network outage planning, while the hourly models are used to derive forecasts for the

next-day hourly dispatch.

The figures below provide some evidence about the main characteristics of the elec-

tricity demand data. Figure 1 depicts the daily electricity load at 9 a.m. and at 7 p.m.,

for all the data available in our data set. At 7 p.m., we clearly note a smooth trend

component, possibly due to the vegetative population growth and also to the economic

performance, superimposed on an annual seasonal cycle. For instance, the effect of the

2008 economic crisis impacts the level of the daily electricity load only in the beginning

of 2009. The same sort of trend can be seen in the 9 a.m. daily time series. The seasonal

cycle is not so clear due to large volatility of this time series. Those characteristics are

also present in the other hourly time series.

Figure 2 shows the daily electricity load at 9 a.m. and 7 p.m. only for the year 2010,

allowing more detailed examination of the components describing the data generation

process. The effect of the seasons and also some weekly seasonality are evident.

Finally, in Figure 3 we illustrate the time evolution of the electricity load curve in a

three-week period, starting on Monday, 09 Aug 2008 and ending on Sunday, 29 Aug 2010,

making the intraday movements clearer. It is easy to note the lower load on weekends

(see at the beginning and at end of the graph) and its evolution throughout the days,

with a dip around 4 p.m. on weekdays.
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Figure 1: The daily electricity load consumption, from 01 Jan 2002 to 20 Jan 2011, at 9

a.m. and at 7 p.m.
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Figure 2: The daily electricity load consumption, at 9 a.m. and 7 p.m., in 2010.

7



Days elapsed since August 8th, 2010

Lo
ad

 (
M

eg
aW

at
ts

)

0 7 14 21

25
00

0
30

00
0

35
00

0
40

00
0

Figure 3: The daily electricity load consumption, in three weeks starting on 9 Aug 2010.

Temperature has two well defined impacts on load. Firstly, the daily load responds

significantly to variations on temperature. On the other hand, the seasonality of elec-

tricity load and temperature is almost in phase (see Figure 4).

The effect of temperature on load is very well documented in the literature. Dor-

donnat et al. (2008) claim that a non-linear effect is present in the French data. The

smoothed-heating / cooling-degrees temperature variables were built up to approximate

the nonlinear relationship between electricity load and temperature in a linear relation-

ship (see Fig. 2, page 570, Dordonnat et al. (2008)). The relationship between consump-

tion and maximum temperature for the daily data during 2005 in Spain has different

behavior. The relationship is U-shaped and slightly asymmetric. There is also some evi-

dence of an exhaustion effect, especially for low temperatures (see Cancelo et al. (2008),

Fig. 5, page 581).

Figure 5 shows the relationship between the logarithm of the daily average load versus

the average temperature for the year 2010. The symbol (+) represents the consumption

in the daylight saving period and the broken line shows the fitted straight line describing

the relationship between the log of the mean of daily electricity consumption and the

mean temperature.

Some cross-section regressions fitted to the intraday data have clearly shown that

the models implemented must have time varying parameters. From those analysis we

can conclude also that some dummy variables are needed to control for the type of day

and the effect of holidays and daylight savings. We conclude also that there are some
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Figure 4: The average electricity load and the average temperature, from 01 Jan 2002 to

20 Jan 2011

seasonal effects. This way, our models are in the class of dynamic regression models. In

order to keep the computational burden under control, we decided to use the principles

of discount factor and some other approximations.

Separate univariate models for daily time series, at each our of the day, were developed

including components for trend (linear growth models), seasonal effect (via harmonics),

the effect of temperature and some dummies describing the nature of the weekday.
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Figure 5: Dispersion Diagram: average load versus average temperature.

Two classes of factorial models will be discussed. One of them, the structural factor

model, is based on some extensions of Diebold and Li (2006), often used in financial

econometrics to describe the term structure of the interest rate. Therefore, besides the

VAR component, the model introduced in this paper includes four dynamic factors based

on two different decay factors (λ1, λ2). The effect of temperature and dummies to take

care of the nature of the weekdays are also included in the model.

To conclude this section, some plots of the daily electricity log curve are presented

in Figure 6. Panels (a) and (b) show how the load curve changes during the seasons

on a weekday (Wednesday) and weekend day (Sunday), respectively. It is clear that the

consumption is higher on weekdays than on the weekend, as can be observed in panel

(c), where the figures for the 15th week of 2010 are plotted. Since the 15th week of the

year corresponds to Autumn, the load curves for the corresponding weekdays are quite

different from those in panels (a) and (b), which correspond to Summer and Winter.

Finally, the effect of a holiday on consumption can be seen in panel (d), where both load

curves refer to a Tuesday.

The class of models we are introducing in this paper encompasses many of the recent

developments reviewed above. We show that our Discount Multivariate Dynamic Regres-

sion Model includes as special cases the developments of Cottet and Smith (2003) and

also the recent models introduced by Dordonnat et al. (2008) and Dordonnat et al.. It is

worth pointing out that our model includes two sub-classes of factor models: stochastic

dynamic factor models and determinist factor models. The latter are strongly inspired
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Figure 6: The electricity load curve for different days and seasons in 2010.

by various extensions of the models developed by Nelson and Siegel (1987) in the con-

text of financial econometrics (Diebold and Li (2006)) as discussed by De Pooter (2007),

who has shown that using more flexible models leads to a better in-sample fit of the

term structure of the interest rate as well as improving the out-of-sample predictability.

The four-factor model, which adds a second slope factor to the three-factor Nelson-Siegel

model, forecasts particularly well.

4 Multivariate Dynamic Regression Models

The general linear model structures assume that the equally spaced observations, yt

are described over time by the observation and the evolution equations:

yt = F ′tθt + εt, εt ∼ N(0, φ−1t Σ) (1a)

θt = Gtθt−1 + ωt, ωt ∼ N(0, φ−1t Σ⊗Wt) (1b)

where:

◦ yt is the m× 1 observation conditionally independent vector.
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◦ θt is the mp× 1 state vector at time t.

◦ Ft is an m×mp matrix of known constants or regressors at time t accommodating

level, trend, seasonality, etc.

◦ Gt is an mp×mp matrix of known quantities describing the state time evolution.

◦ Σ, an m ×m matrix, and Wt, a p × p matrix, are, respectively, the observational

and the parameter evolution error covariance matrices.

◦ θ0|y0 ∼ N(m0, φ
−1C0) is the initial information.

For future reference, this class of models is defined by the quadruple {Ft, Gt,Σ,Wt},
where Ft is the design matrix, Gt is the state evolution and Σ and Wt, respectively are the

observational covariance and the state evolution matrix. The observational variance is

composed of a scale factor, φt, common to all the m time series, and a joint cross-sectional

structure Σ. The scale factor, often assumed known, represents common measurement

errors, common sample variance etc.

In our application, the observations are m dimensional for each time t,

yt = (y1, · · · , ym)′t and the time varying design matrix and the p-dimensional vector

of regression coefficients, for each ”separate” hourly model, are defined as: F t =

diag(· · · , Fjt, · · · ) and θt = (· · · , θjt, · · · ), for j = 1, · · ·m, where m denotes the daily

hours, so m = 24. Then, in terms of scalar time series elements we have m univariate

dynamic models:

yt,τ = F ′t,τθt,τ + εt,τ

θt,τ = θt−1,τ + ωt,τ

where εt,τ ∼ N [0, φ−1t,τ σ
2
τ ], ωt,τ ∼ N [0, φ−1t,τ σ

2
τWt,τ ], τ = 1, · · · ,m.

Assume also that the observational variance is given by φ−1t Σ and the evolution vari-

ance is W t = φ−1t Σ ⊗ Wt, where the p × p matrix Wt is obtained using the discount

factors.

We also consider the alternative model where the observational error has an au-

toregressive behavior. The time varying p-dimensional vectorial autoregressive process

(V AR(p)), defined as yt = Φ1yt−1 + · · ·+ Φpyt−p + εt, can be stated as a dynamic linear

model as follows:

yt = E ′ξt + εt

ξt = Gξt−1 + ωt
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where: ξt = (yt−1, · · · , yt−p)′, ωt = (εt, 0, · · · , 0)′, E = (Im 0 · · · 0)′ andG =


Φ1 · · · Φp−1 Φp

Im · · · 0 0
...

. . .
...

...

0 · · · Im 0

 .

In the present application we limit ourselves to the case of p = 1. Then in our model

the error term is given as εt = Φεt−1 + at, where at ∼ N [0,Σ], which is equivalent to

modeling yt − Φyt−1.

As is well established in the econometric literature, the VAR(p) provides a flexible

description of dynamic interaction in a model system, while using initial information very

sparsely - only the variables that enter the system and the lag length need to specified.

One problem consists just of select the adequate order to capture the dynamic struc-

ture. The Litterman prior (Litterman (1986)) is one of the earliest priors proposed. It

is appealing as an easy and accurate expression of prior beliefs about the nature of the

dynamics involved in the data generation process. It is specified via some hyperparam-

eters describing the tightness of beliefs on the own variables lag, on the others variables

and a rate of beliefs tightness with increasing lag. In the modern literature the model

selection is approached via some special hierarchical priors. Comparing the performance

of the Litterman prior and Bayesian lasso (Kyung et al. (2010)) is part of our research

agenda.

4.1 Inference in Multivariate Dynamic Linear Models

The Bayesian inferential procedure is sequential by nature, so it combines well with

data ordered by time. The main steps involved in the inference include the computation

and summarization of posterior distributions (forward filtering) as well as predictive

inferences for future observations (forecast distribution).

At any time t we have various distributions available and the analysis allows specific

ways to change these distributions over time. Let the information available at time t

be denoted by yt = (y0, y1, . . . , yt), where y0 is the initial information. The following

distributions are of interest:

◦ p(θt+h|yt)): the prior density, if h > 0, for the state vector at time t + s given the

information up to time t; the smoothing density if h < 0; and the posterior density

at time t if h = 0.

◦ p(yt+h|yt): the h steps ahead forecasting distribution for the future observation.

Assuming a conjugate normal-inverse Wishart prior, θ0,Σ ∼ N−IW (m0, C0, n0, D0),

where n0 > 0 is the initial degree of freedom and D0 is the m×m sum of squares matrix,
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that is Σ|y0 ∼ IW (n0, D0), with harmonic mean given by E[Σ−1|y0]−1 = D0

n0+m−1 and

E[Σ|y0] = D0

n0−2 , n0 > 2. The one-step-ahead predictive distribution and the posterior

distributions, for all t, are given by:

(a) Posterior at t− 1:

θt−1,Σ|yt−1 ∼ NIW (mt−1, Ct−1, nt−1, Dt−1)

where mt−1 is an mp× 1 mean vector, Ct−1 is an mp×mp covariance matrix and

dt is an mp×mp sum of squares matrix. Define St−1 = Dt−1

nt−1
.

(b) Priori at t:

θt,Σ|yt−1 ∼ NIW (at, Rt, nt−1, Dt−1)

where at = Gtmt−1, Rt = GtCt−1G
′
t +Wt.

(c) one-step-ahead forecast distribution:

yt|yt−1 ∼ Tnt−1(ft, Qt−1)

where ft = F ′tat and Qt = F ′tRtFt + St−1

(d) Posteriori in t:

θt,Σ|yt ∼ NIW (mt, Ct, nt, Dt)

where mt = at + Atet, Ct = Rt − AtQtA
′
t, nt = nt−1 + 1 and Dt = Dt−1 + etQ

−1
t e′t,

with At = RtFtQ
−1
t and et = yt − ft

Some special cases

The above model can accommodate many different sub-models by some careful spec-

ification of the components.

◦ The state θt evolution covariance component matrix, Wt, can be indirectly specified

through the use of the discount factor principles. The discount factor is typically a

number in (0, 1) which can be interpreted as the information percentage that passes

from time t − 1 to t. Then Wt = (1
δ
− 1)Ct−1, with Rt = (GtCt−1G

′
t)/δ. Without

loss of generality, the same discount could be applied to each separate regression

component, keeping the covariance among regression blocks fixed.

◦ All the results presented below are based on the special case of separate discounted

dynamic regression models for each hour of the day. This corresponds to setting

Σt = Im and defining Wjt = (1
δ
−1)Cj,t−1, where Cj,t−1 is the block of the covariance

matrix corresponding to the jth hour.
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◦ The model described in Cottet and Smith (2003) is a special case of the above

model with εt = Φεt−1 + at, where at ∼ N(0, I) and the regression coefficients are

time invariant, which corresponds to setting the discount factor equal to 1.

◦ The Dordonnat et al. (2008) model is also cast in state space form, but it differs

from ours since Σt = Im,∀t, which corresponds merely to separate regressions.

Besides that, it does not include any AR component and the estimation is done

through the maximum likelihood approach.

◦ The model in Cancelo et al. (2008) follows the traditional ARIMA model and of

course can be viewed as a particular case of our general model.

4.2 Model Components

In this section we introduce the main components of our full multivariate dynamic

regression model. We start with the class of factorial models. We distinguish two al-

ternative factorial models: the structural and the latent factor models. The first is

mainly described by observable factors, which can be interpreted as a base of functions

approximating the ”smoothing” load curve for each day. From the financial econometric

literature we borrow the structural factor model (De Pooter (2007)), which will be spec-

ified below. This is a base of functions parameterized by some exponential decay factors

which follows as a natural extension of the classical Nelson-Siegel three-factor model, as

discussed in Diebold and Li (2006).

To model the intraday electricity load, yt(τ), where t denotes a weekday and τ ∈
{1, · · · ,m} an hour, we define the m×4 regression design matrix F1 = (f1(1) · · · f1(m))′,

to represent the factorial load, with components:

f1(τ) = (g1(τ, λ1), g2(τ, λ1), g3(τ, λ1), g4(τ, λ2))

where: g1(τ) = 1, g2(τ, λ1) = 1−e−τλ1
τλ1

, gj+2(τ, λj) = 1−e−τλj
τλj

− e−jτλj , j = 1, 2, with

λ1 > λ2.

The time varying regression coefficients, θ1 =
(
θ1t θ2t θ3t θ4t

)′
, are interpreted as

the factors and represent the level, growth and curvature. As usual in dynamic regression

models, the G1 matrix is the identity. This generalization is introduced in De Pooter

(2007) to increase the flexibility and fit of the Nelson-Siegel model by adding a second

hump-shape factor with a separate decay. The introduction of a second medium-term

component to the model makes it easier to fit load curve shapes, which typically have

more than one local maximum or minimum along the daily hours. In this representation,

15



we have factors interpreted as the level, growth factors and two describing curvatures.

The curvatures differ on the decay factor parameters λ1 and λ2. The decay parameters

are kept as fixed throughout time. The values of these decay factors were obtained after

a sensitivity study and plugged in to keep the model easy to implement.

Now we describe the vector autoregressive component as specified in section 4. The

matrix of VAR coefficients, Φ, of dimension m × m, is part of the state vector, and

corresponds to the block (F2t, G2), with parametrization θ2 = vec(Φ)′ defined as:

F2t =

 y′t−1 0
. . .

0 y′t−1

 and G2 = Im2

where F2t is an m×m2 matrix.

Additionally, we include a linear growth component, the covariate temperature, which

varies with t and τ , and dummy variables to take into account weekends, holidays etc.

The full model, with parametrization θt =
(
θ1 θ5 θ6 . . . θ13 θ2

)′
t

is defined as:

Ft = (F1, Xt,0, . . . ,0, F2t) and Gt =


G1 0 0 0 0

0 1 0 0 0

0 0 I3 Dut 0

0 0 0 I8 0

0 0 0 0 G2


where Xt is the temperature on day t, 0 is a vector of zeros, with dimension m, and

Dut = diag[d1t, d2t] denotes the block diagonal of the dummies matrix, with d1,t =

IWeekend(t) d2,t = IWeekday(t), where Ix(A) = 1 iff x ∈ A, and where Weekday is

composed by the days of the week except Monday. Note that the state vector is expanded

to include the effect of the dummy variables and the matrix of the autoregressive process.

Those covariates affect the load curve, modifying the factors or the regression coefficients.

The effect of the dummy variables is to modify the factors in the presence of those special

days. This is another novelty introduced in the analysis of electricity load data.

4.2.1 Univariate Models

Although univariate models can be viewed as particular cases of the former model

with m = 1, some modifications should be detailed. Since now we are taking into account
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hourly time series, the polynomials do not apply anymore. On the other hand, in the pre-

liminary data analysis we saw the presence of strong seasonal components in the data gen-

erating process. Using the principle of model superposition, our general univariate model

is parameterized as: θ = (θ1, ...θ6)
′
t where θ1t = (µ1t, µ2t)

′, θ2t = (β1t, β2t)
′, θ3t = (a1t, b1t)

′,

θ4t = (a2t, b2t)
′, θ5t = (a3t, b3t)

′ and θ6t = (γ1t, γ2t)
′. Ft = (F1t, F2t, F3t, F4t, F5t, F6t) and

Gt = diag(G1, G2, G3, G4, G5, G6).

The first component represents the linear growth and is defined by the pair:

F1t = (1, 0) and G1t =

(
1 1

0 1

)
.

The second component includes two regressors: one representing the AR(1) term and

the other the coefficient of the variable temperature. This block is defined as: F2t =

(Tt, yt−1) and G2t = I2. All the models include the linear growth component, the AR

term and also the temperature covariate.

The third and fourth components are seasonal terms and so are defined by

Fjt = (1, 0) and Gjt =

(
cos(2πs/p) sen(2πs/p)

−sen(2πs/p) cos(2πs/p)

)
with j = 3, 4 or 5. Each of them has a different seasonal period. The first is a daily

seasonal component (p = 365.25) and the other a weekly component (p = 7). For the

weekly component, we considerer the first two harmonics (s = 1 or 2), while for the daily

component we only consider the first harmonic (s = 1).

To describe the effect of the weekday we use the dummies, d1,t and d2,t, previously

defined.

Then, representing it as a DLM we have: F6t = (d1t, d2t) and G6t = I2.

The univariate DLM model is used to describe the time series of electricity load at

each hour of the day, throughout the days. After running 24 separate DLMs (one for

each hour), the one-step-ahead predictions are collapsed together to illustrate the daily

load curve. Of course a drawback is that the intraday correlations are not directly consid-

ered. However, the predictions are obtained almost instantaneously and their precision

is compatible with that of similar models in the literature.

4.3 Practical Aspects of DLM Modeling

Some special aspects involved in dynamic Bayesian modeling include variance law,

discount factor, smoothing, intervention and monitoring (Migon et al.). Model average

or model selection are also extensively discussed in the literature (see West and Harrison

(1997), chapter 12).
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The use of a discount factor is often recommended to avoid the difficult task of directly

setting the state parameters evolution matrix. These are fixed numbers between zero and

one describing subjectively the loss of information through time.

Other relevant aspects of dynamic linear models are to easily deal with missing ob-

servations and to automatically implement subjective interventions. In the first case, it

suffices not to use the updating equations when the observations are missing. In this

way, the uncertainties increase with the evaluation of the new prior distribution and the

recurrence equation continues to be valid without any additional problem. From the

intervention point of view, the simplest proposal is to use a small discount factor, close

to zero, at the time of announced structural changes in the data generation process. In

this way, the more recent observations will be strongly considered in the updating of the

prior distribution and the system can be more adaptive to possible changes.

4.3.1 Anticipatory Intervention Analysis

An anticipatory intervention can be described as including an extra component in

the evolution noise or directly changing the prior moments. Denote an intervention

by It = {ait, Ri
t}, where ait, R

i
t are respectively the elicited prior mean and variance.

It is worth pointing out that the interventions in the state equation evolution have a

permanent effect.

In the first approach, let η ∼ tnt(ht, Ht) be the extra term added to the evolution error

term, where tnt denotes a Student-t distribution with nt degrees of freedom. So, formally

we have: θt|Dt−1 ∼ tnt(a
i
t, R

i
t), where ait = at + ht e Ri

t = Rt + Ht. If some components

of the elements of ht and diag[H]t are nil, those component of the state vector do not

change.

The alternative approach is more interesting and closely related with the recent devel-

opments in elicitation of probability distributions (Garthwaite et al. (2005)) and allows

an expert to determine in a coherent way the quantities ait and Ri
t, anticipating the uncer-

tainty effects that could occur. Our concern in this paper is to anticipate, in a subjective

way, the effect of a known future event that will substantially change the form of the

electricity load curve, as for example daylight saving time.

Let us assume that an expert is able to know in advance how some relevant points in

the load curve will change. If our DLM model for the load curve has p parameters, then

we ask the expert to predict the load curve at time t for p different values of the hourly

index, τ . Suppose he is able to produce the forecast mean values: fi = f(τ i1), · · · , f(τ ip)
′.

Then following Bedrick et al. (1996), we obtain: ait = X−1t fi, where Xt is the p×p design

matrix, which, without loss of generality, is assumed to be full rank p. Let us assume

also that the uncertainty associated with this evaluation will be described by a discount
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factor δi. Then It = {ait, Ri
t} where Ri

t = Rt/δ
i.

In order to show that this form of intervention corresponds to a second evolution over

the original state parameters, let us define θit = θt
(δit)

1/2 + (ait − at
(δit)

1/2 ). From lemma 11.1

in West and Harrison (1997) it follows that E[θit] = ait and V [θit] = Ri
t. It is worth noting

that θit is like a second evolution. Therefore, in terms of the original parameters we have

the evolution θt = Gi
tθt−1 + ωit where Gi

t = Gt
(δit)

1/2 , ωit = ωt
(δit)

1/2 + ht, with ht = ait − at
(δit)

1/2

and W i
t = Wt

δit
.

4.3.2 Bayesian Model Average: forecasting combination

Let m alternative models be described by the probability distributions p(y|Mi, D),

where Mi denotes the ith model, D the observables and y a future observation, not

yet observed. Denote the prior over the alternative models by p(Mi). Applying Bayes

theorem we easily obtain p(Mi|D) as

p(Mi|y,D) ∝ p(Mi|D)p(y|Mi, D)

Those posterior distributions are used in at least two alternative ways. The first cor-

responds to choosing the most probable model and the other to combining the alternative

models before making predictions. Then

1. The best model is the one with maximum posterior probability, that is: M∗ =

argmaxMi
p(Mi|y,D). Note that in this case all the predictions will be based on

the conditional distribution: p(y|M∗, D). Conditioning on a single selected model

ignores model uncertainty, and thus leads to underestimation of uncertainty when

making inferences about quantities of interest.

2. Using the model average alternative leads to the predictive distribution:

p(y|D) = Σp(Mi|D)p(y|Mi, D)dMi

This alternative seems to be more attractive, since often we do not know what the true

model is. Then the best we can do is combine them using the posterior probabilities as

weights (Clemen (1989)).

5 The Main Findings

The data set analyzed in this paper correspond to the hourly electricity consumption

from 01 Jan 2002 to 20 Jan 2011. The graphical illustrations of the one-step-ahead

prediction of the load curve refer only to week 15 of 2010. Logarithm transformation
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is used to facilitate the models’ fit, although we are aware of all the inconvenience this

can cause to decision makers. In the next two subsections we present some results

on sensitivity analysis, model selection and also the predictive ability of our models.

The models specified in the previous sections were applied and the main findings are

graphically illustrated.

This section includes the main results about model selection. Altogether we compare

seven univariate models, the simplest one being a linear growth plus an AR component

and the effect of temperature. The other univariate models differ from this basic one

by the inclusion of seasonal components (daily and weekly) and dummies characterizing

the weekday type. From the multivariate standpoint, we compare two alternatives. The

simplest one only includes the terms describing the extension of the Nelson-Siegel poly-

nomials. This one gives origin to another one by the inclusion of the dummies. In this

application, the multivariate model was further simplified. We assume that the covari-

ance matrix is φtΣ = φIm. Therefore, the prior distribution for φ is assumed to be an

IG(5/2, 0.2/2) and the initial information is stated as m0 = 0 and C0 ∼ N(0, 105Imp).

Although we performed many simplifications in order to make feasible the inference in

closed form, the computational time is very large due to the huge dimension of the state

vector. All the calculation were developed in an Intel Core 2, 2.53 GHz and 4.00 GB of

RAM, taking more than one hour and twenty minutes to process the multivariate model.

The two criteria used for this model selection are the root mean square error (RMSE)

and log of predictive likelihood (LPL). Of course one model is better than the other if it

has smaller RMSE or if it has greater LPL .

On the other hand, our main interest is to evaluate the predictive ability of the models

to forecast the electricity load for one day ahead. This is accomplished by examination of

the graphs below. Although our data set covers the period starting in 2001 and ending in

2011, only the years 2008 up to 2010 were selected to evaluate the models’ performance

numerically. For the univariate model we concentrate only on the time series of the

loads at 9 a.m. and 7 p.m. and we elect the 15th week of 2010 to present the graphic

illustrations of the load curves forecast by the univariate and multivariate models.

5.1 Univariate model selection

In this section we present an analysis of the impact of different discount factors when

applied to various univariate models. The model comparison is based on the predictive

likelihood, LPL, and on the root mean square errors, RMSE , for the one-step-ahead

forecasting.

The main conclusion from the sensitivity analysis is that it is bestworth to use a

discount factor of 0.95 in all cases. We choose the time series of the consumption of
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electricity at 9 a.m. (less variability) and 7 p.m. (more volatile) to illustrate our findings.

The data analyzed reflect the effects of the international economic crisis of 2008. In Table

1, at 7 p.m., it is clear the importance of using a discount factor for the simplest model.

The same conclusions apply to all the other models. Therefore, we decided to use the

same discount factor for all the models

Table 1: Sensitivity analysis for the simplest model (M1) and full model (M7) at 9 a.m.

and 7 p.m. based on the RMSE and on the LPL using the data from 2008 to 2010.

M1: Trend + Temp + AR

δ = 0.85 δ = 0.90 δ = 0.95 δ = 0.99

9 a.m.
RMSE 0.156 0.141 0.129 0.123

LPL 526.602 608.080 689.606 744.416

7 p.m.
RMSE 0.069 0.063 0.059 0.062

LPL 1404.044 1475.057 1535.813 1496.854

M7: M1 + Harm(d) + 2 Harm(w) + Dummies

δ = 0.85 δ = 0.90 δ = 0.95 δ = 0.99

9 a.m.
RMSE 0.100 0.079 0.064 0.054

LPL 1282.601 1422.524 1574.717 1655.778

7 p.m.
RMSE 0.049 0.043 0.038 0.035

LPL 1858.421 1986.359 2108.915 2145.757

In Table 2 we can note that the inclusion of dummy variables significantly improves

the models´ performance. The RMSE of the models without dummies is bigger than the

ones for models including the dummy variables (see, for instance, models M4, M5 and

M6). The same happens with the LPL criterion. The conclusions are similar for both

time series and model 7 is slightly better, consistently with both criteria.

The smoothed mean coefficients for the main factors (level, temperature, daily sea-

sonality and dummy coefficients) in model 7 can be seen in Figure 7, covering the period

from 01 Jan 2008 to 01 Jan 2011.

Figure 7 shows the smoothed mean obtained with model 7, for all the model co-

efficients: level, temperature, the AR(1) component, the daily seasonalities, and the

dummies. The graphs cover the period from Jan 2008 to Jan 2011 (three years), allowing

rough observation of some annual movements present in those components. The level co-

efficient, µ1t, steadily decreases along the year and the uncertainty is bigger in the winter

than in the summer. The same behavior is noted in the AR component. Although it is

not easy to see, there are some changes of seasonality along the years. The dummy coef-

ficients have a complementary time evolution. While the weekend dummy, respectively,

decreases/increseas at the end/beginning of each year, the weekday dummy, excluding
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Table 2: Model selection for the 9 a.m. and 7 p.m. models based on the RMSE and on

the LPL using a discount factor equal to 0.95.

Model RMSE LPL

M1: Trend + Temp + AR (9 a.m.) 0.129 689.606

M2: M1 + Harm(d) ( 9 a.m.) 0.136 640.718

M3: M2 + Harm(w) (9 a.m.) 0.101 953.340

M4: M1 + Dummies (9 a.m.) 0.070 1465.784

M5: M2 + Dummies (9 a.m.) 0.072 1415.683

M6: M3 + Dummies (9 a.m.) 0.073 1413.417

M7: M2 + 2 Harm(w) + Dummies (9 a.m.) 0.064 1574.717

M1: Trend + Temp + AR (7 p.m.) 0.059 1535.813

M2: M1 + Harm(d) (7 p.m.) 0.62 1500.305

M3: M2+ Harm(w) (7 p.m.) 0.051 1727.553

M4: M1+Dummies (7 p.m.) 0.042 2003.733

M5: M2 + Dummies (7 p.m.) 0.043 1961.336

M6: M3 + Dummies (7 p.m.) 0.042 1981.940

M7: M2 + 2 Harm(w) + Dummies (7 p.m.) 0.038 2108.915

Monday, has the opposite behavior. Note that the dummies´ effects, in general, are

negative.
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Figure 7: Smoothed mean value with 95% credibility intervals for model M7, at 7 p.m.
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5.2 Univariate Models - Daily Assessment

After obtaining the one-step-ahead forecast for each separate dynamic regression

model, we join them to produce the load curve forecast.

We arbitrarily choose the 15th week of 2010 to graphically illustrate the electricity

load curve predictive behavior using our preferred univariate model, for instance, model

7. For the numerical results, we use the years 2008 to 2010. Table 3 shows the RMSE

and LPL , based on this period and on the relevant univariate models, M3, M4, M6 and

M7. The two criterion functions used are defined as:

RMSE(k) =

√√√√(mK)−1
K∑
t=1

m∑
τ=1

(yk,τ − fk,τ )2

LPL(k) = −

{
K∑
t=1

m∑
τ=1

[
1

2
log(2πqk,τ ) +

(yk,τ − fk,τ )2

2qk,τ

]}

where: fk,τ and qk,τ are the mean and variance of the predictive distribution, at hour τ

on day k = 1, · · · , 7, m = 24 and K = T/7. The main results obtained can be seen in

the next table. Model 7 is the best following the LPL and the RMSE criteria. So we will

use model 7 in the graphical illustrations.

Table 3: Univariate model selection, based on the RMSE and LPL, normalized by the

numbers of days, using a discount factor equal to 0.95.

Monday Weekday Weekend

M3
RMSE 0.057 0.061 0.101

LPL 5198.681 5281.029 2416.219

M4
RMSE 0.047 0.052 0.050

LPL 6623.291 6078.908 5863.215

M6
RMSE 0.053 0.054 0.050

LPL 5986.958 5984.507 5851.575

M7
RMSE 0.042 0.051 0.043

LPL 6903.421 6169.371 6451.267

Figure 8 shows the mean of the one-step-ahead forecast distribution, based on model

7, for the 15th week of 2010, based on a discount factor δ = 0.95. Note that the 95%

credibility intervals (dashed lines) include almost all the observed values (dots).
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Figure 8: One-step-ahead load curve forecasting (solid line) with 95% credibility interval

(dashed line), Model 7, week 15, 2010 (δ = 0.95). The observations are in dots.
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5.3 Multivariate Models Selection

As previously mentioned, multivariate models are time demanding. Therefore, the

sensitivity analysis was only partially developed. First we chose the λ´s, evaluating the

RMSE and LPL criteria for each weekday and some hours of the day. This was done

using the best discount factor obtained for the univariate models and applying only the

simplest multivariate model, that is, without dummies. We ended up with two solutions

with almost the same value for both criteria. Therefore, we decided to vary the discount

factor from 0.9 to 0.99, for each choice of λ´s, to see what their effects are. We concluded

that the previously used discount factor is really the best one.

Table 4 presents the results obtained to compare the models with time varying level,

with and without the dummies. We inspect in depth the cases: (λ1, λ2) = (0.8, 0.5) e

(0.7, 0.3). All the results are based on a discount factor equal to 0.95 and the criteria

functions evaluated as defined before.

Table 4 presents the results obtained to compare the models with time varying level,

with and without the dummies. All the results are based on the discount factor equal

0.95 and the criterion functions evaluated as defined before.

Table 4: Multivariate model selection, based on the RMSE and LPL (normalized by

the number of days), using a discount factor equal to 0.95 and based on the data from

2008 to 2010.

RMSE

(λ1, λ2) Monday Weekday Weekend

Model 1 no dummy
(0.8, 0.5) 0.053 0.058 0.068

(0.7, 0.3) 0.053 0.058 0.068

Model 2 with dummy
(0.8, 0.5) 0.052 0.058 0.066

(0.7, 0.3) 0.052 0.060 0.066

LPL

(λ1, λ2) Monday Weekday Weekend

Model 1 no dummy
(0.8, 0.5) 5828.483 5819.685 5123.048

(0.7, 0.3) 5833.942 5820.913 5125.742

Model 2 with dummy
(0.8, 0.5) 5872.553 5796.993 5169.429

(0.7, 0.3) 5922.842 5779.842 5209.486

It is worth recalling that the alternative model we are comparing differs by the inclu-

sion or not of dummy variables. We conclude that the dummy variables are significant

and that the decay factors λ1 = 0.7 and λ2 = 0.3 are always the better.

It is worth recalling that the alternative model we are comparing differs by the inclu-

sion or not of dummy variables. Since both criteria do not consistently favor any of the
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alternative models, particularly,

We used the complete model with (λ1;λ2) = (0.7; 0.3) to make the graphical illus-

trations. Figure 9 shows the one-step-ahead forecasting mean value (solid line), the

95% credibility interval (dashed lines) and the observations (dots), obtained with the

multivariate model 2, based on the data for the 15th week of 2010.

Finally, we can compare the performance of the univariate and multivariate dynamic

regression models, by using the numbers in Tables 3 and 4. The multivariate model with

dummy variables is not better than the univariate model including the seasonal effects

only, for instance Model 7. Although this finding is not so intuitive, it could be derived

from the substantial simplifications we imposed on the intraday dependence structure.

6 Concluding remarks and extensions

In this paper we discussed the implementation of two classes of alternative models.

The first one is based on the extensions of Nelson-Siegel factor models with time vary-

ing parameters and the second one extends previous works in the recent literature and

is based on separate regressions by hour. Our main contribution to this class of prob-

lem include the use of time varying Nelson-Siegel factor models and the use of dummy

variables to modify the factors and allow the observational variance estimation.

The data analysis developed allows us to conclude that it is enough to include the

temperature as linear regression and also that all models produce very similar forecasts

with almost the same precision. In order to keep the computational effort under con-

trol, some simplifications were introduced. The decay factors in the Nelson-Siegel were

kept fixed and time invariant, the observational variances were supposed known and the

discount factors were used to describe the state evolution.

We plan to implement the full model using MCMC and also to explore results for

the dynamic factor model. Modeling the temporal dependence structure in a sequence of

variance matrices is of interest in multi and matrix variate time series with application

to many different fields, such as econometrics, neuroscience etc. Three alternatives to

approach this problem include: graphical models (Carvalho and West (2007) and Wang

and West (2003)), sparse regularization and prediction (Friedman et al. (2008)) and

autoregressive models for variance matrices (Fox and West (2011)).
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Figure 9: One-step-ahead load curve forecasting (solid line) with 95% credibility interval

(dashed line), Multivariate Model 2, week 15, 2010 (δ = 0.95 and (λ1, λ2) = (0.7, 0.3)).

The observations are in dots.
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