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Abstract

In this paper we extend the previous work of Mendes, Melo and Nelsen (2007) and study

robust estimation for pair-copula models. The extention is straightforward since a pair-copula

construction is just a hierarchical decomposition of a multivariate copula into a cascade of bivariate

copulas and estimation takes place at the level of the two-dimensional data. Robust Minimum

Distance Estimators (MDE) are proposed for new copula families | BB7 and t-student | and

the weighted version of the Maximum Likelihood Estimators (WMLE) proved again to be the best

option for members of the elliptical family of copulas. We conditionally model the time-varying

behavior of series of realized volatilities in the Brazilian equity market using pair-copulas. We

robustly estimate and forecast their evolution.

Keywords: Robust estimation; Pair-copulas; Minimum Distance Estimators; Robust Co-

variance Estimators.

1 Introduction

Volatility plays important role in asset pricing and allocation and risk management. It

is usually estimated using member of the GARCH family. As such, they are only valid

under the assumptions of the model. Ex post realized volatilities may be constructed by

summing the squares of evenly spaced intraday high-frequency returns computed from

continuously recorded transaction prices (Andersen et al. 2001). Papers dealing with

construction and applications of realized volatilities have focused on developed markets

data (ref ref ref). Here we examine the six most traded Brazilian stocks volatilities.

The decomposition of a d-dimensional copula (d > 2) into a collection of potentially

di®erent bivariate copulas was originally proposed by Joe (1996), and later discussed in

detail by Bedford and Cooke (2001, 2002), Kurowicka and Cooke (2006) and Aas, Czado,

Frigessi, and Bakken (2007). The method of construction is hierarchical, where variables

are sequentially incorporated into the conditioning sets as one moves from tree 1 to tree

d ¡ 1. Pair-copulas are °exible since all composing bivariate copulas may vary freely,
1Email: beatriz@im.ufrj.br.
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covering any omplex pattern of dependence usually exhibited by multivariate data, being

easy to estimate and simulate.

Pair-copulas estimation is usually performed in the context of independent and identi-

cally distributed observations by extending the IFM method, inference function for mar-

gins, initially proposed for copulas parameters' estimation. Under the IFM method, in-

troduced by Joe and Xu (1996), the maximum likelihood estimates are obtained for the

marginal and copula parameters. Joe (1997) argues that we can expect the IFM method

to be quite e±cient since fully based on maximum likelihood estimation. The success of

this estimation procedure starts with good marginal ¯ts (see Frahm, Junker, and Schmidt,

2004), which typically pose no di±culties. Alternatively, a semiparametric method may

be applied, where the margins are ¯tted empirically and the dependence parameters are

¯tted by maximum likelihood (see Genest et al., 1995). Con¯dence intervals are usually

obtained through bootstrap methods, or for some families the asymptotic variance may

be computed.

Bayesian methods have also been applied to pair-copulas. Dalla Valle (2007) proposed

Bayesian inference based on MCMC for multivariate elliptical copulas using the inverse

Wishart distribution as a prior for the correlation matrix . Min and Czado (2008) also

developed a Markov chain Monte Carlo algorithm which provides credibility intervals.

When all data points come from the same data generating process, the maximum like-

lihood estimates (MLE) possess the usual good statistical properties (see Genest, Ghoudi,

and Rivest (1995), and Shih and Louis (1995)). However, contaminations may occur

in many ways and atypical points may change the strength of association, resulting in

distorted estimation of dependence measures and poor predictions. When dealing with

high frequency data, contaminations may occur from heavy data manipulation (automatic

checkings will fail if not all scenarios have been contemplated) and

Data manipulation may result in gross errors, or imply in data columns misalignment,

which would not damage the marginal ¯ts but would completely distort estimates of the

dependence structure. We also note that the copula sample space [0; 1]d poses di±cul-

ties for the graphical inspection of atypical points. We need thus an automatic robust

procedure that would work well when data are, and when data are not contaminated.

However, to the best of our knowledge, no one has yet proposed robust estimates for

pair-copulas.

Mendes, Melo and Nelsen (2007) proposed two classes of robust estimators for cop-

ulas, aiming to provide guidance when modeling real data. They are based on either a

redescending weight function or on a hard rejection rule. The minimum distance esti-

mators (MDE) minimize some selected weighted distance based statistics. The weighted
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maximum likelihood estimates (WMLE) result from a two-step procedure. In the ¯rst

step, outlying data points are identi¯ed by a robust covariance estimator and receive zero

weights, and in the second step the MLE are computed for the reduced data. In this

paper we extend this previous work and propose to robustly estimate pair-copulas using

the MDE and the WMLE estimates. The extention is straightforward since estimation

takes place at the level of the bivariate copulas.

Robust estimators are found for new copula families | BB7 and t-student | and the

WMLE proved again to be the best option for members of the elliptical family of copulas.

We carried on simulations and considered varying proportions of contaminating points

located at di®erent regions of the copula support. Among the 18 di®erent types of MDE

estimators we report those resulting in the smaller mean squared error. The simulation

experiments indicate that for each copula family there is at least one robust estimate

performing very well, in the sense of small mean squared error, despite the contamination

percentage and location, and the sample size.

The remaining of this paper is organized as follows. In Section 2 we brie°y review

the de¯nition of pair-copula. In Section 3 we de¯ne the robust estimates and report the

results from the new simulations. In Section 4 we work out two convincing examples where

robust estimation is needed and results in better inferences. To illustrate, we model and

forecast the realized volatility of two Brazilian stocks. In Section 5 we summarize and

discuss the results of this paper.

2 Pair-copulas

In this section we provide a brief review of copulas and pair-copulas.

2.1 Copulas

The most important theorem in copula theory dates back to the ¯fties (Sklar, 1959). It

states that any multivariate distribution can be expressed by its copula function evaluated

at its marginal distribution functions.

Consider a continuous random vector X1; : : : ;Xd with joint distribution function

(c.d.f.) H(x1; : : : ; xd) and marginal distributions F1; : : : ; Fd. For every (x1; : : : ; xd) 2
[¡1;1]d consider the point in [0; 1]d+1 with coordinates (F1(x1); : : : ; Fd(xd); H(x1; : : : ; xd)).
This mapping from [0; 1]d to [0; 1] is a d-dimensional copula.

Sklar's theorem ensures that there exists a d-copula C such that for all (x1; : : : ; xd) 2
[¡1;1]d

H(x1; : : : ; xd) = C(F1(x1); : : : ; Fd(xd)): (1)
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Conversely, if C is a d-copula and F1; : : : ; Fd are c.d.f.s, the function H de¯ned by (1) is a

d-dimensional distribution function with margins F1; : : : ; Fd. Furthermore, if all marginal

c.d.f.s are continuous, C is unique.

Given a joint c.d.f. H with continuous margins F1; : : : ; Fd, as in Sklar's Theorem, it

is easy to construct the corresponding copula:

C(u1; : : : ; ud) = H(F
¡
1 (u1); : : : ; F

¡
d (ud)); (2)

where F¡i is the generalized inverse of Fi, that is, F
¡
i (u) = supft 2 < : Fi(t) · u; 0 ·

u · 1g. (2) is the tool for extracting the copula pertaining to a multivariate distributions.
When C is absolutely continuous, taking partial derivatives of (1) one obtains

h(x1; ¢ ¢ ¢ ; xd) = c(F1(x1); ¢ ¢ ¢ ; Fd(xd))
dY
i=1

fi(xi) (3)

for some d-dimensional copula density c. This expression will prove useful later for param-

eter estimation. (3) allows for tailored marginal modeling considering all characteristics

of each Fi, including the mean, standard deviation, skewness, kurtosis and any type of

short and long memory serial dependence, plus a search for the best ¯t for the dependence

structure through a large number of copula families that may be considered. This results

in °exible multivariate distributions with any choice of margin distributions. An impor-

tant example is the family of the meta-elliptical distributions (Fang, Fang and Kotz, 2002,

2005) which, unlike the family of elliptical distributions, do not impose any constraints on

their margins. This °exibility have motivated applications of copulas in several research

areas.

2.2 Pair-copulas

However, the copula approach for modeling high-dimensional copulas has also limitations.

Firstly, the generalization of bivariate copulas to multivariate copulas of dimension larger

than 2 is not straightforward. When high-dimensional copulas are available, there are

signi¯cant obstacles to solving the required optimization problem over many dimensions,

and most of the available softwares deal only with the bivariate case. Even if we are able

to ¯t a d-dimensional copula, d > 2, parametric copula families usually restrict all pairs to

having the same type or strength of dependence. For example, in the case of the t-copula,

in addition to the correlation coe±cients, a single parameter, the number of degrees of

freedom, is used to compute the coe±cient of tail dependence for all pairs. This is a

serious restriction since the dependence structure among pairs of variables usually vary

substantially, including changes in copula family.
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Pair-copulas, being a collection of potentially di®erent bivariate copulas, are °exible

and very appealing. The method of construction is hierarchical, where variables are se-

quentially incorporated into the conditioning sets as one moves from level 1 (tree 1) to

tree d¡ 1. The composing bivariate copulas may vary freely, from the parametric family

to the parameter values. Therefore, all types and strengths of dependence can be cov-

ered. Pair-copulas are easy to estimate and simulate, making them very appropriate for

modeling large dimensional data sets.

The decomposition of a multivariate distribution in a cascade of pair-copulas was

originally proposed by Joe (1996), and later discussed in detail by Bedford and Cooke

(2001, 2002), Kurowicka and Cooke (2006) and Aas, Czado, Frigessi, and Bakken (2007).

Consider again the joint distributionH with density hwith strictly continuous marginal

c.d.f.s F1; ¢ ¢ ¢ ; Fd with densities fi. First note that any multivariate density function may
be uniquely decomposed as

h(x1; :::; xd) = fd(xd) ¢ f(xd¡1jxd) ¢ f(xd¡2jxd¡1; xd) ¢ ¢ ¢ f(x1jx2; :::; xd): (4)

The conditional densities in Equation (4) may be written as functions of the corresponding

copula densities. That is, for every j

f(x j v1; v2; ¢ ¢ ¢ ; vd) = cxvj jv¡j (F (x j v¡j); F (vj j v¡j)) ¢ f(x j v¡j); (5)

where v¡j denotes the d-dimensional vector v excluding the jth component. Note that
cxvj jv¡j (¢; ¢) is a bivariate marginal copula density. For example, when d = 3,

f(x1jx2; x3) = c13j2(F (x1jx2); F (x3jx2)) ¢ f(x1jx2)

and

f(x2jx3) = c23(F (x2); F (x3)) ¢ f(x2)

and

c(u1; u2; u3) = c12(F1(x1); F2(x2)) ¢ c23(F2(x2); F3(x3)) ¢ c13j2(F (x1 j x2); F (x3 j x2)):

Expressing all conditional densities in Equation (4) by means of Equation (5), we derive

a decomposition for h(x1; ¢ ¢ ¢ ; xd) that consists of only univariate marginal distributions
and bivariate copulas. Thus we obtain the pair-copula decomposition for the d-dimensional

copula c1¢¢¢d, a factorization of a d-dimensional copula based only in bivariate copulas. This
is a very °exible and natural way of constructing a higher dimensional copula. Note that,

given a speci¯c factorization, there are many possible reparametrizations.
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The conditional c.d.f.s necessary for pair-copulas construction are given (Joe, 1996) by

F (x j v) = @Cx;vj jv¡j (F (x j v¡j); F (vj j v¡j))
@F (vj j v¡j) :

For the special case (unconditional) when v is univariate, and x and v are standard uniform,

we have

F (x j v) = @Cxv(x; v;£)

@v

where £ is the set of copula parameters.

For large d, the number of possible pair-copula constructions is very large. As shown

in Bedford and Cooke (2001), there are 240 di®erent decompositions when d = 5. These

authors introduce a systematic way to obtain the decompositions, which involves graph-

ical models that they call regular vines. They also aid in understanding the conditional

speci¯cations made for the joint distribution. Special cases are the hierarchical canoni-

cal vines (C-vines) and the D-vines. Each of these graphical models is a speci¯c way of

decomposing the density h(x1; ¢ ¢ ¢ ; xd). For example, for a C-vine, h is equal to
dY
k=1

f(xk)
d¡1Y
j=1

d¡jY
i=1

cj;j+ij1;:::;j¡1(F (xj jx1; :::; xj¡1); F (xj+ijx1; :::; xj¡1)):

In a D-vine, there are d¡ 1 hierarchical trees with increasing conditioning sets, and there
are d(d¡ 1)=2 bivariate copulas. For a detailed description, see Aas, Czado, Frigessi, and
Bakken (2007). In the real data illustrations we work out in Section 4, there is a key

variable that interact with all others. In such a situation it is more convenient choose a

C-vine decomposition and to place this variable at the root of the canonical vine. Figure 1

shows the C-vine decomposition for d = 4. The C-vine consists of 3 nested trees, with tree

Tj having 5¡ j nodes, and 4¡ j edges corresponding to a bivariate copula. The copulas
in tree 1 are unconditional, and all others are conditional.

Simulations from both C- and D-vine pair-copulas can be easily implemented and take

very little time to run.

3 Robust estimates

We obtain robust estimates for pair-copulas by adapting to the pair-copulas environment,

the concept ofWeighted Minimum Distance estimators (WMDE) andWeighted Maximum

Likelihood Estimates (WMLE) originally proposed for copulas. A comprehensive simula-

tion study showed that for each copula family one can always ¯nd a speci¯c weighted
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Figure 1: The Canonical vine graphical hierarchical representation of a four-dimensional

pair-copula.

minimum distance estimator, which do not depend on the sample size and on the strength

of dependence able to downweight the in°uence of contaminating points, introducing ro-

bustness. For elliptical copulas, as expected, the WMLE is always the best robust option.

Since estimation of a pair-copula model is performed at the level of bivariate data, we

review the de¯nitions of these estimators in the bivariate case. Details on these estimates

may be found in Mendes, Melo and Nelsen (2007). Let d = 2 and let (X1;t;X2;t); t =

1; :::; T , be T independent copies of (X1;X2) with joint c.d.f. H. The bivariate empirical

distribution function is given by

HT (x1; x2) =
1

T

TX
t=1

IfX1;t·x1;X2;t·x2g; ¡1 < x1; x2 < +1 ;

where IfAg is the indicator function of event A. Its associated marginal empirical distri-
bution functions Fi;T (x1), i = 1; 2, are de¯ned as

F1;T = FT (x1;+1) and F2;T (x2) = FT (+1; x2) :

Let F¡i;T represent the generalized inverse of Fi;T . The empirical copula function eC (De-

7



heuvels (1979), Deheuvels (1981a, 1981b), Fermanian, Radulovi¶c, and Wegkamp, 2004) is

de¯ned by

eC(u; v) = FT (F¡1;T (u); F¡2;T (v)); 0 · u; v · 1 :
According to Deheuvels (1979), eC converges to C as T increases. eC is computed on the

lattice L = f( t1T ; t2T )g, where t1 and t2 are integers, 1 · t1; t2 · T :

eC(t1
T
;
t2
T
) = FT (F

¡1
1;T (

t1
T
); F¡12;T (

t2
T
)) 8 ( t1

T
;
t2
T
) 2 L : (6)

Let Cµ represent a parametric copula parameterized by µ. The minimum distance

estimate for µ is the solution µ¤ which minimizes over all µ in the parameter space £,
some distance between the empirical copula eC and the parametric copula bC = Cbµ ¯tted
to the data. These distance measures are further modi¯ed through the application of

appropriate redescending weight functions, giving rise to 24 types of WMDE.

Examples of metrics de¯ning the MDEs are the Kolmogorov statistic K

K = max
(
t1
T
;
t2
T
)2L

j eC( t1
T
;
t2
T
)¡ bC( t1

T
;
t2
T
)j; (7)

and the Cram¶er-Von Mises statistic W 2

W 2 =
TX
t1=1

TX
t2=1

[ eC(t1
T
;
t2
T
)¡ bC(t1

T
;
t2
T
)]2: (8)

By applying to (7) and (8) the weight function

wAK =
1q

[ bC( t1T ; t2T )][1¡ bC( t1T ; t2T )] ; (9)

which emphasizes deviations in the tails (the corners of the unit square), one obtains the

so called Anderson-Darling statistic (10)

ADAK = max
(
t1
T
;
t2
T
)2L

j eC( t1T ; t2T )¡ bC( t1T ; t2T )jq
[ bC( t1T ; t2T )][1¡ bC( t1T ; t2T )] ; (10)

and the Integrated Anderson-Darling statistic (11)

IADAK =
TX

t1=1

TX
t2=1

[ eC( t1T ; t2T )¡ bC( t1T ; t2T )]2
[ bC( t1T ; t2T )][1¡ bC( t1T ; t2T )] : (11)

New redescending weight functions emphasizing all di®erent regions of the [0; 1]2 were

proposed in Mendes, Melo and Nelsen (2007) and resulted in other robust variations of
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the Kolmogorov and of the Cram¶er-Von Mises statistics. For example, the weight function

w1

w1(
t1
T
;
t2
T
) =

1q
[ t1T +

t2
T ¡ bC( t1T ; t2T )][1¡ bC( t1T ; t2T )] ; (12)

emphasizes just the points in the lower left (LL) and the upper right (UR) corners. The

factors [ t1T +
t2
T ¡ bC( t1T ; t2T )] and [1¡ bC( t1T ; t2T )] correspond to the c.d.f. areas located at

the LL and the UR quadrants of the unit square. By applying w1 to (7) and (8) one

obtains

AD1 = max
1·t1;t2·T

j ~C( t1
T
;
t2
T
)¡ bC(t1

T
;
t2
T
) j w1;LL¡UR(t1

T
;
t2
T
); (13)

IAD1 =
TX

t1=1

TX
t2=1

[ ~C(
t1
T
;
t2
T
)¡ bC(t1

T
;
t2
T
)]2 [w1;LL¡UR(

t1
T
;
t2
T
)]2: (14)

The AD1 and the IAD1 estimators proved useful for the new classes of copulas investigated

in this paper.

The WMLE consists in a weighted robusti¯cation of the MLE computed in two steps.

In the ¯rst step atypical points are identi¯ed by a high breakdown point covariance matrix

estimator. There are many high breakdown point estimators of multivariate location and

scatter that could be used in this preliminary phase. In the application worked out in

Section 4 we use the robust Stahel-Donoho (SD) estimator based on projections (Stahel,

1981 and Donoho, 1982) which is implemented in the free R software. Those points with

statistical distance to the center of the ellipsoid is greater than some cuto® point (the

0.95-quantile of a chisquare random variable) are given zero weight. In the second step, a

parametric copula family is ¯tted to the points de¯ned by the hard rejection rule. Note

that no particular distributions (marginals or copula) were assumed for the data.

Table 1: Summary of results from simulations. Winners under uncontaminated and at the con-

taminated models.

Copula Copula type ¸L ¸U No contamination Contamination

Small SS | Large SS Small SS | Large SS

t-student Elliptical
p p

MLE or AD1 WMLE or AD1

Gumbel Archimed./EV
p

MLE or IAD1 WMLE or AD1 or URAD1

BB7 Archimedean
p p

MLE or IAD1 WMLE or IAD1

Notation in table: SS, Sample Size.
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We have ran simulations for assessing the performance of these estimates for two

parametric copula families, the elliptical t-student and the archimedean BB7 (notation

of Joe, 1997). These estimators are compared to the MLE and the relative e±ciency

among estimates are assessed by comparing their mean squared error from Monte Carlo

simulations. Under the true model these estimates are expected to possess small bias but

large variances when compared to the MLE. However, the simulations showed that for the

majority of scenarios considered, they possess small bias and small variance, outperforming

the MLE.

We considered ²-contaminated models, where a proportion ² of observations were re-

placed by atypical ones generated from a contaminating distribution F ¤. We set ² equal
to 0% , 5%, and 10%, and F ¤ as the bivariate normal distribution with correlation coef-
¯cient ½ = 0:00 and very small variances, acting as a point mass contamination. There

were 5 possibilities for the location of the contaminating distribution F ¤: the center of
the unit square and the regions nearby the 4 corners. Contaminated data generation was

monitored such that points falling outside the unit square were discarded. Of course,

many other contamination schemes are possible. The way our experiments were designed

covered the worst possible contaminating scenarios.

For each experiment considered we compute the MLE, the WMLE, and all 24 WMDE

estimates, and report their mean value and mean-squared error. Three sample sizes (50,

100, and 300) were considered. The number of repetitions for each one was 1000.

Summary of results for all copula models are given in Table 1. For the Gumbel copula,

as expected, accuracy and precision of all estimators increase with sample size. We have

here a very nice result, since we are able to choose an overall winner, despite the sample

size, contamination location, and strength of dependence. For the BB7 copula and under

no contamination: The MLE is the best estimator. However, the WMDE estimator IAD1

shows up as a good option under the set ups considered.

4 Forecasting volatility for Brazilian stocks

Volatility plays an important role when managing risks, pricing options, composing port-

folios. However it must be estimated and there are many sources of uncertainty including

model speci¯cation and estimation. The realized volatility is an unbiased and highly ef-

¯cient model free measure of the daily return variability computed from high-frequency

intraday returns. The realized variance may be simply de¯ned as the sum of the squared

high-frequency intraday returns over this interval (see theoretical details in Andersen,

Bollerslev, Christo®ersen and Diebold, 2006).

High frequency data possess unique characteristics, not present in low frequency data
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(daily, weekly, monthly), calling for speci¯c data treatments. Transactions (with variable

volumes) occur in irregular time space, data show cicles and di®erent market activity pat-

terns along the day, there may be asynchronicity in the data, and the bid-ask bounce e®ect

may distort inferences. All these features make their statistical analysis more interesting.

On the other hand, the number of observations is huge, increasing the chances of many

types of errors such as transaction and recording errors.

We examine the time-varying behavior of the daily equity return realized volatilities

obtained from high-frequency intraday transaction prices in the BOVESPA. The temporal

dynamics of the series are modeled using pair-copulas. That is, we model the temporal

dependence of the realized volatility at day t, on the past values at days t¡1, t¡2; ¢ ¢ ¢ using
pair-copulas. To the best of our knowledge no one has already taken this approach for

modeling series of realized volatilities. Moreover, we apply classical and robust estimation.

Applying robust estimates in this context seems promising due to the large amount of data

and the extensive data manipulation that may increase the proportion of atypical values,

therefore increasing the bias of predictions.

Data are composed by high-frequency returns computed from continuously recorded

transaction prices of the seven most traded Brazilian stocks (PETR4 (Petrobras), VALE5

(Vale), TNLP4(Telemar), USIM5 (Usiminas), BBDC4 (Bradesco), CSNA3 (Siderrgica Na-

cional) and ITAU4 (Itauunibanco)) was provided by BOVESPA and covers the 7-months

period from October, 01, 2008 to April, 30, 2009. Liquid stocks are needed to avoid the

negative autocorrelation induced by the small time intervals between records. Each data

record is similar to the \Trades and Quotes" (TAQ) provided by the NYSE, and contains

information on the price, volume traded, day and time of trading, dates and names of the

trading ¯rms (those buying and selling).

To eliminate the impacts caused by the changes in the BOVESPA closing time (sum-

mer time), data were ¯rstly expressed using the Greenwich mean time format. For data

alignment at ¯xed time intervals, instead of the common practice denominated before2,

we obtain the volume-weighted average price (VWAP). The VWAP gives rise to a smaller

realized variance, since it is closest to the e±cient price instead of the closing price.

We divide the trading period (7 hours) in 84 ¢-intervals, ¢ = 5min. Let Pt¤;k and

Qt¤;k, k = 1; ¢ ¢ ¢ ; n, represent the k-th price and volume for a Brazilian stock during some
time interval ¢ corresponding to time t¤, t¤ = 5; 10; ¢ ¢ ¢ ; 420 .

The real value log-price pt¤ of this stock for a 5min time interval is given by

2\Before" makes use of the most recent observation, or the closest, with respect to the desired minute,

and obtains the average of the bid-ask values through a linear interpolation of the log-price.
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pt¤ = ln

µ
Pt¤;1 ¢Qt¤;1 + Pt¤;2 ¢Qt¤;2 + ¢ ¢ ¢+ Pn ¢Qt¤;n

Qt¤;1 +Qt¤;2 + ¢ ¢ ¢+Qt¤;n

¶
: (15)

The 5min intra-day continuously compounded return rt¤ on this stock from time to

t¤ ¡¢ to t¤ is computed as

rt¤ = pt¤ ¡ pt¤¡¢: (16)

Intra-day data may present seasonality and volatility clusters. To eliminate the nega-

tive autocorrelation present in the rt¤ due to microstructure e®ects, an ARMA(p; q) ¯lter

was applied to the intra-day data before computing the realized volatility.

The realized variance (RVt) at day t, t = 1; : : : ; T is de¯ned as:

RV t =
X

t¤2 day t

r2t¤ (17)

where T is the series length. We note that consistency of the estimator is attached to

¢! 0. The realized volatility (RVOLt) and the log-realized volatility (RLV OLt) at day

t are

RV olt =
p
RVt and LRV olt = ln (RV olt) (18)

Now we investigate the temporal dependencies within the series of LRVol using pair-

copulas. We split the data in two parts, one for estimation (6 months), and the other for

the one-step-ahead out-of-sample predictions (1 month, April/2010). Before any modeling

we explore the series' sample acf and pacf. They indicate that the RLVol at times t ¡ 1,
t¡ 2, and t¡ 3 are able to explain the behavior of the series at time t. Thus, we will ¯t a
4-dimensional pair-copula to the original and lagged series of RLVol. The Canonical vine

is interesting because the three bivariate unconditional copulas in tree 1 will be linking

the original series on time t with the three other lagged ones.

The ¯rst step is to ¯nd the best unconditional distribution representing the univariate

series of LRVol. The values of the skewness and kurtosis coe±cients in Table (1) suggest

using a skew-t distribution (Hansen (1994), Patton (2006), Fantazzini (2006)).

We ¯t by maximum likelihood a skew-t distribution to the 6-months series of LRVol

and using the c.d.f. of the ¯tted models we obtain the pseudo uniform(0; 1) data. Marginal

¯ts should be carefully checked since a poor ¯t will result in probability integral transforms

not being standard uniform or i.i.d.. As a consequence, any copula model will be mis-

speci¯ed.
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Table 2: Basic statistics for the Brazilian stocks RLV ol series.

Mean Stdev Skewness Kurtosis Maximum

RLV olPETR4 1.8970 0.4148 0.9988 5.6532 4.6006

RLV olV ALE 1.8970 0.4148 0.9988 5.6532 4.6006

To estimate the bivariate copulas (3 unconditional and 3 conditional), we examined

the uniform data scatter plots (see Figure 2) and considered as possible candidates ¯ve

copula families: Normal, t-student, BB7, Gumbel, and the product copula. To ¯nd the

best copula ¯t, we compared the penalized log-likelihood (AIC), examined the pp-plots

based on the estimated and the empirical copula, and computed a GOF test statistic

(Genest and R¶emillard (2005) and Genest, R¶emillard, and Beaudoin (2007)).

The chosen pair-copula decomposition, along with best classical and robust copula ¯ts

with parameter estimates, are shown in Table (2).
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Figure 2: Probability transformed pairs of PETROBRAS LRVol.

Table 3: Best classical and robust canonical vine ¯ts to the PETROBRAS RLVol.
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CLASSICAL ROBUST

Tree 1 (t; t¡ 1) (t; t¡ 2) (t; t¡ 3) (t; t¡ 1) (t; t¡ 2) (t; t¡ 3)
t-student Gumbel t-student Gumbel Gumbel Normal

(0.71) (1.72) (0.59) (2.36) (2.01) (0.63)

Tree 2 (t¡ 1; t¡ 2 j t) (t¡ 1; t¡ 3 j t) (t¡ 1; t¡ 2 j t) (t¡ 1; t¡ 3 j t)
t-student Gumbel Gumbel Gumbel

(0.47) (1.29) (1.44) (1.36)

Tree 3 (t¡ 2; t¡ 3 j t; t¡ 1) (t¡ 2; t¡ 3 j t; t¡ 1)
t-student Gumbel

(0.36) (1.43)

The outliers that can be seen in the LR and UL corners of plots of Figure 2 a®ect

the copula ¯ts. The changes are in copula family and in parameters estimates values, see

Table 3. The robust ¯ts re°ect the pattern of the majority of days and are expected to

provide better forecasts.

For predicting, we keep the estimated model and incorporate each new daily observa-

tion as it comes, updating the data. Twenty realized log-volatility predictions are obtained.

We assess and compare the performance of the classical and robust forecast methods by

computing the sum of the squared di®erences between both forecasts and the true realized

volatilities. The robust method performed better providing a value of 0.4042 whereas the

classical method yielded a sum of 1.4057. Figure ?? shows the twenty predictions ander

the classical and robust methods and the true log-realized volatilities.
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Figure 3: PETROBRAS out-sample Classical and Robust PC volatility forecasts.
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Figure 4: PETROBRAS out-sample Classical and Robust PC Value-at-Risk estimates.

5 Discussion

In this paper we extend the previous work of Mendes, Melo and Nelsen (2007) and study

robust estimation of pair-copula models. The extention is straightforward since pair-

copulas is just a hierarchical decomposition of a multivariate copula into a cascade of

bivariate copulas, and estimation takes place at the level of two-dimensional data.

For each data set (contaminated or not) we are able to propose a robust estimator

as good as the maximum likelihood estimates. When data are contaminated (or when

this is an issue) we propose to compare the classical and robust estimates. We provide

two convincing examples where robust estimates are needed. Di®erent weight functions

emphasize di®erent regions on the unit cube where contaminations may be located. The

resulting WMDE estimators are compared to the classical maximum likelihood estimators

MLE, and to their weighted version WMLE, an estimator obtained in two steps. All esti-

mators are compared in a comprehensive simulation study. For each epsilon-contaminated

pair-copula model speci¯ed, we show that there is a robust estimator improving over the

MLE and able to capture the correct strength of dependence of the data, despite the

contamination percentual and location, and the sample size.

For any other copula family not considered here, the simulations may be easily im-

plemented and run relatively fast. Estimators sample distributions may be assessed by

simulations. We did some experimentation and found a well behaved distribution for some

of them. Tables may be constructed for testing hypothesis. We are not addressing the
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important problem Which copula is the right one? But we are indeed providing guidance

for estimating several copula models. A rule of thumb: Always compare a classical and a

robust ¯t. In summary, whenever one suspects there may exist contaminations, we would

recommend theWMLE for elliptical copulas, and theW 2 and the IAD2 for all other cop-

ula families. In the case one is not sure whether or not there are contaminations, he/she

should compare the MLE, W 2, AD2, and IAD2 estimators. Methodology seems promis-

ing for forecasting series of realized volatilities possessing short and long range dependence

and di®erent tail dependence at consecutive small and large values.
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