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Abstract

The stochastic volatility in mean model with correlated errors using the symmetrical class of scale

mixtures of normal distributions is introduced in this article. The scale mixture of normal distribu-

tions is an attractive class of symmetric distributions that includes the normal, Student-t, slash and

contaminated normal distributions as special cases, providing a robust alternative to estimation in

stochastic volatility in mean models in the absence of normality. Using a Bayesian paradigm, an

efficient method based on Markov chain Monte Carlo (MCMC) is developed for parameter estima-

tion. The methods developed are applied to analyze daily stock return data from the São Paulo

Stock, Mercantile & Futures Exchange index (IBOVESPA). The Bayesian predictive information

criteria (BPIC) and the logarithm of the marginal likelihood are used for model selection criteria.

The results reveal that the stochastic volatility in mean model with correlated errors and slash

distribution provides significant improvement in model fit for the IBOVESPA data over the usual

normal model.

Key words: Feed-back and leverage effect, Markov chain Monte Carlo, non-Gaussian and

nonlinear state space models, scale mixture of normal distributions, stochastic volatility in mean.

1. Introduction

The relationships between expected returns and expected volatility have been extensively exam-

ined in recent years. Theory generally predicts a positive relation between expected stock returns

and volatility if investors are risk averse. That is, equity premium provides more compensation for
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risk during more volatile periods. In other words, investors require a larger expected return from

a security that is riskier. Empirical studies that attempt to test this important relation, however

yield mixed results. French et al. (1987) found a positive and significant relationship and Baillie and

DeGennaro (1990) and Theodossiou and Lee (1995) reported a positive but non significant relation-

ship between stock market volatility and stock returns. Consisting with the asymmetric volatility

argument, Nelson (1991), Glosten et al. (1993) and more recently Brandt and Kang (2004) reported

evidence of a negative and often significant relationship between volatility and returns. Overall,

there appears to be stronger evidence of a negative relationship between unexpected returns and

innovations to the volatility process, which French et al. (1987) interpreted as indirect evidence of a

positive correlation between the expected risk premium and ex ante volatility. This theory, known

as feedback volatility, states that stock price reactions to unfavorable events tend to be larger than

reactions to favorable ones. This means that bad (good) news decreases (increases) stock prices

and increases volatility, therefore determining a further decrease of the price. An alternative ex-

planation for asymmetric volatility where causality runs in the opposite direction is the leverage

effect put forward by Black (1976), who asserted that a negative (positive) return shock leads to

an increase (decrease) in the firm’s financial leverage ratio, which has an upward (downward) effect

on the volatility of its stock returns. However, French et al. (1987) and Schwert (1989) argued that

leverage alone cannot account for the magnitude of the negative relationship. For example, Camp-

bell and Hentschel (1992) found evidence of both volatility feedback and leverage effects, whereas

Bekaert and Wu (2000) presented results suggesting that the volatility feedback effect dominates

the leverage effect empirically. From an empirical perspective the fundamental difference between

the leverage and volatility feedback explanations lies in the causality: the leverage effect explains

why a negative return leads to higher subsequent volatility, whereas the volatility feedback effect

justifies how an increase in volatility may result in negative returns.

Stochastic volatility (SV) models were introduced in the financial literature for describing time-

varying volatilities (Taylor, 1982, 1986). Although the basic SV model offers great flexibility in

modeling data with time-varying variances, it can suffer from a lack of robustness in the presence of

extreme outlying observations as shown by (Liesenfeld and Jung, 2000; Abanto-Valle et al., 2010,

among others). Usually, the volatility of daily stock returns has been estimated with SV models,

but the results have relied on a extensive pre-modeling of these series to avoid the problem of

simultaneous estimation of the mean and variance. The SV in mean (SVM) model introduced by
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Koopman and Uspensky (2002) deals with the simultaneous estimation of the mean and variance.

The unobserved volatility is incorporated as an explanatory variable in the mean equation of the

returns.

In this article we propose to robustificate the specification of the innovation returns in SVM by

introducing scale mixture of normal (SMN) distributions with correlated mean and variance errors.

The resulting class of models takes into account the feed-back and leverage effect. We refer to this

generalization as SVML-SMN models. Interestingly, this rich class contains as proper elements the

SVML with normal (SVML-N), Student-t (SVML-t), slash (SVML-S) and the contaminated normal

(SVML-CN) distributions. Indeed, the flexibility of the SVML with SMN distributions could fit

time varying features in the mean of the returns and heavy tails simultaneously. The estimation of

such intricate models is not straightforward, since volatility now appears in both the mean and the

variance equation and hence intensive computational methods are needed for. Inference in this new

class of SVML–SMN models is performed under a Bayesian paradigm via MCMC methods, which

permits obtaining the posterior distribution of parameters by simulation, starting from reasonable

prior assumptions on the parameters. We simulate the log-volatilities and the shape parameters

by using the block sampler (Shephard and Pitt, 1997; Omori and Watanabe, 2008; Abanto-Valle

et al., 2010) and Metropolis-Hastings algorithms, respectively.

The rest of the paper is structured as follows. Section 2 outlines the general class of the SVML–

SMN models as well as the Bayesian estimation procedure using MCMC methods. In Section 3, the

proposed class of models is applied to the BOVESPA daily index returns and model comparison is

provided among the competing SVML models. Finally, Section 4 contains some concluding remarks

and suggestions for future developments.

2. The heavy-tailed stochastic volatility in mean model

The SV in mean model with heavy-tails and correlated errors is defined by

yt = β0 + β1yt−1 + β2eht + e
ht
2 λ

− 1
2

t εt, (1a)

ht+1 = α + φht−1 + σηηt, (1b)
εt

ηt


 ∼ N2

[ 
0

0,





1 ρ

ρ 1




]
, (1c)

λt ∼ p(λt | ν), (1d)
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where yt and ht are, respectively, the compounded return and the log-volatility at time t. We

assume that |φ| < 1, i.e., that the log-volatility process is stationary and that the initial value

h1 ∼ N ( α
1−φ ,

(1−ρ2)σ2
η

1−φ2 ). The parameter ρ measures the correlation between εt and ηt. When

ρ < 0, this indicates the so-called leverage effect, a drop in the return followed by an increase in

the volatility. An empirical evidence can be found in Ghysels et al. (1996), Harvey and Shephard

(1996) and Bollerslev and Zhou (2005). In this setup, λt is a scale factor, and h(λt | ν) is the mixing

density which capture the heavy-tailness (see Choy and Chan, 2008; Abanto-Valle et al., 2010, for

details about the choice of the mixing density). This class of models includes the SVML with

Student-t (SVML-t), with slash (SVML-S) and contaminated normal (SVML-CN) distributions as

special cases. The first and second models are obtained chosen the mixing density as: λt ∼ G(ν
2 , ν

2 ),

λt ∼ Be(ν, 1) respectively, where G(., .) and Be(., .) denote the gamma and beta distributions

respectively. In the SVML-CN model λt follows a discrete distribution. When, λt = 1 for all t and

ρ = 0, we have the SVM model of Koopman and Uspensky (2002), as a particular case. In the next

subsection we use MCMC methods to conduct the posterior analysis under a Bayesian paradigm.

Conditionally to λt, some derivations are common to all members of the SVML-SMN family (see

Appendix A for details).

Equations (1a)-(1c), can be written in an alternative way as

 yt

ht+1




∣∣∣∣θ, λt, ht, yt−1 ∼ N
( 

β0 + β1yt−1 + βteht

α + φht


 ,


 λ−1

t eht ϕλ
−1/2
t eht/2

ϕλ
−1/2
t eht/2 τ2 + ϕ2




)
. (2)

Then, yt|θ, λt, ht, ht+1, yt−1 follows a normal distribution with mean and variance given by

µt = β0 + β1yt−1 + βteht + (ϕ/(ϕ2 + τ2))λ−1/2
t eht/2(ht+1 − α− φht) (3)

Vt = λ−1
t ehtτ2/(τ2 + ϕ2), (4)

respectively. The last density will be useful in the derivations of the block sampler given in the

next section.

2.1. Parameter estimation via MCMC

Let θ = (β0, β1, β2, α, φ, τ2, ϕ,ν ′)′ be the full parameter vector of the entire class of SVML-SMN

models, where ν is the parameter vector associated with the mixture distribution, τ =
√

1− ρ2ση

and ϕ = ρση, h1:T = (h1, h1, . . . , hT )′ be the vector of the log volatilities, λ1:T = (λ1, . . . , λT )′

be the mixing variables and y0:T = (y0, . . . , yT )′ be the information available up to time T . To
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make Bayesian analysis feasible for parameter estimation in the SVML-SMN class of models, we

draw random samples from the posterior distribution of (θ,h1:T , λ1:T ) given y1:T using MCMC

simulation methods. The sampling scheme is described by Algorithm 1.

Algorithm 1.

1. Set i = 0 and get starting values for the parameters θ(i) and the latent quantities λ
(i)
1:T and

h(i)
1:T .

2. Generate θ(i) in turn from its full conditional distribution, given y1:T , h(i−1)
1:T and λ

(i−1)
1:T .

3. Draw λ
(i)
1:T ∼ p(λ1:T | θ(i),h(i−1)

1:T ,y0:T ).

4. Generate h0:T by blocks as:

i) For l = 1, . . . , K, the knot positions are generated as kl, the floor of [T ×{(l + ul)/(K +

2)}], where the u′ls are independent realizations of the uniform random variable on the

interval (0,1).

ii) For l = 1, . . . , K, generate hkl−1+1:kl−1 jointly conditional on ykl−1:kl−1, θ(i), λ
(i)
kl−1+1:kl−1,

h
(i−1)
kl−1

and h
(i−1)
kl

.

iii) For l = 1, . . . , K, draw h
(i)
kl

conditional on y1:T , θ(i), h
(i)
kl−1 and h

(i)
kl+1.

5. Set i = i + 1 and return to 2 until convergence is achieved.

The prior distribution of parameters in the SVML–SMN class are set as: β0 ∼ N (β̄0, σ
2
β0

),

β1 ∼ N(−1,1)(β̄1, σ
2
β1

), β2 ∼ N (β̄2, σ
2
β2

), α | τ2 ∼ N (α0, τ
2/q0), ϕ | τ2 ∼ N (ϕ0, τ

2/p0), φ ∼
N(−1,1)(φ0, s

2
φ), τ2 ∼ IG(aτ/2, Sτ/2), where α0, ϕ0, φ0, s2

φ, aτ , Sτ , p0 e q0 are known hyper param-

eters. The prior distribution of ν is model specific (see details in Appendix A).

As described by Algorithm 1, the Gibbs sampler requires sampling parameters and latent vari-

ables from their full conditionals. Sampling the log-volatilities h1:T in Step 4, due to the nonlinear

setup of the observational equation (1a), is the most difficult task. An efficient strategy is to sample

from the conditional posterior distribution of h1:T by dividing it into several blocks and sampling

each block given the other blocks. This idea, called the block sampler or multi-move sampler, is

developed by Shephard and Pitt (1997) and Watanabe and Omori (2004) in the context of state

space modeling. They show that the sampler can produce efficient draws from the target condi-

tional posterior distribution in comparison with a single-move sampler which primitively samples
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one state, say ht, at a time given the others, hs (s 6= t). For the SV model with leverage, Omori and

Watanabe (2008) develop the associated multi-move sampler and show that it produces efficient

samples. In the next subsection, we extend their method for sampling h1:T in the SVML-SMN class

of models. Details on the full conditionals of θ and the latent variable λ1:T are given in Appendix

A, some of them are easy to simulate from.

2.2. A block sampler algorithm

In order to simulate h1:T = (h1, . . . , hT )′ in the SVML-SMN class of models, we consider

a two-step process: first, we simulate h1 conditional on h2:T , next h2:T conditional on h1. To

sample the vector h2:T , we develop a multi-move block algorithm. In our block sampler, we di-

vide it into K + 1 blocks, hkl−1+1:kl−1 = (hkl−1+1, . . . , hkl−1)′ for l = 1, . . . , K + 1, with k0 = 1

and kK+1 = T , where kl − 1 − kl−1 ≥ 2 is the size of the l−th block. We sample the block

of disturbances ηkl−1:kl−2 = (ηkl−1
, . . . , ηkl−2)′ given the end conditions hkl−1

and hkl
instead of

hkl−1+1:kl−1 = (hkl−1+1, . . . , hkl−1)′. In order to facilitate the exposition, we omit the dependence

on θ and suppose that kl−1 = t and kl = t + k + 1 for the l−th block, such that t + k < T .

Then ηt:t+k−1 = (ηt, . . . , ηt+k−1)′ are sampled at once from their full conditional distribution

f(ηt:t+k−1|ht, ht+k+1,yt:t+k,λt+1:t+k)1, which without the constant terms is expressed in the log

scale as

log f(ηt:t+k−1|ht, ht+k+1,yt:t+k, λt+1:t+k)
.= −

t+k−1∑
s=t

η2
s

2
+

t+k∑
s=t

ls

− 1
2σ2

η

(ht+k+1 − α− φht+k)2I(t + k < T ), (5)

where I(t+k < T ) is an indicator variable. Excluding the constant terms ls denotes the conditional

distribution of ys given hs and hs+1 for s < T , which is normal with mean µs and variance Vs,

which are given by equations (3) and (4) respectively. We define

L =
t+k∑
s=t

ls − (ht+k+1 − α− φht+k)2

2σ2
η

I(t + k < T )

and dt+1:t+k = (dt+1, . . . , dt+k)′, where ds and Q are given by equations (B.1) and (B.2) (see Ap-

pendix B, for details).

1For the last block, we have yT | yT−1, hT ∼ N (β0 + β1yT−1 + β2e
ht , λ−1

T ehT )

6



As−1
2

∑t+k−1
s=t η2

s+L in (5) does not have closed form, we use the Metropolis-Hastings acceptance-

rejection algorithm (Chib and Greenberg, 1995) to sampling from. To obtain the proposal density,

we are going to form an approximated linear state space model that mimics (5), from which sam-

pling is easy. Applying a second order Taylor series expansion to L around the mode η̂t:t+k−1, we

have

log f(ηt:t+k−1|ht, ht+k+1,yt+1:t+k,λt+1:t+k)

≈ const− 1
2

∑t+k
r=t+1 η2

r + L̂ + ∂L
∂η′t:t+k−1

∣∣∣∣
ηt:t+k−1=η̂t:t+k−1

(ηt:t+k−1 − η̂t:t+k−1)

+1
2(ηt:t+k−1 − η̂t:t+k−1)′E( ∂2L

∂ηt:t+k−1∂η′t:t+k−1
)
∣∣∣∣
ηt:t+k−1=η̂t:t+k−1

(ηt:t+k−1 − η̂t:t+k−1)

= const− 1
2

∑t+k
r=t+1 η2

r + L̂ + d̂
′
t+1:t+k(ht+1:t+k − ĥt+1:t+k)

−1
2(ht+1:t+k − ĥt+1:t+k)′Q̂(ht+1:t+k − ĥt+1:t+k)

= const + log f∗(ηt:t+k−1|ht, ht+k+1, θ,yt+1:t+k,λt+1:t+k), (6)

where d̂t+1:t+k, L̂ and Q̂ denote dt+1:t+k, L and Q evaluated at ht+1:t+k = ĥt+1:t+k. The ex-

pectations are taken with respect to ys’s conditional on hs’s. We use an information matrix for

Q because we require that Q is everywhere strictly positive definite. It can be shown that the

proposal density f∗(ηt:t+k−1|ht, ht+k+1, θ,yt+1:t+k,λt+1:t+k) is the posterior density of ηt:t+k−1 for

a linear Gaussian state space model given by equations (7) and (8) below (see Omori and Watan-

abe, 2008, for details). The mode η̂t:t+k−1 can be found by repeating the following algorithm until

convergence.

Algorithm 2.

1. Initialize η̂t:t+k−1 and calculate ĥt+1:t+k using (1b).

2. Evaluate d̂s, M̂s and N̂s using equations (B.1), (B.3) and (B.4) respectively.

3. Compute Gs, Js and bs, for s = t + 2, . . . , t + k, recursively.

Gs = M̂ s − N̂
2
sG

−1
s−1, Gt+1 = M̂ t+1,

Js = K−1
s−1N̂ s, Jt+1 = 0, Jt+k+1 = 0,

bs = d̂s − JsK
−1
t−1bs−1 bt+1 = d̂t+1,

where Ks =
√

Gs.
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4. Define the auxiliary variables ŷs = γ̂s + G−1
s bs, where

γ̂s = ĥs + K−1
s Js+1ĥs+1, s = t + 1, . . . , t + k.

5. Consider the linear Gaussian state-space model

ŷs = cs + Zshs + Hsξs, s = t + 1, . . . , t + k, (7)

hs+1 = α + φhs + Lsξs, s = t, t + 1, . . . , t + k, (8)

where ξs ∼ N (0, I2), cs = K−1
s Js+1α, Zs = 1 + K−1

s Js+1φ, Hs = K−1
s [1, Js+1ση] and Ls =

[0, ση].

Apply the Kalman filter and a disturbance smoother (Koopman, 1993) to the linear Gaussian

state space model in equations (7) and (8) and obtain the posterior mean of ηt:t+k−1 (ht:t+k)

and set η̂t:t+k=1 (ĥt:t+k) to this value.

6. Return to Step 2 and repeat the procedure until achieving convergence.

Applying the de Jong and Shephard’s simulation smoother (de Jong and Shephard, 1995) to the

model defined by equations (7) and (8) with the auxiliary variables ŷt+1:t+k defined in step 4 of

Algorithm (2), enables us to sample ηt+1:t+k from the density f∗. Since f is not bounded by f∗,

we use the Metropolis-Hastings acceptance-rejection algorithm to sample from f as recommended

by Chib and Greenberg (1995). In the SVML-N case, we use the same procedure with λt = 1 for

t = 1, . . . , T .

In the MCMC sampling procedure, we select the expansion block ĥt+1:t+k in Algorithm 2 as

follows: the current sample of ηt:t+k=1 (ht+1:t+k) may be taken as an initial value of the η̂t:t+k=1

(ĥt+1:t+k) in Step 1. Once an initial expansion block ĥt+1:t+k is selected, we can calculate the aux-

iliary ŷt+1:t+k variables in Step 4. Then, applying the Kalman filter and a disturbance smoother to

the linear Gaussian state space model consisting of equations (7) and (8) with the artificial ŷt+1:t+k

yields the mean of ht+1:t+k conditional on ĥt+1:t+k in the linear Gaussian state space model, which

is used as the next ĥt+1:t+k. By repeating the procedure until the smoothed estimates converge,

we obtain the posterior mode of ht+1:t+k. This is equivalent to the method of scoring to maximize

the logarithm of the conditional posterior density. Although, we have just noted that iterating

the procedure achieves the mode, this will slow our simulation algorithm if we have to iterate this
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procedure until full convergence. Instead we suggest to use only five iterations of this procedure to

provide reasonably good sequence ĥt+1:t+k instead of an optimal one.

Finally, we describe the updating procedure of the knot conditions hkl
, for l = 2, . . . ,K. As

the conditional density p(hkl
| hkl−1, hkl+1) does not have a closed form, we use the Metropolis-

Hastings algorithm with proposal density N (
α(1−φ)+φ(hkl−1+hkl+1)

1+φ2 ,
σ2

η

1+φ2 ). Let hp
kl

and h
(i−1)
kl

de-

note the proposal value and the previous iteration value. Thus, the acceptance probability is

given by αMH = min{1,
Q(hp

kl
)

Q(h
(i−1)
kl

)
}, where Q(hkl

) is the product of the conditional densities ykl−1 |
λkl−1, ykl−2, hkl−1, hkl

∼ N (µkl−1, Vkl−1) and ykl
| λkl

, ykl−1, hkl+1, hkl
∼ N (µkl

, Vkl
), with µs and

Vs are defined by equations (3) and (4) respectively, for s = kl − 1 and kl.
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Figure 1: Compounded IBOVESPA returns from January 5, 1998 to September 3, 2005. The left panel shows the

plot of the raw series and the right panel the histogram of returns.

3. Empirical Application

This section analyzes the daily closing prices of the IBOVESPA. The IBOVESPA is an index

of about 50 stocks that are traded on the São Paulo Stock, Mercantile & Futures Exchange. The

index is composed of a theoretical portfolio with the stocks that accounted for 80% of the volume

traded in the last 12 months and that were traded on at least 80% of the trading days. It is re-

vised quarterly, to keep it representative of the volume traded. On average, the components of the

IBOVESPA represent 70% of all the stock value traded. The data set was obtained from the Yahoo

finance web site, available to download at “http://finance.yahoo.com”. The period of analysis is
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January 5, 1998 - October 3, 2005, which yields 1917 observations. Throughout, we work with the

compounded return expressed as a percentage, yt = 100(log Pt − log Pt−1), where Pt is the closing

price on day t.

The corrected compounded IBOVESPA returns are plotted in Figure 1 as a time series plot and

also a histogram. The mean and standard deviation of returns are 0.06 and 2.34 respectively. As

can be easily seen in Figure 1, the returns are slight skew (0.83) with heavy tails. Note also that

the returns have a large raise (minimum, -17.21 and maximum, 28.83). Some extreme observations,

explained by turbulences in financial markets that occurred by August 1998 and January 1999 (the

Russian and Brazilian exchange rate crises, respectively), contribute to the large kurtosis (19.18)

of the IBOVESPA returns. As a result, the IBOVESPA returns likely depart from the underlying

normality assumption. Thus, we reanalyze this data with the aim of providing robust inference by

using the SMN class of distributions. In our analysis, we compare the SVML-N, SVML-t, SVML-S

and SVML-CN models.

In all cases, we simulated the ht’s in a multi-move fashion with stochastic knots based on

the method described in Section 2.1. We set the prior distributions of the common param-

eters as: β0 ∼ N (0, 100), β1 ∼ N(−1,1)(0.1, 100), β2 ∼ N (−0.1, 100), φ ∼ N(−1,1)(0.95, 100),

τ2 ∼ IG(2.5, 0.025), α | τ2 ∼ N (0, τ2/0.002) and ϕ | τ2 ∼ N (−0.3, τ2/0.005). The prior distribu-

tions on the shape parameters were chosen as: ν ∼ G(12, 0.8) and ν ∼ G(2, 0.25) for the SVML-t

and the SVML-S models, respectively. For the SVML-CN, we set δ ∼ Be(2, 2) and γ ∼ Be(2, 4).

The initial values of the parameters were randomly generated from the prior distributions. We

set all the log-volatilities, ht, to be zero. Finally the initial λ1:T were generated from the prior

p(λt | ν). All the calculations were performed running stand-alone code developed by us using an

open source C++ library for statistical computation, the Scythe statistical library (Pemstein et al.,

2007), which is available for free download at http://scythe.wustl.edu.

For the block sampler algorithm, we set the number of blocks K to be 60 in such a way that

each block contained 32 h′ts on average. For the SVML-N, SVML-t and the SVML-S models, we

conducted the MCMC simulation for 50000 iterations. However, for the SVML-CN model, we used

210000 iterations. In both cases, the first 10000 draws were discarded as a burn-in period. In order

to reduce the autocorrelation between successive values of the simulated chain, only every 10th

(SVML-N, SVML-t and SVML-S models) and 100th (SVML-CN model) values of the chain were

stored. With the resulting 4000 (2000) values, we calculated the posterior means, the 95% credible
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intervals and the convergence diagnostic (CD) statistics (Geweke, 1992). Table 1 summarizes the

results. According to the CD values, the null hypothesis that the sequence of 4000 (2000) draws is

stationary was accepted at the 5% level for all the parameters in all the models considered here.

The inefficiency factor is defined by 1 +
∑∞

s=1 ρs where ρs is the sample autocorrelation at lag

s. It measures how well the MCMC chain mixes (see, e.g, Chib, 1972). It is the estimated ratio

of the numerical variance of the posterior sample mean to the variance of the sample mean from

uncorrelated draws. When the inefficiency factor is equal to m, we need to draw MCMC samples

m times as many as uncorrelated samples. From Table 1, we found a well mixing of the MCMC

chain produced by our algorithm.

From Table 1, the posterior mean and 95% interval of φ in the SVML-S is higher than those

of the other three models. However, for all the models, we found that the posterior means of φ

are above 0.93, showing higher persistence. We found that the persistence of the SVML-t and the

SVML-S are slightly different from that the SVML-N and SVML-CN models. The posterior mean

of σ2
η is smaller in the SVML-S than those of the SVML-N, SVML-t and the SVML-CN models,

indicating that the volatility of the SVML-S is less variable than those of the other three models.

We also found that the posterior mean of σ2
η of the SVML-t and the SVML-CN model are smaller

than the SVML-N case.

The posterior means together with the posterior 95% intervals of the three parameters, which

govern the mean process for each of the four models, are reported in Table 1. We observed that in

all the cases the posterior mean of β0 is always positive and statistically significant for the SVML-N,

SVML-t and SVML-S. In the SVML-CN model the 95% interval of β0 contains zero. We found

that the posterior mean of β1 is positive and similar to the first-order autocorrelation (not reported

here). Since the 95% posterior interval contains zero, this coefficient could be not significant. The

β2 parameter, which measures both the ex ante relationship between returns and volatility and the

volatility feedback effect, has a negative posterior mean for all the models. Although the posterior

credibility interval of β2 barely contains zero for all the models, its posterior distribution is pri-

marily located in the negative range as shown in Table 2. This result confirms previous results in

the literature and indicates that when investors expect higher persistent levels of volatility in the

future they require compensation for this in the form higher expected returns.

As expected for all the models considered here, the posterior means of ρ, the correlation coeffi-

cient between shocks to return at time t and shocks to volatility at time t + 1, is always negative
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Table 1: Estimation results for the IBOVESPA returns. First row: Posterior mean. Second row: Posterior 95%

credible interval in parentheses. Third row: CD statistics. Fourth row: Inefficiency factors.

Parameter SVML-N SVML-t SVML-S SVML-CN

0.1409 0.1801 0.2293 0.1421

β0 (0.0031,0.2820) (0.0269,0.3388) (0.0899,0.3736) (-0.0003,0.2779)

0.61 -1.67 -0.26 0.70

1.33 2.34 3.43 1.33

0.0299 0.0242 0.0230 0.0295

β1 (-0.0562,0.0239) (-0.0219,0.0682) (-0.0142,0.0593) (-0.0137,0.0753)

-0.18 -0.18 -0.76 -0.07

1.49 1.60 1.44 0.88

-0.0179 -0.0343 -0.0776 -0.0192

β2 (-0.0559,0.0193) (-0.0894,0.0160) (-0.1606,0.0063) (-0.0571,0.0198)

0.69 0.66 0.30 0.79

1.27 3.02 4.88 -0.92

0.0713 0.0407 0.0185 0.0722

α (0.0271, 0.1196) (0.0147,0.0758) (0.0342,0.1175) (0.0002,0.0059)

1.47 -1.49 -1.00 -1.32

23.55 28.31 6.22 15.59

0.9368 0.9579 0.9677 0.9376

φ (0.8940,0.9765) (0.9184,0.9855) (0.9745,0.9947) (0.8929,0.9761)

-1.33 1.47 0.34 -0.96

25.29 36.05 11.40 2.38

0.0708 0.0426 0.0279 0.0701

σ2
η (0.0250,0.1214) (0.0146,0.0818) (0.0163,0.0430) (0.0262,0.1211)

1.31 -1.46 -0.65 1.41

28.74 44.37 15.46 2.86

-0.3112 -0.3445 -0.3217 -0.3081

ρ (-0.4677,-0.1774) (-0.5319,-0.1779) (-0.4559,-0.1889) (-0.4601,-0.1715 )

1.36 -1.75 -0.06 1.90

11.13 21.96 6.49 1.93

– 10.9988 1.8787 –

ν – (6.9690,16.9087) (1.5257,2.3398) –

– 1.32 -0.48 –

– 26.25 15.20 –

– – – 0.6342

δ – – – (0.3849,0.8643)

– – – -0.82

– – – 3.62

– – – 0.9730

γ – – – (0.8928,0.9982)

– – – -1.03

– – – 2.75

12



Table 2: IBOVESPA return series: estimated P (β2 < 0)

SVML-N SVML-t. SVML-S SVML-CN

P (β2 < 0) 0.8295 0.9055 0.9634 0.8320

and the 95% posterior credibility intervals do not contain zero. This result indicates the parameter

is statistically significant. Hence, we may conclude that there is a strong and significant “leverage

effect” for the IBOVESPA returns data set.

The magnitude of the tail fatness is measured by the shape parameter ν in the SVML-t and

SVML-S models. In the SVML-CN case it is measured by δ. The posterior means of ν are almost

11 and 1.9 in the SVML-t and SVML-S models respectively. In the SVML-CN the posterior mean

of δ is 0.63, with γ as a scale factor, has a posterior mean of 0.97. These results seem to indicate

that the measurement error of the stock returns are better explained by heavy-tailed distributions.
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Figure 2: Density curves of the univariate normal, Student-t, slash and contaminated normal distributions using the

estimated tail-fatness parameter from the respective SVM model.

The reason why the estimated volatility of the SVML-SMN models is more persistent and less

variable can be understood by comparing the densities of these distributions. To illustrate the

tail behavior, we plot the normal (N (0, 1)) density, Student-t (T (0, 1, ν)) density with ν degrees

13



of freedom, the slash (S(0, 1, ν)) density with shape parameter ν and the contaminated normal

(CN (0, 1, δ, γ)). We set ν, δ and γ as the posterior mean of the respective SVML model (see Table

1 for details). Figure 2 depicts the four density curves (the Student-t, slash and contaminated

normal distributions have been rescaled to be comparable. See Wang and Genton, 2006). All

the distributions have fatter tails than the normal distribution. Note that the slash distribution

has a fatter tail than the other distributions that we have considered (see Figure 2 right panel).

Therefore, the SVML-SMN class of models considered here attributes a relatively larger proportion

of extreme return values to εt instead of ηt than the SVML-N model, making the volatility of the

SVML-t, SVML-S and SVML-CN models less variable. It also increases the persistence of these

models’ volatility.

This interpretation is confirmed by comparing the volatility estimates. In Figure 3, we plot the

smoothed mean of e
ht
2 . The posterior smoothed mean of e

ht
2 of the SVML-t, SVML-S and SVML-

CN models show smoother movements than that from the SVML-N model (solid line). Extreme

returns, such a during the Brazilian exchange rate crises in January 1999, make the differences

clear. The models with heavy tails accommodate possible outliers in a somewhat different way

by inflating the variance e
ht
2 by λ−1

t e
ht
2 . This can have a substantial impact, for instance, in the

valuation of derivative instruments and several strategic or tactical asset allocation topics.
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Figure 3: IBOVESPA data set. Posterior smoothed mean of e
ht
2
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To assess the goodness of the estimated models, we calculate the Bayesian predictive information

criteria, BPIC (Ando, 2006, 2007) and the logarithm marginal likelihood, log−ML (Chib, 1995;

Chib and Jeliazov, 2001). The BPIC criteria is defined as

BPIC = −2Eθ|y1:T
[log{p(y1:T | θ)}] + 2T b̂, (9)

where, b̂ is given by

b̂ ≈ 1
T

{
Eθ|y1:T

[log{p(y1:T | θ)p(θ)}]− log[p(y1:T | θ̂)p(θ̂)] + tr{J−1
T (θ̂)IT (θ̂)}+ 0.5q

}
. (10)

Here q is the dimension of θ, Eθ|y1:T
[.] denotes the expectation with respect to the posterior

distribution, θ̂ is the posterior mode, and

IT (θ̂) =
1
T

T∑

t=1

(
∂ηT (yt, θ)

∂θ

∂ηT (yt, θ)
∂θ′

)∣∣∣∣
θ=

ˆθ
,

JT (θ̂) =
1
T

T∑

t=1

(
∂2ηT (yt, θ)

∂θ∂θ′

)∣∣∣∣
θ=

ˆθ
,

with ηT (yt, θ) = log p(yt | y1:t−1, θ) + log p(θ)/T.

The marginal likelihood is defined as the integral of the likelihood with respect to the prior den-

sity of the parameter. Following Chib (1995), we estimate the logarithm of the marginal likelihood

m(y)

log m(y) = log p(y1:T | θ) + log p(θ)− log p(θ | y1:T ). (11)

The equality holds for any values of θ; but we use the posterior mode of θ̂ to obtain a stable

estimate of m(y). In the SVML-SMN, the log-likelihood function, log p(y1:T | θ), is estimated

using the auxiliary particle filter (see, e.g. Pitt and Shephard, 1999; Omori et al., 2007) with 10000

particles. The number of iterations for the reduced runs is set to 5000. Table 3 shows the BPIC

and the logarithm of the estimated marginal likelihoods. The BPIC criterion indicates the SVM-S

model relatively better among all the considered models, suggesting that the IBOVESPA return

data demonstrate sufficient departure from underlying normality assumptions. As expected, the

logarithm of the estimated marginal likelihood also selects the SVML-S model as the best.

The robustness aspects of the SVML-SMN models can be studied through the influence of out-

liers on the posterior distribution of the parameters. We consider only the SVML-t and the SVML-S
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Table 3: IBOVESPA return data set. DIC: deviance information criterion, BPIC: Bayesian predictive information

criterion.

BPIC log−ML

Model BPIC Ranking log Chib Ranking

SVML-N 8074.6 4 -4069.9 4

SVML-t 8076.6 2 -4044.6 3

SVML-S 8074.1 1 -3766.4 1

SVM-CN 8075.9 3 -3871.0 2

models for illustrative purposes. We study the influence of three contaminated observations on the

posterior estimates of mean and 95% credible interval of model parameters. The observations in

t = 1861, 1870 and 1887, which corresponds to July 5, 2005, July 28, 2005 and August 22, 2005,

respectively, are contaminated by kyt, where k varies from -6 and 6 with increments of 0.5 units.

In Figures 4 we plot the posterior mean and 95% credible interval of φ, σ2
η and ρ, respectively, for

the SVML-N, the SVML-t and the SVML-S models. Clearly, the SVML-S and the SVML-t models

are less affected by variations of k than the SVML-N model, meaning substantial robustness of the

estimates over the usual normal process in the presence of outlying observations.

4. Conclusions

This article presented a Bayesian implementation of a robust alternative to estimation in the

stochastic volatility in mean model with correlated errors, as an extension of the model proposed

by Koopman and Uspensky (2002), via MCMC methods. The SVML enabled us to investigate the

dynamic relationship between returns and their time-varying volatility. The Gaussian assumption

of the mean innovation was replaced by univariate thick-tailed processes, known as scale mixtures

of skew-normal distributions. We studied three specific sub-classes, viz. the Student-t, slash and

the contaminated normal distributions, and compared parameter estimates and model fit with

the default normal model. Under a Bayesian perspective, we constructed an algorithm based on

Markov chain Monte Carlo (MCMC) simulation methods to estimate all the parameters and latent

quantities in our proposed SVML-SMN model. We illustrated our methods through an empirical

application of the IBOVESPA return series, which showed that the SVML-S model provides better

fit than the SVML-N model in terms of parameter estimates, interpretation and robustness aspects.

The β2 estimate, which measures both the ex ante relationship between returns and volatility and
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Figure 4: Posterior mean (dashed line) and 95% credible interval (solid line) of fitting the SVML-N, SVML-t and

SVML-S models to the IBOVESPA data set. Top: φ, middle: σ2 and bottom: ρ. The observations which corresponds

to July 5, 2005, July 28, 2005 and August 22, 2005, respectively, are contaminated by kyt, where k varies from -6

and 6 with increments of 0.5 units.
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the volatility feedback effect, was found to be negative. The results are line with those of French

et al. (1987), who found a similar relationship between unexpected volatility dynamics and returns,

and confirm the hypothesis that investors require higher expected returns when unanticipated in-

creases in future volatility are highly persistent. This is consistent with our findings of higher

values of φ combined with larger negative values for the in-mean parameter. By the other hand,

as the posterior mean and 95% posterior credibility interval contains only negative values, we can

conclude that there is a strong and significant “leverage effect” for the IVOBESPA returns data

set.

Our SVML-SMN models showed considerable flexibility to accommodate outliers, however their

robustness aspects could be seriously affected by the prior of the ν parameter and the presence

of skewness. In this set-up, two natural extensions are still possible. The first would be to study

different objective priors for form parameter in the Student-t and slash models in the same spirit

of the works of Fonseca et al. (2008) and Salazar et al. (2009). The second would be to incorpo-

rate skewness and heavy-tailedness simultaneously using scale mixtures of skew-normal (SMSN)

distributions, as proposed in Lachos et al. (2010). Nevertheless, a deeper investigation of these

modifications is beyond the scope of the present paper, but provides stimulating topics for further

research.
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Appendix A: The Full conditionals

In this appendix, we describe the full conditional distributions for the parameters and the

mixing latent variables λ1:T of the SVML-SMN class of models.
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Full conditional distribution of β0, β1 and β2

Let mt and Vt be defined by

mt =





λ−1
t e

ht
2

ϕ
τ2+ϕ2 (ht+1 − α− φht), t < T,

0, t = T,

Vt =





λ−1
t eht ϕ

τ2+ϕ2 , t < T,

λ−1
t eht , t = T,

For parameters β0, β1 and β2, we set the prior distributions as: β0 ∼ N (β̄0, σ
2
β0

), β1 ∼ N(−1,1)(β̄1, σ
2
β1

),

β2 ∼ N (β̄2, σ
2
β2

). Then, the full conditionals are given by

β0 | y0:T ,h1:T , λ1:T , β1, β2 ∼ N (
bβ0

aβ0

,
1

aβ0

), (A.1)

β1 | y0:T ,h1:T , λ1:T , β0, β1 ∼ N (
bβ1

aβ1

,
1

aβ1

)I|β2|<1, (A.2)

β2 | y0:T ,h1:T , λ1:T , β0, β1 ∼ N (
bβ2

aβ2

,
1

aβ2

), (A.3)

where aβ0 =
∑T

t=1
1
Vt

+ 1
σ2

β0

, bβ0 =
∑T

t=1
wt
Vt

+ β̄0

σ2
β0

, aβ1 =
∑T

t=1
y2

t−1

Vt
+ 1

σ2
β1

, bβ1 =
∑T

t=1
ztyt−1

Vt
+ β̄1

σ2
β1

,

aβ2 =
∑T

t=1
e2ht

Vt
+ 1

σ2
β2

, bβ2 =
∑T

t=1
rteht

Vt
+ β̄2

σ2
β2

, wt = yt−β1yt−1−β2eht−mt, zt = yt−β0−β2eht−mt,

rt = yt − β0 − β1yt−1 −mt and I|β2|<1, an indicator variable.

Full conditional distribution of α, φ, ϕ and τ2

We assume the following prior’s distributions: α | τ2 ∼ N (α0, τ
2/q0), ϕ | τ2 ∼ N (ϕ0, τ

2/p0),

φ ∼ N(−1,1)(φ0, s
2
φ), τ2 ∼ GI(aτ/2, Sτ/2), where α0, ϕ0, φ0, s2

φ, aτ , Sτ , p0 e q0 are known hyper

parameters.

After some simples but tedious algebra, we have

α | . ∼ N (
Bα

Aα
,

τ2

Aα
), (A.4)

ϕ | . ∼ N (
Bϕ

Aϕ
,

τ2

Aϕ
), (A.5)

where Aα = q0 + 1+φ
1−φ + T − 1, Bα = α0q0 + (1 + φ)h1 +

∑T−1
t=1 kt, kt = ht+1 − φht − ϕ(yt − β0 −

β1yt−1−β2eht)λ
1
2
t e−

ht
2 , Aϕ = p0+

∑T−1
t=1 (yt−β0−β1yt−1−β2eht)2λte−ht , Bϕ = ϕ0p0+

∑T−1
t=1 ct(yt−

β0 − β1yt−1 − β2eht)λ
1
2
t e−

ht
2 and , ct = ht+1 − α − φht. In a similar way, the conditional posterior

of φ is given by

p(φ | .) ∝ Q(φ) exp
{
− Aφ

2

(
φ− Bφ

Aφ

)2}
, (A.6)
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where

Q(φ) =
√

1− φ2 exp{−1− φ2

2τ2
(h1 − α

1− φ
)2},

lt = ht+1 − α − ϕ(yt − β0 − β1yt−1 − β2eht)λ
1
2
t e−

ht
2 , Aφ = 1

s2
φ

+
∑T−1

t=1
h2

t
τ2 , Bφ = φ0

s2
φ

+
∑T−1

t=1
ltht
τ2

and I|φ|<1 is an indicator variable. As p(φ | h1:T , α, σ2
η) in (A.6) does not have closed form, we

sample from it by using the Metropolis-Hastings algorithm with truncated N(−1,1)(
bφ

aφ
,

σ2
η

aφ
) as the

proposal density. The conditional posterior of τ2 is IG(T1
2 , M1

2 ), where T1 = aτ + T + 1 and M1 =

(1−φ2)(h1− α
1−φ)2 +

∑T−1
t=1 (ct−ϕλ

1
2
t e−

ht
2 (yt−β0−β1yt−1−β2eht)2 +p0(ϕ−ϕ0)2 +q0(α−α0)2 +Sτ .

Once τ2 and ϕ are sampled, respectively, from their conditional posteriors, we can calculate ρ and

σ2 through σ2
η = τ2 + ϕ2 and ρ = ϕ/ση.

Full conditional of λt and ν

• SV-t case

As λt ∼ G(ν
2 , ν

2 ), the full conditional of λt is given by

p(λt | yt, yt−1, ht, ht+1, β0, β1, β2, ϕ, τ2, ν) ∝ λ
ν+1
2
−1

t e−
λt
2

[( τ2+ϕ2

τ2 )u2
t e−ht+ν]Q(λt), t < T,

(A.7)

where Qt(λt) = e[λ
1
2
t

ϕ

τ2 ute
−ht

2 (ht+1−α−φht)] and ut = yt − β0 − β1yt−1 − β2eht . From (A.7), the full

conditional of λt does not have closed form. We simulate from it using the Metropolis-Hastings

algorithm with proposal density G(ν+1
2 , 1

2 [( τ2+ϕ2

τ2 )u2
t e
−ht + ν]) . A proposed λ∗t is accepted com

probability a = min{1,
Q(λ∗t )

Q(λ
(i−1)
t )

}. For t = T , the full conditional of λT is G(ν+1
2 , 1

2 [u2
T e−hT + ν]).

We assume the prior distribution of ν as G(aν , bν)I2<ν≤40. Then, the full conditional of ν is

p(ν | λ1:T ) ∝

[
ν
2

]Tν
2

νaν−1e−
ν
2
[
∑T

t=1(λt−log λt)+2bν ]

[Γ(ν
2 )]T

I2<ν≤40. (A.8)

We sample ν by the Metropolis-Hastings acceptance-rejection algorithm (Tierney, 1994; Chib and

Greenberg, 1995). Let ν∗ denote the mode (or approximate mode) of p(ν | λ1:T ), and let `(ν) =

log p(ν | λ1:T ). As `(ν) is concave, we use the proposal density N(2,40)(µν , σ
2
ν), where µν = ν∗ −

`′(ν∗)/`′′(ν∗) and σ2
ν = −1/`′′(ν∗). `′(ν∗) and `′′(ν∗) are the first and second derivatives of `(ν)

evaluated at ν = ν∗. To prove the concavity of `(ν), we use the result of Abramowitz and Stegun

(1970), in which the log Γ(ν) can be approximated as

log Γ(ν) =
log(2π)

2
+

2ν − 1
2

log(ν)− ν +
θ

12ν
, 0 < θ < 1. (A.9)
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Taking the second derivative of `(ν) from (A.8) and using (A.9), we have that

`′′(ν) = − Tθ

3ν3
− (T + 2aν − 2)

2ν2
< 0,

because in practical applications T ≥ 2.

• SV-S case

Using the fact that λt ∼ Be(ν, 1), we have the full conditional of λt given as

p(λt | yt, yt−1, ht, ht+1, β0, β1, β2, ϕ, τ2, ν) ∝ λ
ν+ 1

2
−1

t e−
λt
2

[( τ2+ϕ2

τ2 )u2
t e−ht ]Q(λt)I0<λt<1, t < T,

(A.10)

where Qt(λt) = e[λ
1
2
t

ϕ

τ2 ute
−ht

2 (ht+1−α−φht)] and ut = yt − β0 − β1yt−1 − β2eht . From (A.10), the full

conditional of λt does not have closed form. We simulate from it using the Metropolis-Hastings

algorithm with proposal density that is λt ∼ G(0<λt<1)(ν + 1
2 , 1

2 [( τ2+ϕ2

τ2 )u2
t e
−ht ]), the right truncated

gamma distribution. For t = T , the full conditional of λT is G(ν + 1
2 ,

u2
T e−hT

2 ).

Assuming that a prior distribution of ν ∼ G(aν , bν), the full conditional distribution of ν is given

by

p(ν | h0:T , λ1:T ) ∝ νT+aν−1e−ν(bν−
∑T

t=1 log λt)Iν>1. (A.11)

Then, the full conditional of ν is Gν>1(T + aν , bν −
∑T

t=1 log λt), i.e. the left truncated gamma

distribution.

• SVM-CN case

Here λt is a discrete random variable and ν = (δ, γ)′. To sample from λt, we introduce an auxiliary

variable, St, such that P (St = 1) = δ and λt = γSt + 1− St. The full conditional of St is given by

p(St | δ, γ, ϕ, τ2, β0, β1, β2, ht, yt, yt−1) ∝ δSt(1− δ)1−Stγ
St
2

× e−
1
2
[( τ2+ϕ2

τ2 )e−ht (γSt+1−St)u2
t ]

× e[γ
St
2 ϕ

τ2 ut(ht+1−α−φht)e
−ht

2 ] t < T. (A.12)

That is, St | δ, γ, ϕ, τ2, β0, β1, β2, ht, yt, yt−1 has a Bernoulli distribution, where ut = yt − β0 −
β1yt−1 − β2eht . For t = T , we omit the last term in (A.12).

We assume that δ ∼ Be(δ0, δ1) and γ ∼ Be(γ0, γ1). Then, the full conditional of δ is given by

p(δ | γ,S1:T ) ∝ δδ0−1(1− δ)δ1−1
T∏

t=1

δSt(1− δ)1−St , (A.13)
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which is δ | γ,S1:T ∼ Be(δ∗0, δ
∗
1), where δ∗0 = δ0 +

∑T
t=1 St and δ∗1 = δ1 + T − ∑T

t=1 St. The full

conditional of γ is given by

p(γ | β0, β1, β2,S1:T ,h1:T ,y0:T ) ∝ (1− γ)γ1−1γγ0+
∑T

t=1
St
2
−1e−

γ
2

∑T
t=1(

τ2+ϕ2

τ2 )e−htStu2
t

× e
∑T−1

t=1 [γ
St
2 ϕ

τ2 ut(ht+1−α−φht)e
−ht

2 ], (A.14)

As (A.14) does not have closed form, we can sample from it by using the Metropolis-Hastings algo-

rithm. The the right truncated gamma distribution G0<γ<1(γ0 +
∑T

t=1
St
2 , 1

2

∑T
t=1(

τ2+ϕ2

τ2 )e−htStu
2
t )

can be used as a proposal density. A proposed γ∗ is accepted with probability aMHγ = min{1, Q(γ∗)
Q(γ(i−1))

},

where Q(γ) = (1 − γ)γ1−1e
∑T−1

t=1 [γ
St
2 ϕ

τ2 ut(ht+1−α−φht)e
−ht

2 ] and γ(i−1) denotes the previous iteration

value.

Appendix B: Some derivations of the Block sampler

First, we define

ds =
∂L

∂hs
= −1

2
+

(ys − µs)2

2Vs
+

(ys − µs)
Vs

∂µs

∂hs
+

(ys−1 − µs−1)
Vs−1

∂µs−1

∂hs

− φ
(hs+1 − α− φhs)

σ2
η

I(t + k < T ), s = t + 1, . . . , t + k, (B.1)

and

Q =




Mt+1 Nt+2 0 . . . 0

Nt+2 Mt+2 Nt+3 . . . 0

0 Nt+3 Mt+3
. . .

...
...

. . . . . . . . . Nt+k

0 . . . 0 Nt+k Mt+k




(B.2)

where

Ms = −E

[
∂2L

∂h2
s

]
=

1
2

+
1
Vs

(
∂µs

∂hs

)2

+
1

Vs−1

(
∂µs−1

∂hs

)2

+
φ2

σ2
η

I(t + k < T ), s = t + 1, . . . , t + k, (B.3)

Ns = −E

[
∂2L

∂hs∂hs−1

]
=

1
Vs−1

∂µs−1

∂hs−1

∂µs−1

∂hs
, s = 2, . . . , T, (B.4)
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with Nt+1 = 0. Next, we define

∂µs

∂hs
=





β2ehs + ρ
ση

λ
− 1

2
s e

hs
2

[
(hs+1−α−φhs)

2 − φ

]
, s = 1, . . . , T − 1,

β2ehs , s = T,

(B.5)

∂µs−1

∂hs
=





0, s = 1,

ρ
ση

λ
− 1

2
s−1e

hs−1
2 , s = 2, . . . , T.

(B.6)
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