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Abstract

In this work we develop Bayesian analysis based on the Jeffreys prior for the hyper-

bolic family of distributions. It is usually difficult to estimate the four parameters in

this class: improper prior distributions may lead to improper posterior distributions,

whereas proper prior distributions may dominate the analysis. In addition, maximum

likelihood estimation typically requires large sample sizes of the order of thousands of

observations to be reliable. We derive the Jeffreys prior for the hyperbolic family of

distributions. In addition, a simulation study shows that Bayesian methods based on

Jeffreys prior provide reliable point and interval estimators. Moreover, this simulation

study shows that Bayesian estimators compare favorably to maximum likelihood es-

timators. Finally, an application to real data shows that our Bayesian methodology

allows for reliable parameter estimation even for small datasets.
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1 Introduction

The hyperbolic is a flexible distribution for data that may have heavy tails and skew-

ness. The hyperbolic distribution heavy tails result from the fact that its log-density

is a hyperbola (Barndorff-Nielsen, 1977). Since its introduction by Barndorff-Nielsen

(1977), the hyperbolic distribution has been used with success in many areas of applica-

tion such as turbulence (Barndorff-Nielsen, 1979), biology (Blæsild, 1981) and finance

(Eberlein et al., 1998; Prause, 1999; Bauer, 2000; Bingham and Kiesel, 2001). Even

though the hyperbolic distribution allows for both skewness and heavy tails through

easily interpretable parameters, the task of parameter estimation is not trivial. Max-

imum likelihood estimation typically requires large sample sizes of the order of thou-

sands of observations to be reliable. In addition, improper prior distributions may lead

to improper posterior distributions, whereas proper prior distributions may dominate

the analysis. As a solution to the estimation problem, we derive here the Jeffreys

prior for the hyperbolic distribution. In addition, we show through a simulation study

that Bayesian methods based on this Jeffreys prior provide reliable point and interval

estimators even for small datasets.

In the context of robustness, Barndorff-Nielsen (1977) pointed out that the hy-

perbolic distribution can be represented as a normal-mean mixture with a general-

ized inverse Gaussian (GIG) as mixing distribution. More specifically, let Y |σ2 ∼

N(µ+βσ2, σ2) and σ2 ∼ GIG(1, α2−β2, δ2), where GIG(λ, φ, γ) has density given by

f(x;λ, φ, γ) =
(φ/γ)λ/2

2Kλ(
√
φγ)

xλ−1 exp
{
−1

2
(γx−1 + φx)

}
, (1)

where φ, γ ≥ 0, λ ∈ < and Kλ is the modified Bessel function of third-order and index

λ. For additional information on the GIG distribution, see Jørgensen (1982), Silva et al.

(2006) and references therein. Integrating σ2 out, we obtain that Y has a hyperbolic

distribution with density given by

fhyp(y;α, β, µ, δ) =

√
α2 − β2

2αδK1(δ
√
α2 − β2)

exp{−α
√
δ2 + (y − µ)2 + β(y − µ)}, y ∈ <,

(2)

2



where, α, β, µ e δ are parameters, satisfying |β| < α, µ ∈ < and δ > 0. The parameters

α and β determine the shape, where β is responsible for skewness; δ and µ are scale and

location parameters, respectively. Figure 1 presents the density function (2) for α = 2.5,

β ∈ {−2, 0, 2}, δ = 1 and µ = 0. When β is negative we obtain positive asymmetry,

when β is positive we obtain negative asymmetry and β = 0 implies a symmetric density

function. We use the notationHyp(α, β, µ, δ) to denote the hyperbolic distribution with

parameters α, β, µ and δ.

All the moments of the Hyp(α, β, µ, δ) have explicit expressions and, in particular,

the mean and the variance are

E(Y ) = µ+
βδ2

ξ

K2(ξ)
K1(ξ)

, (3)

var(Y ) = δ2

(
K2(ξ)
ξK1(ξ)

+
β2δ2

ξ2

[
K3(ξ)
K1(ξ)

−
(
K2(ξ)
K1(ξ)

)2
])

, (4)

where ξ = δ
√
α2 − β2. Note that when β = 0 the mean is simply µ. The mathematical

properties of these univariate distributions are well-known (see Blæsild, 1981). Blæsild

and Sørensen (1992) provide maximum likelihood methods to estimate parameters of

this model. The HyperbolicDist package within the R statistical environment imple-

ments maximum likelihood estimation based on a number of numerical maximization

methods.

Despite the nice properties of the hyperbolic distribution, difficulties arise in the

estimation of its parameters. More specifically, for some samples the likelihood function

is maximized when a combination of the parameters goes to infinity. As a consequence,

the MLE may not exist with positive probability. This probability of nonexistence

of the MLE is higher for smaller samples. In addition, for any finite sample size the

likelihood function does not vanish in the tails. As a result, Bayesian analysis based on

improper priors may lead to useless improper posterior distributions.

The problem of the likelihood function not vanishing in the tails also occurs for many

other classes of distributions. For example, this problem occurs for the skew-normal

distribution (Azzalini, 1985, 2005) and the Student-t distribution (Zellner, 1976). In

the context of Bayesian inference for these distributions, these problems have been

solved through the use of noninformative priors. For the skew-normal distribution,

Liseo and Loperfido (2006) have proposed a default Bayesian solution based on the
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reference prior for the parameters. For the Student-t distribution, Fonseca et al. (2008)

have proposed a default Bayesian solution based on the Jeffreys prior. The proposals

of Liseo and Loperfido (2006) and Fonseca et al. (2008) lead to valid proper posterior

distributions. Here we obtain a default Bayesian solution based on the Jeffreys prior

for the hyperbolic distribution. As we show in Section 4, our Bayesian proposal yields

estimation procedures with good frequentist properties.

The remainder of this paper is organized as follows. In Section 2 we discuss the

MLE difficulties associated with the hyperbolic model. In Section 3 we derive the

Jeffreys prior for the parameters of the hyperbolic distribution. Section 4 presents the

frequentist properties for the Bayesian and maximum likelihood estimators. Section 5

presents an application to real data that shows that our Bayesian methodology allows

for reliable parameter estimation even for small datasets. Final discussions and some

extensions are given in Section 6.

2 The hyperbolic model and MLE difficulties

Consider a random sample y = (y1, ..., yn) from the hyperbolic distribution with density

function given by Equation (2). Then the likelihood function is given by

L(α, β, µ, δ; y) =

{ √
α2 − β2

2αδK1(δ
√
α2 − β2)

}n
exp

{
−α

n∑
i=1

√
δ2 + (yi − µ)2 + β

n∑
i=1

(yi − µ)

}
.

(5)

We denote the model parameters by θ = (α, β, µ, δ)′.

Maximum likelihood estimation for the hyperbolic distribution is problematic since

several models are limiting or particular cases. For example, the normal distribution

N(µ, σ2) is a limiting case when β = 0, α→∞ and δ/α→ σ2. In addition, the Laplace

distribution is a limiting case when β = 0 and δ → 0.

Proposition 2.1 The likelihood function given in Equation (5) satisfies,

L(α, β, µ, δ; y) = O(1), as δ →∞, δ
α
→ σ2, β = 0, (6)

with L(α, β, µ, δ; y) →
∏n
i=1 φ(yi;µ, σ2), where φ(.;µ, σ2) is the normal density with

mean µ and variance σ2.
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Proof 2.1 When β → 0 we have that f(yi) → 1
2δK1(δα) exp{−α

√
δ2 + (yi − µ)2}.

Moreover, for x large K1(x) →
√

π
2x exp{−x} (Abramowitz and Stegun, 1972, p.

378, eq. 9.7.2). Thus for δ → ∞ and δ
α → σ2 we find f(yi) → 1√

2πσ2
exp{αδ −

α
√
δ2 + (yi − µ)2}. In addition, αδ − α

√
δ2 + (yi − µ)2 = −α2(yi−µ)2

(αδ+α
√
δ2+(yi−µ)2)

which

converges to −(yi−µ)2

2σ2 as δ →∞ and δ/α→ σ2.

Proposition 2.2 The likelihood function given in Equation (5) satisfies,

L(α, β, µ, δ; y) = O(1), as δ → 0, β = 0, (7)

with L(α, β, µ, δ; y) →
∏n
i=1 g(yi;α, µ), where g(.;α, µ) is the Laplace density with pa-

rameters α and µ.

Proof 2.2 When β → 0 we have that f(yi) → 1
2δK1(δα) exp{−α

√
δ2 + (yi − µ)2}.

Moreover, for x→ 0, K1(x)→ x−1 (Abramowitz and Stegun, 1972, p. 375, eq. 9.6.9).

Thus for δ → 0 and α finite constant we find f(yi)→ α
2 exp{−α|yi − µ|}.

To illustrate the consequences of Proposition 2.1 in terms of estimation, we have

simulated a dataset from Hyp(2, 0, 2, 1) with sample size n = 100. Figure 2(a) shows

a contour plot of the likelihood function for α and δ holding β and µ at their true

values. Unfortunately, the maximum of this likelihood function is located far from the

true values of α and δ. We have used the function hyperbFit(.) of the R-package Hy-

perbolicDist to compute the MLE of the parameters using three optimization methods:

Newton, quasi-Newton, and Nelder-Mead. Table 1 shows the results, that are far from

the true values of the parameters. The problem is not with the optimization methods,

but with the bad behavior of the likelihood function. Other authors such as for example

Barndorff-Nielsen and Blæsild (1981) and Eberlein and Keller (1995) have also noticed

this problematic behavior of the likelihood function. In the extreme case, the likelihood

may be maximized when a combination of the parameters goes to infinity and then the

MLE may not exist.

To shed light on how the likelihood function problematic behavior depends on sam-

ple size, we have computed the probability of nonexistence of the MLE of α for the

symmetric (β = 0) and asymmetric (β = 0.1α) cases. For both cases, we consider

sample sizes n ∈ {30, 50, 100, 200, 2000}, and parameter values δ = α, µ = 0, and
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α ∈ {0.5, 1, 2, 3, 5}. Tables 2 and 3 present the results for the symmetric and asym-

metric cases, respectively. Both cases lead to similar behavior with respect to the

probability of nonexistence of the MLE of α. More specifically, this probability in-

creases as α increases and decreases as the sample size n increases. Therefore, it seems

safe to use maximum likelihood estimation for datasets of size n = 2000 or larger, but

for smaller sample sizes the MLE does not seem to be adequate.

In a Bayesian context, the bad behavior of the likelihood function is also an issue and,

as a consequence, the choice of the prior distribution for the parameters is extremely

important. As a solution for the inference problems we propose the use of the Jeffreys

prior as a calibration for the likelihood function. Figure 2(b) shows, for the same

simulated dataset of Figure 2(a), the resulting posterior density for (α, δ) using the

Jeffreys prior that we derive in the next section. The Jeffreys prior corrects the bad

behavior of the likelihood function and leads to a posterior density located close to the

true parameters values.

3 Jeffreys prior

In this section, we derive the Jeffreys prior for the parameters of the hyperbolic dis-

tribution. As shown in Firth (1993), the Jeffreys prior works as a calibration tool for

the information provided by the likelihood function. In particular, inference for small

samples is possible using this approach as the Jeffreys prior compensates the fact that

the likelihood function in (5) does not vanish in the tails. As we shall see, this implies

very different inferences obtained using the frequentist and default Bayesian estimation

approaches for the parameters in this model, with results being in favor of the Bayesian

approach.

Theorem 3.1 The Jeffreys prior associated with model (5) is

P J(θ) ∝ |I(θ)|1/2, (8)

6



where I(θ) given by
α2δ4S1
ρ2 − δ2R1

ρ − 1
α2 −αβδ

4S1
ρ2 −β

α αδS1 + ρR1
αδ −

2αδR1
ρ − 2

αδ

δ2R1
ρ + β2δ4S1

ρ2 1 2βδR1
ρ − βδS1

α4ϕ2 − 2α4µϕ1 + α4µ2ϕ0 −δα4ϕ1 + µδα4ϕ0 + βρR1
δ − 2β

δ

δ2α4ϕ0 − ρ2R2
1

δ2 + 4ρR1
δ2 −

4
δ2


represents the Fisher expected information matrix, θ = (α, β, µ, δ), R1 = R1(ρ) = K2(ρ)

K1(ρ) ,

S1 = S1(ρ) = K3(ρ)
K1(ρ) −R

2
1(ρ) and ϕk(α, β, µ, δ) =

∫∞
−∞

yk

α2δ2+α2(y−µ)2
f(y|θ)dy.

Proof 3.1 Define ϑ = α
√
δ2 + (y − µ)2.

Using the property that E
[
∂
∂θi
logL(θ; y)

]
= 0, i = 1, 2, 3, 4, the first derivatives of

the log likelihood are given by

(a) ∂
∂α logL(θ; y) = − 1

α {ϑ− E[ϑ]}

(b) ∂
∂β logL(θ; y) = y − E[y]

(c) ∂
∂δ logL(θ; y) = −α2δ

{
1
ϑ − E

[
1
ϑ

]}
(d) ∂

∂µ logL(θ; y) = α2δ
{
y−µ
ϑ − E

[
(y−µ)
ϑ

]}
The Fisher information matrix is given by

Iij = E

{(
∂

∂θi
logL(θ; y)

)(
∂

∂θj
logL(θ; y)

)}
, for i, j = 1, . . . , 4.

Thus,

I11 = E
[(

∂
∂α logL(θ; y)

)2]
= 1

α2V ar (ϑ), which is obtained from the result E[(y −

µ)2] = δ2R1
ρ + β2δ4S1

ρ2
from (3) and (4)).

I33 = E

[(
∂
∂µ logL(θ; y)

)2
]

= α4(ϕ2 − 2µϕ1 + µ2ϕ0).

I44 = E
[(

∂
∂δ logL(θ; y)

)2]
= α4δ2V ar

(
1
ϑ

)
= α4δ2

{
ϕ0 − E2

[
1
ϑ

]}
, which follows

from the expectation of (c).

I13 = E
[(

∂
∂α logL(θ; y)

) (
∂
∂µ logL(θ; y)

)]
= −αCov

(
ϑ, y−µϑ

)
, which follows from the

expectation of y − µ in (3), (a) and (d).

I14 = E
[(

∂
∂α logL(θ; y)

) (
∂
∂δ logL(θ; y)

)]
= αδCov

(
ϑ, 1

ϑ

)
, which follows from the

expectation of (a) and (c).

I34 = E
[(

∂
∂µ logL(θ; y)

) (
∂
∂δ logL(θ; y)

)]
= −α4δCov

(
1
ϑ ,

y−µ
ϑ

)
=

−α4δ
{
ϕ1 − µϕ0 − E

[
1
ϑ

]
E
[y−µ

ϑ

]}
, which follows from the expectation of (c) and

(d).
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The terms I12 ,I22, I23, I24 of I were computed using direct Iij =

E
[
− ∂2

∂θi∂θj
logL(θ; y)

]
as they do not depend on y. �

Note that P J(θ) is not obtained in closed form and numerical Newton-Cotes meth-

ods are used to perform the integrations.

4 Frequentist properties

This section presents frequentist properties of the maximum likelihood estimator (MLE)

and of the posterior median (Bayesian estimator) of θ based on the Jeffreys prior pro-

posed here. We focus on the bias, the frequentist mean squared error (MSE) and the

frequentist coverage of 95% credible intervals for two different sample sizes, n = 50 and

n = 100. We have computed the bias, the MSE and the frequentist coverage via Monte

Carlo simulation. More specifically, for each true value of α ∈ {0.5, 1, 3}, β ∈ {0, 0.1α}

and δ ∈ {0.5, 3} and each sample size n ∈ {50, 100} we have simulated 1000 samples,

computed the two estimates and the credibility interval for each sample and then esti-

mated the bias, the MSE of each estimator and the frequentist coverage. The results

obtained when β = 0.1α are very similar to the results when β = 0 and are not pre-

sented here. In all simulations, we have assumed µ = 2. The MLE was obtained using

the Nelder-Mead method in the R-package HyperbolicDist.

A Metropolis-Hastings algorithm was used for the computation of the posterior

median and the credible intervals. We sample in blocks (β, µ) and (α, δ) since the

parameters are very correlated and the proposal distributions are µ(prop) ∼ N(µ(k), d2
1),

β(prop) ∼ TN(−α(k),α(k))(β
(k), d2

2), α(prop) ∼ TN(|β(k+1)|,∞)(α
(k), d2

3) and log(δ(prop)) ∼

N(log(δ(k)), d2
4), where TNA(µ, σ2) means the Gaussian distribution with location µ

and scale σ2 truncated to the region A. The variances d2
1, . . . , d

2
4 were tuned to give an

acceptance rate around 30%.

Figure 3 shows, for the four parameters in the model, the square root of the MSE

for each combination of (α, δ, n). As expected, the MSE decreases as the sample size

increases. Moreover, the MLEs of α and β have MSEs two orders of magnitude larger

than those of the competing Bayesian estimators. In addition, the MLEs of δ and µ

have much larger MSEs than the competing Bayesian estimators. Figure 4 shows the

absolute value of the bias of the maximum likelihood and Bayesian estimators. The
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MLE of µ has smaller bias, but the MLEs of α, β and δ have much larger bias than

the corresponding Bayesian estimators. Figure 5 shows the frequentist coverage, as

a function of the true value of α, of 95% credible intervals for α, β, δ and µ. The

performance of the credible intervals decreases for larger δ. Finally, the frequentist

coverage becomes closer to the nominal level as the sample size increases.

The use of the Jeffreys prior amends the bad behavior of the likelihood function,

and as a result the Bayesian estimator has much better frequentist properties than the

MLE for small sample sizes.

5 Illustrative example

The dataset used in this example corresponds to the size of gravels collected from a

sandbar in the Mamquam River, British Columbia, Canada. This dataset is available

with the HyperbolicDist package. Gravel sizes are determined by passing clasts through

templates of particular sizes. This gives a range in which the size of each clast lies. Sizes

(in mm) are then converted into psi units by taking the base 2 logarithm of the size.

The midpoints specified are the midpoints of the psi unit ranges, and counts gives the

number of observations in each size range. The classes are of length 0.5 psi units.

There are 3574 observations as described in Rice and Church (1996). Table 4 shows the

maximum likelihood estimates of the model parameters obtained using the following

methods implemented in The HyperbolicDist Package: Quasi-Newton, Nelder and Mead

and Newton Raphson.

It is worth pointing out that the estimates obtained via the three alternative op-

timization methods are very similar, mainly due to the fact that the dataset is very

large. A relevant question is: what would happen if these methods are applied to a

small dataset? In order to answer this question we next present some results using a

subset of the original data (Figure 6).

Firstly, we have obtained a subsample (n = 200) from the original dataset

(n = 3574). The sampling was done by dividing the domain of the original data in

subintervals and by sampling observations in each subinterval with probability equal

to the relative frequency observed in each subinterval. Next, we compare the estimates

obtained using maximum likelihood estimation and the posterior median (MD[θ|y])
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obtained using the proposed Jeffreys prior. The results are presented in Table 5.

Note that the Bayesian estimates are very good indeed. For instance, the posterior

median obtained using the small dataset is very similar to the MLE obtained using the

complete dataset. This can be seen in Figure 7. On the other hand, the maximum

likelihood estimates obtained using only 200 observations have very bad performance

when compared to the estimates obtained using the complete dataset. This exam-

ple illustrates the superiority of the proposed Bayesian approach in the estimation of

parameters of the hyperbolic distribution when the sample size is small.

6 Discussion

In this paper we have developed Bayesian analysis for the hyperbolic family of dis-

tributions using the noninformative Jeffreys prior. We have shown that our proposed

methodology solves the problems associated with the bad behavior of the likelihood

function. Moreover, a simulation study has shown that, when compared to the maxi-

mum likelihood estimator, our Bayesian estimator is superior.

Barndorff-Nielsen and Blæsild (1981) raised three relevant questions that we answer

in our paper. Their first question was "For what sample size it is reasonable to consider

a 4 parameter distribution?" For the hyperbolic distribution, the answer depends on

which estimation method is used. Whereas the MLE needs a sample size of the order

of thousands to be reliable, our Bayesian approach based on the Jeffreys prior provides

reliable results with sample size as small as 50. Their second question was "Which

parametrization of the distribution gives the most tractable form of the loglikelihood?"

The second question suggests reparametrization in order to achieve tractability of the

likelihood function. This is not an issue in our proposed Bayesian analysis because the

Jeffreys prior is invariant under reparametrization. Their third question was "Which

numerical procedure is optimal?" In the case of small samples, no numerical procedure

will save the MLE; the problem is not the numerical optimization procedure but the bad

behavior of the likelihood function. Conversely, for the Bayesian analysis we propose

the MCMC algorithm we briefly describe in Section 4 works well even for small samples.
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θ Newton Q-Newton Nelder-Mead

α = 2 27.4663 21.1749 27.4605

β = 0 -0.4910 -13.4426 0.1944

µ = 2 2.4747 9.5139 1.8321

δ = 1 25.6837 9.0368 25.6855

Table 1: Maximum likelihood estimates for θ = (α, β, µ, δ) obtained using 100 observations

simulated from the Hyp(α, β, µ, δ) with α = 2, β = 0, µ = 2 and δ = 1.

α

0.5 1 2 3 5

30 0.214 0.347 0.524 0.585 0.647

50 0.085 0.168 0.416 0.527 0.601

n 100 0.022 0.061 0.290 0.417 0.547

200 0.000 0.006 0.159 0.301 0.463

2000 0.000 0.000 0.000 0.015 0.182

Table 2: Probability of nonexistence of the maximum likelihood estimator of α. The sample

with size n was generated from Hyp(α, β, µ, δ) with β = 0, µ = 0 and δ = α.

α

0.5 1 2 3 5

30 0.199 0.306 0.517 0.558 0.597

50 0.091 0.169 0.409 0.505 0.535

n 100 0.016 0.057 0.269 0.423 0.524

200 0.001 0.010 0.144 0.309 0.472

2000 0.000 0.000 0.001 0.016 0.237

Table 3: Probability of nonexistence of the maximum likelihood estimator of α. The sample

with size n was generated from Hyp(α, β, µ, δ) with β = 0.1α, µ = 0 and δ = α.
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θ Newton Q-Newton Nelder-Mead

α 5.619 5.402 5.618

β -3.908 -3.706 -3.907

δ 2.340 2.325 2.340

µ 7.754 7.682 7.754

Table 4: Maximum likelihood estimates in the model Hyp(α, β, δ, µ) using the complete

Mamquam river dataset with n = 3574 observations.

θ SD[θ|y] MD[θ|y] q0.025 q0.975 N Q-N N-M

α 1.3364 3.7802 1.9358 6.7346 31446.898 44.691 63.980

β 1.126 -2.4233 -5.0103 -1.0207 -31445.088 -42.916 -62.186

δ 0.8305 1.7831 0.8251 3.8229 0.048 1.201 1.032

µ 0.5989 7.1576 6.2404 8.5026 10.071 9.694 9.827

Table 5: Posterior distribution summary and maximum likelihood estimates for the model

Hyp(α, β, δ, µ), using a subsample of 200 observations from the Mamquam river dataset.
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Figure 1: Density function as presented in (2) for α = 2.5, β ∈ {−2, 0, 2}, δ = 1 and µ = 0.

(a) Likelihood function. (b) Posterior density.

Figure 2: Contour plots of the (a) likelihood function and (b) posterior density for (α, δ),

holding β and µ at their true values, for a dataset of size n = 100 simulated from model (2)

with α = 2, β = 0, δ = 1 and µ = 2.
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Figure 3: Square root of the mean squared error for the maximum likelihood (MLE) and

Bayesian (OB) estimators of α, β, δ and µ when β = 0.
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(a) |Bias(α̂)|, δ = 0.5. (b) |Bias(α̂)|, δ = 3.
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(c) |Bias(β̂)|, δ = 0.5. (d) |Bias(β̂)|, δ = 3.
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Figure 4: Absolute value of the bias for the maximum likelihood (MLE) and Bayesian

estimators (OB) of α, β, δ and µ when β = 0.
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(a) Coverage(β̂), δ = 0.5. (b) Coverage(β̂), δ = 3.
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Figure 5: Frequentist coverage, as a function of the true value of α, of 95% credible intervals

for α, β, δ and µ when β = 0.
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(a) Complete dataset. (b) Subsample of 200 observations.

Figure 6: Size of small stones at Mamquam river.

(a) Marginal posterior of α. (b) Marginal posterior of β.

(c) Marginal posterior of δ. (d) Marginal posterior of µ.

Figure 7: Histograms of the marginal posterior distribution for the parameters in the model

obtained using a subsample of size 200. The vertical lines represent the estimates obtained

for the complete dataset using the Quasi-Newton, Nelder-Mead and Newton methods.
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