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Abstract

We develop objective Bayesian analysis for the linear regression model with random errors

distributed according to the exponential power distribution. More specifically, we derive

explicit expressions for three different Jeffreys priors for the model parameters. We show

that only one of these Jeffreys priors leads to a proper posterior distribution. In addition,

we develop fast posterior analysis based on Laplace approximations. Moreover, we show

that our proposed Bayesian analysis compares favorably to a posterior analysis based on a

competing noninformative prior. Finally, we illustrate our methodology with applications of

the exponential power regression model to two different datasets.

Key words: Bayesian inference; exponential power errors; frequentist properties; Jeffreys

prior; robustness.

1 Introduction

The exponential power is a flexible distribution for errors of regression models that may have tails

either lighter (platykurtic) or heavier (leptokurtic) than Gaussian. In addition, the use of the

exponential power distribution reduces the influence of outliers and consequently increases the

robustness of the analysis (Box and Tiao, 1962; West, 1984; Liang et al., 2007). While leptokur-

tic distributions automatically protect against outliers, platykurtic distributions may occur as a
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result of truncation. Finally, the EP distribution is especially attractive because it includes the

normal distribution as a special case and allows continuous variation from normality to nonnor-

mality. Despite the importance of the EP distribution, there is no literature on objective priors

for regression models with EP errors.

In this work we develop objective Bayesian analysis for regression models with independent

EP errors. More specifically, we derive explicit expressions for three different Jeffreys priors and

we show that only one of these Jeffreys priors leads to a proper posterior distribution. Moreover, a

Monte Carlo study shows that our proposed Bayesian approach compares favorably to a posterior

analysis based on a competing noninformative prior in terms of coverage of credible intervals and

relative mean squared error. This good frequentist behavior of our objective Bayesian procedure

has also been found in objective Bayesian analyses for other models such as, for example, in the

analysis of elapsed times in continuous-time Markov chains (Ferreira and Suchard, 2008).

The EP distribution has been studied and popularized by Box and Tiao (1992) in the context

of robustness studies. The EP density is given by

f(y|µ, σp, p) =
[
2p1/pσpΓ(1 + 1/p)

]−1
exp

[
−(pσpp)

−1|y − µ|p
]
, −∞ < y <∞, (1)

where p > 1, −∞ < µ <∞ and σp > 0. The EP distribution is characterized by three parameters:

(i) µ = E(y), the location parameter, (ii) σp = [E(|y − µ|p)]1/p, the scale parameter and (iii) p,

the shape parameter. The scale parameter σp is also called power deviation of order p (Vianelli,

1963) and can be seen as a variability index that generalizes the standard deviation. Moreover,

the kurtosis, denoted here by κ, is directly related to p since we have κ = Γ(1/p)Γ(5/p)/(Γ(3/p))2

and therefore the shape parameter is linked to the thickness of the tails. For example, the EP

distribution describes leptokurtic distributions if p < 2 (κ > 3) and platykurtic distributions if

p > 2 (κ < 3). Some especial cases of the EP distribution are the Laplace distribution (p = 1),

the normal distribution (p = 2) and, when p → ∞, the uniform distribution on the interval

(µ− σp, µ+ σp) (e.g., see Box and Tiao, 1992).

Bayesian procedures for regression models with EP errors have received little attention in the

literature. In particular, no noninformative priors for the model parameters have been published

to date. Box and Tiao (1992) studied the EP model from a Bayesian perspective in the context of

robustness of regression models. Achcar and Pereira (1999) have considered mixtures of regression
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models with EP errors. In a different context, Choy and Smith (1997) used the EP distribution as

a prior for a location parameter of a Gaussian likelihood model. Finally, when using Markov chain

Monte Carlo (MCMC) to implement posterior analysis, one can explore representations of the EP

distribution as a scale mixture of normals (West, 1987) or as a scale mixture of uniforms (Walker

and Gutiérrez-Peña, 1999). Conversely, here we implement posterior analysis by using Laplace

approximations and Newton-Cotes rules. As a result, when compared to MCMC alternatives our

posterior analysis is much faster.

The remainder of the paper is organized as follows. Section 2 presents the EP regression model.

Section 3 derives the Jeffreys-rule prior and two forms of the independence Jeffreys priors, and

shows that only one of these priors leads to a proper posterior distribution. Section 4 studies

frequentist properties of the Bayesian inferences based on our proposed prior and on a competing

noninformative prior. Two applications illustrating leptokurtic and platykurtic behavior of the

regression errors are presented in Section 5. Section 6 presents closing remarks and discussion.

2 The EP regression model

Consider the linear regression model in which an n-vector of observations y = (y1, . . . , yn)′ satisfies

y = xβ + ε, (2)

where ε = (ε1, . . . , εn)′ is the error vector such that ε1, . . . , εn are independent and identically

distributed according to the exponential power distribution with location zero, scale parameter σp

and shape parameter p. Here x = (x1, . . . , xn)′ is the n × k matrix of explanatory variables and

β = (β1, . . . , βk)
′ ∈ Rk is the vector of regression coefficients.

Here we reparameterize the model in a fashion similar to Zhu and Zinde-Walsh (2009). More

specifically, we define σ = p1/pσpΓ(1 + 1/p) and obtain the likelihood function

L(θ; y, x) =
1

2nσn
exp

[
−

n∑
i=1

(
Γ(1 + 1/p)|yi − x′iβ|

σ

)p]
. (3)

Thus, the log-likelihood function is given by

l(θ; y, x) = −n log 2− n log σ −
n∑
i=1

[
Γ(1 + 1/p)|yi − x′iβ|

σ

]p
. (4)

We denote the model parameters by θ = (β, σ, p) ∈ Rk × (0,∞)× (1,∞).
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3 Jeffreys priors

We derive here three possible Jeffreys priors (Jeffreys, 1961) for the parameters of the exponential

power regression model. The first is the Jeffreys-rule prior, given by π(θ) ∝
√

det I(θ), where I(θ)

is the Fisher information matrix with (i, j) entry given by

{I(θ)}ij = EY |θ

[
− ∂2

∂θi∂θj
l(θ; y, x)

]
, θ1 = β, θ2 = σ, θ3 = p,

where l(θ; y, x) is given by (4).

The other priors are two forms of the independence Jeffreys prior. Jeffreys (1961) noted that

for multi-parameter problems the independence Jeffreys prior may provide better results than the

Jeffreys-rule prior. More specifically, an independence Jeffreys prior is obtained by partitioning

the parameter vector in groups of parameters. Then, for each group of parameters we compute

a prior by applying Jeffreys-rule prior as if the other parameters were fixed. Finally, the joint

independence Jeffreys prior is the product of the priors for the different groups. It is important to

note that different groupings may lead to different independence Jeffreys priors. Here we consider

independence Jeffreys priors corresponding to two groupings: πI1(θ) associated with the grouping

{(β), (σ, p)}; and πI2(θ) associated with the grouping {(β), (σ), (p)}.

As we show below, the three priors we consider belong to the class of improper prior distribu-

tions given by

π(θ) ∝ π(p)

σa
, (5)

where a ∈ R is a hyperparameter and π(p) is the ’marginal’ prior of the shape parameter p.

The following proposition gives the Fisher information matrix for the EP regression model.

Proposition 1 For y = (y1, . . . , yn), the Fisher information matrix I(θ) with elements φij given

by φij = Ey|θ

[
− ∂2

∂θi∂θ′j
l(θ; y, x)

]
, with φij = φji and θj the jth element of θ = (β, σ, p), is:

I(θ) =


1
σ2 Γ(1

p
)Γ(2− 1

p
)
∑n

i=1 xix
′
i 0 0

0 np
σ2 − n

σp

0 − n
σp

n
p3

(1 + 1
p
)Ψ′(1 + 1

p
)

 .
where Ψ(α) ≡ Γ′(α)/Γ(α) and Ψ′(α) ≡ ∂Ψ(α)/∂α are the digamma and trigamma functions,

respectively.
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Proof. This follows as a consequence of Proposition 5 of Zhu and Zinde-Walsh (p. 90, 2009). �

The following theorem provides the Jeffreys-rule prior and two independence Jeffreys priors

for the parameters of the EP regression model.

Theorem 1 Consider the EP regression model given in (4). Then, the independence Jeffreys

priors based on the groupings {(β), (σ, p)} and {(β), (σ), (p)}, and the Jeffreys-rule prior for θ

denoted by πI1(θ), πI2(θ), and πJ(θ), respectively, are of the form (5) with

a = 1, πI1(p) ∝ p−1

[(
1 +

1

p

)
Ψ′
(

1 +
1

p

)
− 1

]1/2

, (6)

a = 1, πI2(p) ∝ p−3/2

[(
1 +

1

p

)
Ψ′
(

1 +
1

p

)]1/2

, (7)

a = k + 1, πJ(p) ∝
[
Γ

(
1

p

)
Γ

(
2− 1

p

)]k/2
πI1(p). (8)

Proof. See the Appendix. �

A prior of the form (5) leads to a proper posterior distribution if and only if∫ ∞
1

LI(p; y)π(p)dp <∞, (9)

where LI(p; y), the integrated likelihood for p, is given by

LI(p; y) ∝
∫
Rk

∫ ∞
0

L(β, σ, p; y)σ−adσdβ.

The following two lemmas give the tail behavior of the marginal priors for p given in Theorem 1

and of the integrated likelihood for p, providing the key to determining whether the corresponding

posterior distributions are proper.

Lemma 1 The marginal priors for p given in Theorem 1 are continuous functions in [1,∞) and

are such that πI1(p) = O(p−1), πI2(p) = O(p−3/2), and πJ(p) = O(p(k−2)/2) as p→∞.

Proof. Direct inspection shows that πI1(p), πI2(p), and πJ(p) are continuous functions in [1,∞).

Their behavior when p → ∞ follows from the fact that Ψ′
(

1 + 1
p

)
→ 1.6449 and Γ

(
1
p

)
= O(p)

as p→∞. �
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Lemma 2 Provided that n > k + 1 − a, the integrated likelihood for p under the class of priors

(5) is a continuous function in [1,∞) and is such that LI(p; y) = O(1) as p→∞.

Proof. See the Appendix. �

The following proposition establishes that among the three Jeffreys priors considered above,

only the independence Jeffreys prior πI2 yields a proper posterior distribution.

Proposition 2 The independence Jeffreys prior πI1 given in (6) and the Jeffreys-rule prior πJ

given in (8) lead to improper posterior distributions. Moreover, provided that n > k + 1 − a, the

independence Jeffreys prior πI2 given in (7) yields a proper posterior distribution.

Proof. These follow directly from condition (9), and Lemmas 1 and 2. �

Figure 1 shows the effect of the proposed independence Jeffreys prior πI2 in the analysis of

a simulated sample of size 30. As Figure 1 shows, the proposed prior calibrates the likelihood

function and leads to a better behaved posterior density.

σ

p

0.5 1.0 1.5 2.0

2
4

6
8

10
12

*

σ

p

0.5 1.0 1.5 2.0

2
4

6
8

10
12

*

(a) (b)

Figure 1: (a) Contour plot of the likelihood function for (σ, p) considering a data set of size

n = 30 with parameters β = 0, σ = 1 and p = 1.8. (b) Contour plot of the joint posterior

distribution of (σ, p) based on the proposed prior. The star symbol ∗ indicates the position of the

true value.

We have implemented posterior analysis based on the independence Jeffreys prior πI2(θ). More

specifically, we obtain marginal posterior densities, posterior expectations, and credible intervals
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using a combination of Laplace approximations and Newton-Cotes integration. Our deterministic

numerical integration implementation allows posterior analysis that is fast and precise.

4 Computational details

This section presents the computational details of our implementation of a fast posterior analy-

sis for the EP regression model. More specifically, we base our implementation on the Laplace

approximation of integrals (Tierney and Kadane, 1986) and on Newton-Cotes integration (Press

et al., 2007). For simple notation, density approximations obtained via Laplace and Newton-Cotes

methods are indicated by the superscripts LA and NC, respectively. Throughout this section we

consider a prior of the form (5).

First, we note that σ can be integrated out analytically. More specifically, integrating out σ

we obtain the integrated likelihood function for (β, p)

LI(β, p; y) =

∫ ∞
0

L(β, σ, p; y)π(σ)dσ

∝ p−1Γ

(
n+ a− 1

p

){
Γ

(
1 +

1

p

)}−(n+a−1)
{

n∑
i=1

|yi − x′iβ|p
}−n+a−1

p

. (10)

Based on the integrated likelihood function (10), the marginal posterior densities for p, βl

(l = 1, . . . , k) and σ are given by:

π(p|y) ∝
∫
LI(β, p; y)π(p)dβ, (11)

π(βl|y) ∝
∫
LI(βl, β

(−l), p; y)π(p)dβ(−l) dp, (12)

π(σ|y) ∝
∫
π(σ|p, β, y)LI(β, p; y)π(p)dβ dp, (13)

where β(−l) is a (k − 1)-dimensional vector without the element βl.

We can apply Laplace’s approximation to (11) if we are able to compute first and second

derivatives and maximize the integrand. More specifically, for a given p, let β̂ = β̂(p) maxi-

mize the function LI(β, p; y)π(p), and let Σ̂(p) be minus the inverse of the Hessian of h(β̂, p) =

(logLI(β̂, p; y)+log π(p))/n. Hence, applying Laplace’s approximation to the integral of expression

(11) we obtain

πLA(p|y) ∝
(
|Σ̂(p)|

)1/2

exp{nh(β̂, p)}. (14)
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The computation of Σ̂(p) becomes numerically unstable for values of p close to 1. In this case,

we approximate (11) using the Newton-Cotes method, which yields

πNC(p|y) ∝
∑
j

LI(βj, p; y)π(p)∆β
j , (15)

where the sum is over values of β with volume weights ∆β
j . Usually, approximation (14) is much

faster to compute then approximation (15). Thus, when Σ̂(p) can be computed the approximation

(14) is preferred.

Using Laplace’s method to approximate integrals with respect to p is much more delicate.

In particular, it is often the case that the marginal posterior density of p is not log-concave as

illustrated by Figure 4b in the application of Section 6.1. Thus, to obtain an approximation to

the marginal posterior density of each element of β, i.e. βl (l = 1, . . . , k), we use Newton-Cotes

method. Applying this method to expression (12) we obtain

πNC(βl|y) ∝
∑
j

LI(βl, β
(−l)
j , pj; y)π(pj)∆

β(−l),p
j ,

where the sum is over values of (β(−l), p) with volume weights ∆β(−l),p
j .

Finally, we note the fact that the full conditional density of σ is

π(σ|p, β, y) = pσp−1IG

(
σp

∣∣∣∣∣ (n+ a− 1)p−1, [Γ(1 + p−1)]p
n∑
i=1

|yi − x′iβ|

)
,

where IG(s|a, b) denotes the density function of an Inverse-Gamma distribution with parameters

a and b evaluated at s. Using this full conditional density, we approximate (13) by

πNC(σ|y) ∝
∑
j

π(σ|pj, βj, y)LI(βj, pj; y)π(pj)∆
β,p
j ,

where the sum is over values of (β, p) with volume weights ∆β,p
j .

5 Frequentist properties

This section compares frequentist properties of Bayesian procedures based on the objective prior

πI2 and based on a competing noninformative prior that we denoted by πU . More specifically,
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Figure 2: Frequentist coverage, as a function of p, of 95% HPD credible intervals for p and σ

based on the objective prior πI2 (solid line) and the noninformative prior πU (dashed line). Sample

sizes: n = 30, 50 and 100. Horizontal line indicates the 95% nominal level.

the prior πU is of the form (5) with a = 1 and πU(p) ∝ 1 such that 1 < p < 10. The uniform

prior πU(p) reflects lack of information about p, and the resulting joint prior πU(θ) yields a proper

posterior distribution. We use as Bayesian estimators the posterior modes and compare them

using the square root of the frequentist relative mean squared error. In addition, we investigate

the frequentist coverage of the 95% highest posterior density (HPD) credible intervals.

To compute the frequentist properties of the several procedures, we have simulated 1500

datasets for each set of parameter and sample size specifications. More specifically, we have

considered three sample sizes: n = 30, n = 50 and n = 100. Moreover, for p equal to one of

several values ranging from 1 to 3 we have generated samples considering k = 2, xi = (1, x1i),

x1i ∼ N(2, 1), β = (1.5,−3), and σ = 1.

Figure 2 shows, as a function of p, the frequentist coverage (FC) of 95% HPD credible intervals
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Figure 3: Square root of the relative mean squared error, as a function of p, of estimators of p

(left panel) and σ (right panel) based on the independence Jeffreys prior πI2 (solid line) and prior

πU (dashed line) for n = 30 (circle), n = 50 (square) and n = 100 (triangle).

for p and σ. As expected, when the sample size increases the behavior of the credible intervals

based on the two priors becomes more similar in terms of frequentist coverage. Moreover, when

we consider credible intervals for σ with sample sizes equal to 30 or 50 the πI2-based credible

intervals have frequentist coverage slightly closer to the nominal level. Finally, for all the sample

sizes we consider the πI2-based credible intervals for p have frequentist coverage overall closer to

the nominal level.

Figure 3 shows, as a function of p, the square root of the relative mean squared error (RMSE),√
MSE(θ̂)/θ, for estimators of p and σ. As expected, the RMSE decreases as the sample size

increases. In addition, the behavior of the πI2- and πU -based estimators becomes more similar in

terms of RMSE as the sample size increases. For the estimation of σ, the πI2-based estimator is

better when p < 2 and the πU -based estimator is better when p > 2. For the estimation of p, in

the range of values we consider the πI2-based estimator provides uniformly better results.
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6 Applications

We illustrate our objective Bayesian methodology for exponential power regression models with

two applications. The first application considers a dataset previously analyzed by Butler et al.

(1990) on excess rate of return for the Martin Marietta company. The second application uses a

dataset previously analyzed by Levine et al. (2006) to study the relationship between profits at

the box office and number of sold home videos.

6.1 Excess returns for Martin Marietta company

Here we consider 60 observations from the Martin Marietta company collected over a period of 5

years on a monthly basis, from January 1982 to December 1986. This dataset has been previously

analyzed by Butler et al. (1990) and DiCiccio and Monti (2004). The variables of interest are

the excess rate of return for the Martin Marietta company (y) and the index for the excess rate

returns (x) for the New York stock exchange (CRSP). The scatterplot of the data (Figure 4(a))

shows one very extreme observation and thus indicates that it may not be appropriate to assume

Gaussian errors.
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Figure 4: Martin and Marietta data set. (a) Scatterplot of the data and fitted EP regression

model. (b) Marginal posterior densities for p (Vertical dashed lines indicate the 95% HPD credible

interval).
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We have fitted the exponential power regression model to these data. Table 1 shows posterior

summaries for each parameter: posterior mode, posterior median and 95% HPD credible intervals.

In particular, the 95% credible interval for p, equal to (1.000, 1.314), is completely contained in

the interval (1.0, 2.0) and thus strongly indicates a leptokurtic distribution for the errors. This is

further confirmed by the marginal posterior density for p presented in Figure 4(b): the density is

a decreasing function of p and the posterior mode of p is equal to 1.

Table 1: Martin and Marietta data set. Posterior summaries based on the independence Jeffreys

prior πI2 .

Parameter Median Mode 95% C.I.

β1 -0.006 -0.006 (-0.027, 0.014)

β2 1.327 1.295 (0.891, 1.844)

σ 0.064 0.062 (0.047, 0.085)

p 1.092 1.000 (1.000, 1.314)

6.2 Sold home videos vs. profits at the box office

Figure 5(a) shows the scatterplot of a dataset previously analyzed by Levine et al. (2006) to study

the relationship between the number of sold home videos in thousands (videos: y) and the profits

at the box office in million of dollars (gross: x) for a sample of 30 movies. A preliminary analysis

with a Gaussian regression model yields residuals with kurtosis equal to 2.25 and thus suggests a

platykurtic behavior.

We have fitted a linear regression model assuming the EP distribution for the errors. Figure

5(b) shows the marginal posterior density for p. While the prior probability of p being greater

than 2 is about 0.33, the posterior probability increases to 0.68. Thus, the data analysis provides

some evidence of platykurtic behavior. Moreover, as the prior for p is proper we can use the Bayes

Factor for model comparison (Kass and Raftery, 1995). The Bayes factor for the regression model

with EP errors against the Gaussian regression model is 190.44 and indicates strong evidence in

favor of the EP regression model.
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Figure 5: Videos data set: (a) Scatterplot of the data and fitted EP regression model. (b)

Marginal posterior densities for p (Vertical dashed lines indicate the 95% HPD credible interval).

7 Discussion

We have developed objective Bayesian analysis for the exponential power regression model. In ad-

dition, we have developed computational methods based on Laplace’s method and Newton-Cotes

integration to approximate marginal posterior densities of the EP regression model parameters.

This computational methodology allows fast and precise posterior analysis. Finally, when com-

pared with procedures based on a uniform noninformative prior for the shape parameter, our

proposed Bayesian procedures have better frequentist properties.

Our finding that for the EP regression model the Jeffreys-rule prior leads to an improper pos-

terior distribution whereas an independence Jeffreys prior leads to a proper posterior distribution

is quite surprising. When there is any posterior propriety issue, usually either the independence

Jeffreys prior leads to an improper posterior while the Jeffreys-rule prior leads to a proper pos-

terior (e.g., Berger et al., 2001; Ferreira and De Oliveira, 2007), or both lead to an improper

posterior (e.g., Wasserman, 2000). In contrast, and to the best of our knowledge, the EP regres-

sion model we consider is the only known example to date where the Jeffreys-rule prior leads to an

improper posterior distribution whereas an independence Jeffreys prior leads to a proper posterior

distribution.
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Appendix

Proof of Theorem 1. Using the results of Proposition 1 we have that

- For independence Jeffreys prior πI1(θ): marginal priors for β and (σ, p) are independent a priori

such that πI1(β, σ, p) = πI1(β)πI1(σ, p) and

πI1(σ, p) ∝
√
IσσIpp − I2

σp ∝
1

σp

[(
1 +

1

p

)
Ψ′
(

1 +
1

p

)
− 1

]1/2

,

πI1(β) ∝
√

det[Iββ] ∝ 1.

- For independence Jeffreys prior πI2(θ): let us consider independence Jeffreys prior such that

πI2(θ) ∝ πI2(β)πI2(σ)πI2(p), that is, taking each of these parameters as independent. Then,

from the Fisher information matrix, πI2(β) ∝ 1, πI2(σ) ∝ σ−1 and πI2(p) ∝ p−3/2(1 +

p−1)1/2{Ψ′(1 + p−1)}1/2. Thus,

πI2(β, σ, p) ∝ 1

σp3/2

[(
1 +

1

p

)
Ψ′
(

1 +
1

p

)]1/2

.

- For Jeffreys-rule prior: πJ(β, σ, p) ∝
√

det[I(θ)] =
√
IσσIpp − I2

σp

√
det[Iββ] where det[Iββ] ∝[

1
σ2 Γ

(
1
p

)
Γ
(

2− 1
p

)]k
. Therefore,

πJ(β, σ, p) ∝ 1

σk

[
Γ

(
1

p

)
Γ

(
2− 1

p

)]k/2
πI1(σ, p).

�

Proof of Lemma 2.

14



Considering the integrated likelihood in (10), the integrated likelihood for p is

LI(p; y) =

∫
Rk

LI(β, p; y)π(β)dβ

∝ p−1Γ

(
n+ a− 1

p

){
Γ

(
1 +

1

p

)}−(n+a−1) ∫
Rk

{
n∑
i=1

|yi − x′iβ|p
}−n+a−1

p

dβ.

Let us define the following two functions:

h(β, p) = n

(
max |yi|+

k∑
l=1

|x̃l||βl|

)p

g(β, p) =

 n |ȳ − x̄′β∗|p , if β ∈ C1,

n |ȳ − x̄′β|p , if β ∈ C2,

where |x̃l| = max |xil|, C1 = {β ∈ Rk :
∑k

l=1 |x̄l||βl| ≤ |ȳ|}, C2 = {β ∈ Rk :
∑k

l=1 |x̄l||βl| > |ȳ|}

and β∗ = arg min
β

∑n
i=1 |yi − x′iβ|p. Note that

∑n
i=1 |yi − x′iβ∗|p > 0 with probability 1 and, for

example, if p = 2 then β∗ = (x′x)−1x′y.

Note the following:

(i)

n∑
i=1

|yi − x′iβ|p ≤
n∑
i=1

(|yi|+ |x′iβ|)p ≤
n∑
i=1

(
max |yi|+

k∑
l=1

|xil| |βl|

)p

≤
n∑
i=1

(
max |yi|+

k∑
l=1

|x̃l| |βl|

)p

= h(β, p).

(ii) For p ≥ 1 the function | · |p is convex. Thus, by Jensen’s inequality

n∑
i=1

|yi − x′iβ|p ≥ n

∣∣∣∣∣ 1n
n∑
i=1

(yi − x′iβ)

∣∣∣∣∣
p

= n|ȳ − x̄′β|p.

(iii) Consider β ∈ C1. Using the definition of β∗ and result (ii) we have

n∑
i=1

|yi − x′iβ|p ≥
n∑
i=1

|yi − x′iβ∗|p ≥ n|ȳ − x̄′β∗|p = g(β, p).

(iv) Consider β ∈ C2. Then by result (ii) we have

n∑
i=1

|yi − x′iβ|p ≥ n|ȳ − x̄′β|p = g(µ, p).
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(v) Thus, by results (iii) and (iv),

n∑
i=1

|yi − x′iβ|p ≥ g(β, p).

Therefore, by results (i) and (v) above,

∫
Rk

{h(β, p)}−
n+a−1

p dβ ≤
∫
Rk

{
n∑
i=1

|yi − x′iβ|p
}−n+a−1

p

dβ ≤
∫
Rk

{g(β, p)}−
n+a−1

p dβ.

Let us now compute the left and right integral above. For the left integral and considering

β(−j) = (βj+1, . . . , βk)
′ ∈ Rk−j for j = 1, . . . , k − 1 we have:∫

Rk

{h(β, p)}−
n+a−1

p dβ = 2

∫ ∫ ∞
0

{n1/p(max |yi|+
k∑
l=2

|x̃l||βl|+ |x̃1|β1)}−(n+a−1)dβ1dβ(−1)

= 2

∫
n−

n+a−1
p {max|yi|+

∑k
l=2 |x̃l||βl|+ |x̃1|β1}−(n+a−2)

|x̃1|{−(n+ a− 2)}

∣∣∣∣∣
∞

0

dβ(−1)

= 2

∫
n−

n+a−1
p {max |yi|+

∑k
l=2 |x̃l||βl|}−(n+a−2)

|x̃1|(n+ a− 2)
dβ(−1).

The integral above can be computed recursively for each element of the vector β(−1). The

result is convergent as long as n > k + 1− a, thus∫
Rk

{h(β, p)}−
n+a−1

p dβ = n−
n+a−1

p m1(y),

where m1(y) = 2kΓ(n+a−k−1){max |yi|}−(n+a−1−k)

Γ(n+a−1)
∏k

l=1 |x̃l|
> 0, does not depend on p.

The right integral is∫
Rk

{g(β, p)}−
n+a−1

p dβ =

∫
C1

{
n |ȳ − x̄′β∗|p

}−n+a−1
p dβ

+

∫
C2

{
n |ȳ − x̄′β|p

}−n+a−1
p dβ

= n−
n+a−1

p m2(y),

where m2(y) =
∫
C1
|ȳ − x̄′β∗|−(n+a−1)dβ +

∫
C2
|ȳ − x̄′β|−(n+a−1)dβ does not depend on p.

Therefore, we have shown that for n > k + 1− a

m1(y) ≤ n
n+a−1

p

∫ ∞
−∞

{
n∑
i=1

|yi − x′iβ|p
}−n+a−1

p

dβ ≤ m2(y).
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The result above will allow us to study the tail behavior of the integrated likelihood for p.

First, note that from the series expansion of {Γ(z)}−1 (Abramowitz and Stegun, 1972, p.256) we

obtain that {Γ(z)}−1 ≈ z from z close to 0. Thus, as p goes to ∞ we have Γ(1
p
) ≈ p. In addition,

considering the first-order Taylor expansion of log Γ(1 + z) around z = 0, log Γ(1 + z) ≈ Ψ(1)z,

where Ψ(1) ≈ −0.5772 is the digamma function evaluated at 1. Thus, Γ(1 + 1
p
) ≈ e−0.5772/p for

large p. Therefore, for p→∞,

LI(p; y) ∝ p−1Γ

(
n+ a− 1

p

){
Γ

(
1 +

1

p

)}−(n+a−1) ∫ ∞
∞

{
n∑
i=1

|yi − x′iβ|p
}−n+a−1

p

dβ

≈ p−1 p

n+ a− 1
eΨ(1)(n+a−1)/pO(n−(n+a−1)/p)

= O(e−
n+a−1

p
{logn−Ψ(1)})

= O(1).

�
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