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Abstract

We develop a dynamic Bayesian beta model for modeling and forecasting single
time series of proportions. This work is related to the class of the so called dynamic
generalized linear models (DGLM). We use non-conjugate priors and some forms of
approximate Bayesian analysis, including Linear Bayesian estimation. Some appli-
cations to both real and simulated data are provided.
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1 Introduction

The beta distribution provides a useful tool for modeling data restricted to the
interval (0,1), such as rates, percentages and proportions. In particular, one
may be interested in modeling fluctuations in variables such as the proportion
of a given fish species in a lake, the proportion of drug addicted adults in the
population, the proportion of time the employees of a given company spend
browsing the Internet, the monthly unemployment rates of a given country or
the proportion of a given component in compositional data analysis.

The beta distribution is very flexible for modeling such data since its den-
sity can display quite different shapes depending on the parameter values.
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For a sample of size n of i.i.d. random variables following a beta distribution,
some frequentist beta regressions (static beta regressions) have been proposed:
Paolino (2001), Kieschnick and McCullough (2003) and Ferrari and Cribari-
Neto (2004), among others. In the class of regression models introduced by
Ferrari and Cribari-Neto (2004), the basic assumption is that the response fol-
lows a beta law whose expected value is related to a linear predictor through
a link function. A Bayesian version of the static beta regression was proposed
by Branscum et al. (2007) and also by Albi et al. (2009). The latter authors
used a Laplace approximation formulation via INLA (see Rue et al., 2009).
For time series analysis, some models have been proposed: Azzalini (1984),
McKenzie (1985), Wallis (1987), Grunwald, Raftery and Guttorp (1993), and
Bruche and Gonzáles-Aguado (2010).

The present work is related to the class of so-called dynamic generalized linear
models (DGLM). In West, Harrison and Migon (1985), Lindsey and Lambert
(1995) and also in Godolphin and Triantafyllopoulos (2006), the dynamic lin-
ear models (DLM) (West and Harrison, 1997) are extended and generalized
to various non-normal problems.

In the DGLM, time series {Yt} are modeled using the uniparametric expo-
nential family of distributions and a specification similar to the well-known
class of generalized linear models (McCullagh and Nelder, 1989). In order to
simplify the calculations, the Bayesian formulation is completed with the use
of conjugate priors. In this work we choose instead a more convenient form of
prior. This prior has the advantage of simplifying the calculations more than a
conjugate prior would, but allowing full exploration of the relationships with
the moments of a linear function of the state vector, which is essential for
DLM in general.

The article is organized as follows. In Section 2 we introduce some backgroud
information about dynamic generalized linear models. In Section 3 we describe
a new methodology to analyze data from dynamic beta processes, the dynamic
Bayesian beta model (DBM), and we present the key steps necessary to esti-
mate the parameters of the DBM for the case where φ is known. In Section
4 we discuss some more generalizations of the DBM (the case of unknown φ).
In Section 5 we apply the methods to simulated and real data.

2 Dynamic generalized linear models

Dynamic linear models are parametric models where the parameter variation
and the available data are described probabilistically. They are characterized
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by a pair of equations, named the observational equation and parameters evolu-
tion equation or system equation. The observational and the system equations
are, respectively, given by

yt = F′

tθt + εt, εt ∼ N(0, Vt) (1)

θt =Gtθt−1 + ωt, ωt ∼ N(0,Wt) (2)

where yt is a time sequence of observations, conditionally independent given
the sequence of parameters θt, Ft is a vector of explanatory variables, θt is
a k × 1 vector of parameters, Gt is a k × k matrix describing the parameter
evolution and, finally, Vt and Wt are the variances of the errors associated
with the unidimensional observation and with the k-dimensional vector of
parameters, respectively. A dynamic linear model is completely specified by
the quadruple (Ft, Gt, Vt,Wt).

Based on the generalized linear models of Nelder and Wedderburn (1972),
West, Harrison and Migon (1985) extended the DLMs to allow for observa-
tions in the exponential family. In such setting the observation equation (1) is
described by

p(yt|ηt) ∝ exp[(ytηt − b(ηt))/φt] (3)

and, in addition, a suitable link function is introduced, relating the mean
µt = E[yt|ηt] to the natural parameter η via µt = b′(ηt), while ηt relates to
the regressors Ft and to the linear function λt = F ′

tθt of the state parameters
through g(ηt) = λt. A conjugate prior for ηt is given as

p(ηt|Dt−1) ∝ exp[(rtηt − b(ηt))/st]

and the values of the pair of hyperparameters (rt, st) have to be estimated.

The Bayesian inference in this class of models explores the sequential aspects
of Bayesian inference combining the operations: evolution to build up the
prior and updating to incorporate the new observation arrived at time t. Let
Dt = Dt−1 ∪ {yt} denote the information until time t, including the values
of Ft and Gt, ∀t, which are supposed to be known, with D0 representing the
prior information. Then for each time t the prior, predictive and posterior
distribution are, respectivelly:

p(θt|Dt−1) =
∫

p(θt|θt−1)p(θt−1|Dt−1)dθt−1

p(yt|Dt−1) =
∫

p(yt|θt)p(θt|Dt−1)dθt

p(θt|Dt)∝ p(θt|Dt−1)p(yt|Dt−1)
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where the last distribution is obtained via Bayes’ Theorem. These integrals
cannot be obtained in closed form, and so the inference must be done using
numerical approximations. Using linear Bayes estimation, a procedure allowing
the sequential analysis of dynamic generalized linear models (DGLM) was
implemented in West, Harrison and Migon (1985).

The evolution equation (2) is only partially specified. This means that the
distributions of (θt−1|Dt−1) and ωt are only specified by the first- and second-
order moments, that is: (θt−1|Dt−1) ∼ [mt−1, Ct−1] and ωt ∼ [0,Wt]. Then the
prior distribution of the state parameters is also partially specified as
(θt|Dt−1) ∼ [at, Rt], with at = Gtmt−1 and Rt = GtCt−1G

′

t +Wt. Since

λt = g(ηt) = F ′

tθt,

this implies that the prior distribution (λt|Dt−1) ∼ [ft, qt], where ft = F ′

tat
and qt = F ′

tRtFt.

The parameters (rt, st), in the prior distribution of ηt, must be related to
ft and qt through the equations

E[g(ηt) | Dt−1] = ft and var[g(ηt) | Dt−1] = qt.

Then the posterior for ηt is in the same form of the prior distribution, with
parameters

(rt/st + yt/φt, 1/st + 1/φt).

The posterior distribution of the linear predictor is (λt|Dt) ∼ [f ∗

t , q
∗

t ], where,
again,

f ∗

t = E[g(ηt)|Dt] and q∗t = var[g(ηt)|Dt].

Moreover, to complete the analysis, the posterior distribution of the state pa-
rameters must be obtained.

Linear Bayes estimation is used to approximate the first- and second-order
moments of this distribution, leading to:

Ê[θt|ηt, Dt−1] = at+RtFt[ηt− ft]/qt and v̂ar[θt|ηt, Dt−1] = Rt−RtFtF
′

tRt/qt.

The moments of (θt|Dt) are calculated using the iterated expectation
law given by (θt|Dt) ∼ [mt, Ct], where mt = at + RtFt[f

∗

t − ft]/qt and
Ct = Rt −RtFtF

′

tRt(1 − q∗t /qt)/qt.
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3 Dynamic beta model

In this section we present a methodology for modeling a time series of propor-
tions yt considering the class of the DGLM. Using a new parametrization of
the Beta distribution (Ferrari and Cribari-Neto, 2004), the model is defined
by the following components:

• Observation Equation:

p(yt | µt, φ) =
Γ(φ)

Γ(φµt)Γ(φ(1 − µt))
yφµt−1
t (1 − yt)

φ(1−µt)−1. (4)

• Prior: (µt | Dt−1) ∼ Beta(rt, st).

• Link function: Consider, without loss of generality, the logit link

λt = g(µt) = F ′

tθt = log

(

µt
1 − µt

)

, such that µt =
exp(λt)

1 + exp(λt)
.

• System Equation:

θt = Gtθt−1 + wt; wt ∼ (0,Wt).

• Initial Information:

(θ0|D0) ∼ (m0, C0).

The parameter µt is the expected value of (yt | µt, φ) while the parameter φ,
a precision parameter, may also be interpreted as a “sample size”. We would
like to stress that in this work we are not imposing a conjugate prior for the
parameter of interest. Instead, we use a convenient prior to simplify certain
calculations. We will first deal with the dynamic beta model for the case of φ
known.

3.1 Inference for the dynamic beta model with φ known

In this section we describe the inferential procedure we formulate for estimat-
ing the model parameters of the Beta Dynamic Model, which can be viewed as
a variant of the DGLM steps described in Section 3. The main steps involved
in our procedure: the evolution, the parameters equating and the updating, are
summarized below, by cycling through the steps (i) to (iii) from t = 1, . . . , T ,
thus keeping the sequential nature of the dynamic models. Almost all the dis-
tributions studied here are only partially specified in terms of their moments.
For a given time t, steps (i) to (iii) are described by:
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i) Evolution step: Based on the values of the moments (mt−1, Ct−1) of the
partially specified posterior distribution (θt−1|Dt−1, φ), then, following the pro-
cedures detailed in Section 2, we obtain the values of the first moments (ft, qt)
of the linear predictor λt.

(ii) Equating parameters step: Since µt = g−1(λt), its prior distribution
must have parameters uniquely related to those of λt. This is accomplished
by solving a nonlinear system of equations.

(iii) Updating step: Based on the values of the first two moments of the pos-
terior distribution of µt or any suitable approximation of them, generically
denoted by (µ̃t, Ṽt), we want to obtain (f ∗

t , q
∗

t ), the parameters of the poste-
rior moments of λt. That enable estimating to estimate the posterior moments
of (θt|Dt, φ), (mt, Ct), using linear Bayes estimation.

To complete the sequential analysis, the marginal distribution of (yt|Dt−1, φ)
can be obtained, at least approximately, as a function of the moments of
(µt|Dt−1).

Next, we provide detailed calculation of some of the key components described
in steps (i) to (iii) for the inferential process of the dynamic beta model.

3.1.1 Evolution step

a) Priors for state parameters θt and the linear predictor λt. As described in
Section 2, using the evolution equation we get (θt | Dt−1) ∼ (at, Rt) and
(λt | Dt−1) ∼ (ft, qt). The prior covariance between θt and λt is easily ob-
tained as: RtFt = cov(θt, λt|Dt−1).

b) Prior for µt. Although a conjugate prior distribution is always available for
models in the exponential family, in our case the evaluation of its moments is
quite cumbersome. Since the parameter µt is restricted to the interval (0, 1),
a natural choice for its prior is the beta family: (µt | Dt−1) ∼ Beta(rt, st),
where rt, st > 0 are known quantities, occasionally functions of Dt−1. Its
first two moments are known and will be used in the solution of a simple
nonlinear system in order to obtain the parameter values (rt, st) consistent
with (ft, qt), the moments of (λt | Dt−1).

3.1.2 Equating parameters

Since the linear predictor is related to the mean of the observation distribution
through a nonlinear link function, some approximation is needed to determine
the hyperparameters rt and st of the prior distribution of µt.
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Since (µt | Dt−1) ∼ Beta(rt, st), the pair (rt, st) can be found in terms of
the exact expected value of the log-beta distribution (West and Harrison,
1997, pp. 529-30), given by

E[log(µt/(1−µt))] = ψ(rt)−ψ(st) and V [log(µt/(1−µt))] = ψ′(rt)+ψ′(st),

where ψ(z) = Γ
′

(z)
Γ(z)

and ψ′(z) = dψ(z)
dz

are, respectively, the digamma and the
trigamma functions. For the dynamic beta model we get:

E(λt|Dt−1)=E

[

log

(

µt
1 − µt

)∣

∣

∣

∣

∣

Dt−1

]

= ψ(rt) − ψ(st) = ft

V (λt|Dt−1)=ψ′(rt) + ψ′(st) = qt.

For large values of z, ψ(z) ≈ log(z) while ψ′(z) ≈ z−1. Therefore, ft ≈ log
(

rt
st

)

and qt ≈
1
rt

+ 1
st
. Then,

rt = [1 + exp(ft)]/qt and st = [1 + exp(−ft)]/qt.

West and Harrison (1997) argue that the approximation gives satisfactory
results even for small values of st and rt. An alternative method for calculating
rt and st, which is based on a second-order Taylor approximation, is described
in the Appendix.

3.1.3 Updating step

The posterior distribution of µt is often obtained by Bayes’ Theorem,

p(µt|Dt, φ)∝ p(yt|µt, Dt−1, φ)p(µt|Dt−1)

∝
Γ(φ)

Γ(φµt)Γ(φ(1 − µt))
yφµt−1
t (1 − yt)

φ(1−µt)−1

×
Γ(st + rt)

Γ(rt)Γ(st)
µrt−1
t (1 − µt)

st−1. (5)

Observe that p(µt|Dt, φ) has no known closed form. Therefore, it is necessary
to obtain its first- and second-order moments approximately. A possibility is
to use the Laplace approximation proposed by Tierney and Kadane (1986).

The first and second moments of (µt|Dt, φ) allow us to evaluate (f ∗

t , q
∗

t ), the
posterior mean and variance of the linear predictor. These operations may
involve the solution of a nonlinear system of equations.
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a) Laplace approximation

The posterior moments of (µt | Dt, φ) can be obtained by considering that

E(h(µt))=
∫

h(µt)p(µt | Dt, φ)dµt

=

∫

h(µt)p(yt | µt, Dt−1, φ)p(µt | Dt−1)dµt
∫

p(yt | µt, Dt−1, φ)p(µt | Dt−1)dµt

=

∫

exp(K∗(µt))dµt
∫

exp(K(µt))dµt
,

where h(µt) is a strictly positive function.

Since p(µt | Dt, φ) is a smooth, bounded unimodal function with a maxi-
mum at µ̂t and µt is a scalar, the conditions for using Laplace approximation
are all satisfied.

Applying a second-order Taylor expansion in K∗, we have

K∗(µt) ≈ K∗(m∗) −
1

2
(µt −m∗)

′

(V ∗)−1(µt −m∗),

where m∗ is the point that maximizes K∗(µt) and V ∗ is given by minus the
inverse of the Hessian matrix associated with K∗(µt) evaluated at m∗.

Thus, considering the Laplace aproximation proposed by Tierney and Kadane
(1986),

E(h(µt)) ≈

(

| V ∗ |

| V |

)1/2

exp(K∗(m∗) −K(m)).

Similar definitions apply to m and V .

Let `(µt) = log[p(µt|Dt, φ)]. Thus, the first and second derivatives of ` with
respect to µt can be approximated, using ψ(z) ≈ log(z) and ψ′(z) ≈ z−1, by:

∂`

∂µt
≈φ log

(

1 − µt
µt

)

+ φ log

(

yt
1 − yt

)

+
st − 1

µt
−
rt − 1

1 − µt
,

∂2`

∂µ2
t

≈−
φ

µt(1 − µt)
−
st − 1

µ2
t

−
rt − 1

(1 − µt)2
.

Since it is not possible to find m and m∗ analytically, we use the Newton-
Raphson method.

In summary:
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V =−





∂2K(µt)

∂µ2
t

∣

∣

∣

∣

∣

µt=m





−1

and V ∗ = −





∂2K∗(µt)

∂µ2
t

∣

∣

∣

∣

∣

µt=m∗





−1

,

µ̃t =E[µt|Dt, φ] ≈

(

|V ∗|

|V |

)1/2

exp[K∗(m∗) −K(m)], with h(µt) = µt,

Ṽt = V [µt|Dt, φ] ≈ E[µ2
t |Dt, φ] − (E[µt|Dt, φ])2, with h(µt) = µ2

t .

b) Updating for λt. Using the the pair of values µ̃t, Ṽt we evaluate the first
moments f ∗

t and q∗t of the posterior distribution (λt|Dt, φ) by taking a first-
order Taylor expansion of E[µt|Dt, φ] and V [µt|Dt, φ]. The moments µ̃t, Ṽt are
expressed by

µ̃t≈E[µt|Dt, φ] = E

[

exp(λt)

1 + exp(λt)

∣

∣

∣

∣

∣

Dt, φ

]

≈
ef

∗

t

1 + ef
∗

t

;

Ṽt≈V [µt|Dt, φ] ≈

(

ef
∗

t

(1 + ef
∗

t )2

)2

q∗t .

Thus f ∗

t and q∗t are given by f ∗

t = log(µ̃t/1− µ̃t) and q∗t = Ṽt(f
∗

t /(1 + f ∗

t )
2)−2.

When using a second-order Taylor expansion, (f ∗

t , q
∗

t ) can be obtained nu-
merically by solving a nonlinear system. The function “dfsane” in the BB
library of software R can be used in such case.

c) Updating for θt. The joint partially specified distribution of θt and λt is
easily obtained from previous results in this section. The linear Bayesian es-
timation method (see West and Harrison (1997), Chapters 4 and 14) can be
employed to get:







Ê[θt|λt, Dt−1] = at +
1
qt
RtFt(λt − ft),

V̂ [θt|λt, Dt−1] = Rt −
1
qt
RtFtF

′

tRt.

Since the posterior distribution of (λt|Dt, φ) is available, we can obtain the
posteriori moments of (θt|Dt, φ) as:

mt = at +
1

qt
RtFt(f

∗

t − ft)

Ct =Rt −
1

qt

[

RtFtF
′

tRt

(

1 −
q∗t
qt

)]

.
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Intuitively this corresponds to channeling the information from yt, via the
posterior distribution of λt, to get the conditional moments

E[θt | λt, Dt−1] and V [θt | λt, Dt−1].

Afterwoods, λt is eliminated by integration.

3.1.4 One-step-ahead forecasting

The one-step-ahead forecasting distribution, given by

p(yt|Dt−1, φ) =
∫ 1

0
p(yt|µt, Dt−1, φ)p(µt|Dt−1)dµt (6)

cannot be evaluated analytically, thus demanding the use of some approxima-
tion, like the use of Newton-Cotes type methods (quadrature approximations)
(see Corbit, 1996). However, the first moments of (yt|Dt−1, φ) can be found
exactly, by first principles, and the fact that (µt | Dt−1) ∼ Beta(rt, st). There-
fore,

E(yt|Dt−1, φ) =
rt

rt + st
, and

V (yt|Dt−1, φ) =
1

1 + φ

[

rt
rt + st

(

1−
rt

rt + st

)

+
φrtst

(rt + st)2(rt + st + 1)

]

. (7)

These moments are very useful for model comparison purposes and to obtain
credibility intervals. For example, based on E(yt|Dt−1, φ), one can evaluate
the mean absolute deviation, MAD = 1

T

∑T
t=1 |et|, and the mean square error,

MSE = 1
T

∑T
t=1 e

2
t , with et = yt − E(yt|Dt−1, φ). Additionally, another sum-

mary statistics that is useful for model comparison is the observed predictive
density or observed likelihood, which is described by

p(y1, . . . , yT | D0, φ) =
T
∏

t=1

p(yt | Dt−1, φ). (8)

4 The case of unknown φ

In this section we deal with the estimation of φ. Let p(φ | DT ) be a posterior
distribution of φ considering the whole data, that is,

p(φ | DT ) ∝

[

T
∏

t=1

p(yt | Dt−1, φ)

]

p(φ). (9)
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The unconditional to φ one-step ahead forecasting distribution is given by

p(yt | Dt−1) ≈
∫

p(yt | Dt−1, φ)p(φ | DT )dφ. (10)

As mentioned before, the parameter φ may be interpreted as a “sample size”.
Thus, we take a discrete uniform prior distribution for φ, i.e., φ ∼ Unif(1,M),
with M large. Using such prior, expression (10) is expressed as a mixture of
distributions:

p(yt | Dt−1) ≈
M
∑

j=1

p(yt | Dt−1, φj)p(φj | DT ). (11)

Notice that to evaluate p(yt | Dt−1, φ) it is also necessary to use a numerical
integration with respect to µt (see equation 6).

5 Applications

5.1 The signal-to-noise ratio in the DBM

In this section we analyze the relationship between the variance of the ob-
servation error, Vt, and the variance of the evolution error, Wt, for the DBM.
This is useful to provide some initial knowledge about the behavior of the time
series we want to model. Next we present some analyzes for simulated data.

The errors, ωt, of the system equation control its evolution through the vari-
ance Wt. That is, the larger (smaller) are the values of Wt the more erratic
(smoother) will be the evolution over time. The fact that E(ωt) = 0 ensures a
certain fixed level around which the values of θt will vary.

The behavior of the yt and θt trajectories will be related to the magnitude
of the ratio rt = Wt/Vt (a signal-to-noise ratio). When rt is small, most of the
series movements are due to the observations yt, whereas when rt is large the
movements are due to both the variations in the yt’s and the θt’s.

For normal dynamic models with constant observational and evolution vari-
ances, a value of rt = 0.05, that is, W = V/20, indicates a time series that
is typically smooth with locally constant level. On the other hand, a value of
rt = 0.5 indicates a series that behaves much more erractically.

Naturally, one cannot directly use the example above as a guide to describe
the relationship between the observational and the evolution variances in the
dynamic beta model, since the nature of the data analyzed in the Gaussian
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and in the beta case are too different. Besides this, the fact that Vt depends on
µt (which is not the case in the normal model) adds additional complexities.
So for the dynamic beta models, the rt values mentioned above may not lead
to the same signal-to-noise interpretation of the normal dynamic models.

For the dynamic beta model, the observational variance, Vt, is such that
Vt ≤

1
4(1+φ)

. The upper limit of Vt is reached for µt = 1/2. As µt approaches
either 0 or 1, Vt approaches 0. The magnitude of Vt is quite small and decreases
with φ. The case of Vt = 0 leads to a static time series of observations. For
the simulated data we used µt values as low as 0.01 and as high as 0.99. That
leads to 0.0099

1+φ
≤ Vt ≤

1
4(1+φ)

.

In order to establish a correct comparision between Vt, which is de-
fined on (0, 1), and Wt, which is defined on (0,∞), we need first to rescale Wt.
Taking the transformation w∗

t = ewt

1+ewt
, where wt is the error term in the DBM

system equation, we obtain W ∗

t = Wt/16 as an approximated variance for w∗

t .
Then 0.0099rt

(1+φ)
≤ W ∗

t ≤ rt
4(1+φ)

, where rt = W ∗

t /Vt, implying, for example, that

W ∗

t ≤ 0.0125/(1 + φ), for a signal-to-noise of rt = 0.05.

5.2 Analysing simulated data

Taking into account the discussions in the previous section, we generated dy-
namic beta data for first-order models with Ft=1 and Gt= 1 and considered
three scenarios (or cases), which are summarized in Table 1.

Cases I II III

φ 100 25 15

W ∗

t 0.000625 0.009375 0.0125

Table 1
(φ,W ∗

t ) scenarios for dynamic beta simulated data.

Figure 1 illustrates the generated series and the estimated levels obtained us-
ing the DBM. For beta series generated under Case I (well-behaved ones),
both W ∗

t and Vt are small and the signal-to-noise ratio is around 0.2525 (con-
sidering the upper bound of Vt). Under Case II, the generated beta series is
reasonably stable due to the intermediate values of Vt and W ∗

t . Under Case

III, the generated series present sharp oscilations due to high values of both
Vt and W ∗

t . For this case, the signal-to-noise ratio is around 0.80. For all the
cases, we observe that the DBM provides a good description of the data. The
values of W ∗

t are, in general, unknown so that discount factors, δ, are used
instead (see West and Harrison (1997) p. 51). Such values are defined in the in-
terval (0, 1] and the degree of adaptation to new data increases as δ decreases,
leading to more erractic forecast sequences. When δ = 1.0 it corresponds to
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Fig. 1. Left pannels: observed data and estimated levels for generated dynamic beta
series under the three cases. Right pannels: scatterplots of the true and estimated
levels.

a degenerate static model with W ∗

t = 0, characterizing the observations as a
simple beta random sample. For generated data from Cases I to III, we worked
with the real values of W ∗

t as well as a choice of δ = 0.8. This discount factor
was found to provide the best predictive performance to the dynamic beta
models we proposed in Section 3.

As a criterion to evaluate the goodness of fit, we used the MSE between
the real µt and the estimated levels µ̃t (the first k estimates are not used in
the criterion since, quite certainly, the algorithm has not yet “learned” at ob-
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servation t = k). From Table 2 we observe that for a fixed value of W ∗

t , as φ
increases, the magnitude of the MSE decreases. That is not surprising since as
φ increases, the variance of the observations, Vt, decreases and the processes
become more stable.

The estimated values of f ∗

t and q∗t (see Section 3.1.3 item (b)) obtained using
either first- or second-order Taylor expansions were very close, justifying the
use of the simpler approximation.

Cases MSE × 102

I: φ = 100; W ∗ = 0.000625 0.2638

II: φ = 25; W∗ = 0.009375 1.8628

III: φ = 15; W ∗ = 0.012500 2.4142

Table 2
Mean squared errors (MSE) between the real, µt, and the estimated levels µ̃t. Dis-
count factor: δ = 0.8.

5.3 Retrospective Analysis

In time series analysis, in addition to learning and prediction, looking back at
the end of a given period may provide a clearer understanding of what really
happened during this period.

For the data set comprising observations from time 1 to T, such retrospec-
tive or smoothed assessment utilizes the filtered distributions p(θt | DT ), for
t = 1, . . . , T .

For a given linear dynamic model described by the quadruple (Ft, Gt, Vt,Wt),
for every time t and 1 ≤ h ≤ t, we have:

(θt−h | Dt)∼ [at(−h), Rt(−h)]

at(−h) =mt−h −Bt−h[at−h+1 − at(−h + 1)]

Rt(−h) =Ct−h − Bt−h[Rt−h+1 − Rt(−h + 1)]B
′

t−h

Bt =CtG
′

t+1R
−1
t+1

at(0) =mt and Rt(0) = Ct.

The above expressions can be found by induction arguments. More details
can be found in Chapter 4 of West and Harrison (1997). In Section 14.3.4,
West and Harrison (1977) indicate the details for the retrospective analysis
for dynamic generalized linear models. The authors observe that for later
models the expressions given above remain the same.
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5.4 Applying the dynamic beta model to real data

In this section we apply the methodology described in Sections 3 and 4 to fit
time series of proportions. Two datasets will be analyzed.

Application 1 - Brazilian monthly unemployment rates.

The Brazilian Institute of Geography and Statistics (IBGE) implemented the
Monthly Unemployment Survey (PME) in 1980, but since 2002 a new survey
methodology has been adopted. The PME is a monthly survey about workforce
and income. The most important metropolitan regions in Brazil are included
in such survey: São Paulo, Rio de Janeiro, Belo Horizonte, Porto Alegre, Re-
cife and Salvador. The data can be found at http://www.ibge.gov.br/.

We analyze monthly unemployment rates (MUR) based on PME data in the
period from March 2002 to December 2009 (94 observations). The MUR are
expressed in percentages, so we used the dynamic beta model. It is reasonable
to presume that the MUR are affected by a systematic seasonal behavior that
is dictated by yearly cycles caused, for instance, by climatic factors, Christmas
festivities and school vacations. In the months of November and December the
MUR drop substantially due to the growth in temporary employment. Besides
this, due to some macroeconomic factors, the MUR might present either ris-
ing or declining trends in a given period. Taking into account these remarks,
for the MUR data we used a second-order polynomial trend seasonal effects
dynamic beta model (STSDBM). Thus, the parameter vector is given by

θt = (βt1, βt2, ψt1, . . . , ψtp)
′

,

where in the trend vector described by (βt1, βt2)
′

, coordenate βt1 represents the
current level while βt2 represents the rate of change in the level. For a seasonal
cycle of size p, the seasonal effects are described by the remaining p parameters.

The following triple represents the STSDBM:

{

F =

(

E2

Ep

)

, G =

(

J2(1) 0

0 P

)

,Wt =

(

Wt,β 0

0 Wt,ψ

)}

.

where Wt is a block-diagonal covariance matrix and

Ep = (1, 0
′

p−1), J2(1) =

(

1 1

0 1

)

, and P =

(

0 Ip−1

1 0
′

)

.

The permutation matrix P is p − cyclic, so that P np = Ip and P h+np = P h,
for h = 1, . . . , p, and any integer n ≥ 0.

15



The matrix Wt is described with the help of block discounting factors. Re-
calling that (θt−1|Dt−1) ∼ (mt−1, Ct−1), let CT,t−1 represent the posterior co-
variance submatrix for the trend components at time t − 1 and CS,t−1, the
posterior covariance submatrix for the seasonal components. Thus, the blocks
Wt,β and Wt,ψ in Wt are given by

Wt,β =

(

1 − δT
δT

)

J2(1)CT,t−1J2(1)
′

and Wt,ψ =

(

1 − δS
δS

)

PCS,t−1P
′

,

where δT and δS are the discount factors associated with these components.
For more details about seasonal models, see Chapter 8 of West and Harrison
(1997).

For the monthly unemployment rates we used δT = 0.90 and δS = 0.98.
These values were defined by comparing the MAD, MSE and the observed
Log Likelihood for several choices of δT and δS, as summarized in Table 3.

Discounts MSE MAD Log Likelihood

δT = 0.90; δS = 0.98 3.707653e-05 0.004955393 -427.4887

δT = 0.90; δS = 0.99 4.847885e-05 0.005747651 -427.8524

δT = 0.95; δS = 0.98 6.073741e-05 0.006260674 -427.7525

δT = 0.95; δS = 0.99 8.032208e-05 0.007105512 -427.8655

Table 3
Forecast performance summary

In Figure 2 (topmost figure) we present the back smoothed or retrospectively
fitted MUR. The values shown represent the estimated component values for
the best model for the MUR data. As can seen, the general aspect of the es-
timated values seems to describe the presence of seasonal effects and also a
declining trend. According to a note posted on January 26, 2009, at the web-
site http://brazilportal.wordpress.com/2009/01/26/, Brazil’s MUR has
been consistently dropping since 2002. “Brazil’s unemployment rate dropped
to its lowest point in seven years” Some economic analysts explain that this
favorable scenario is due essentially to the continued consolidation of macroe-
conomic adjustment following the floating of the real (the Brazilian currency)
in 1999, combined with some governmental policies that were effective in con-
taining inflation and public debts, reducing external vulnerabilities. The good
shape of the banking sector also helped to anchor the Brazilian economy. How-
ever, according to some economists, this favorable trend may change due to
the global economic crisis and future government policies.

Figure 2 also presents the smoothed estimates for the level, growth
and seasonal components. As can be observed, the estimated levels change

16



0 20 40 60 80

0.
02

0.
10

Retrospective estimates

Time

Y

0 20 40 60 80

−2
.4

−2
.0

Level

0 20 40 60 80

−0
.0

15
0.

01
0

Growth

0 20 40 60 80

−0
.1

5
0.

00

Seasonal

Time
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very smoothly but with a downward sloping trend. The rates of changes in
the levels (growth) of the MUR data reached their highest value between 2003
and 2004. Afterwards, the rates show a downward shift followed by a period
in which the rates fluctuate around a given mean. For the seasonal component
we observe that (i) there is a definitive seasonal variation in the MUR and (ii)
the pattern is quite regular over the years.

Figure 3 presents the one-step-ahead predictions together with one standard
deviation limits using a first-order approximation for the variance of the pre-
dictive distribution at time t. For these calculations we used V (yt | Dt−1, φ̂),
with φ̂ = E(φ | DT ) = 117, which corresponds to a Bayesian estimator con-
sidering a quadratic loss. Due to the additional uncertainty induced by φ,
the credibility intervals for the predictions calculated using V (yt | Dt−1) were
somewhat wider than the former, so we decided not to present them. In Figure
3 we observe that the residuals indicate a fairly reasonable fit.

Another possibility to obtain approximate credibility intervals is the use of
highest posterior density (HPD) for (yt|Dt−1). Since we are using a discrete
approximation of p(yt|Dt−1), a HPD can be constructed by adapting the def-
inition, as well as the algorithm, given by Turkkan and Pham-Gia (1993):

Let {p(yti | Dt−1) = pti, i = 1, . . . , n with
n
∑

i=1

pti = 1} and denote a 100(1-

α)% HPD for yt by C1−α. This set will consist of points such that

∑

i ∈ C1−α

pti ≤ α with min{pti}i ∈ C1−α
> max{pti}i /∈ C1−α

and for any subset C
′

⊃ C1−α, we have
∑

i ∈ C
′

pti > 1 − α.

The 100(1-α)% HPD region C1−α can be found by the following algorithm:

(a) Take a value k sufficiently large such that pti < k, ∀ i.
(b) Compute K =

∑

i pti after setting pti = 0 for any i such that pti > k.
(c) Check whether K ≥ α for all i.
(d) The value K = kα is determined as the smallest value K such that we
have K ≥ α and the resulting contour C reduces to a set of points i which is
the C1−α itself.

For small forecasting horizons outside the original sample, the description
of HPD is computationally viable since it is possible to use φ̂ (since φ is as-
sumed constant over time) and to obtain updates using the evolution equation
considering growth and seasonality.
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Application 2 - Proportions of clay at different water depths in an Arctic lake.

Coakley and Rust (1968) present the composition of 39 sediment samples
in terms of sand, silt and clay percentages. The samples have been taken at
different water depths in an Arctic lake. These data were extensively studied,
especially in compositional data analysis (Aitchison, 1982; Aitchison, 2003).

Some discussion about the dependency of the sediment compositions at water
depths can be found in Aitchison (2003). In this work we analyze this same
data set but we are interested in modeling the proportions of clay at different
(increasing) water depths, unlike the usual applications in time series.

We have no reason to include other effects in the analysis besides trend. There-
fore, we used a second-order polynomial trend effects dynamic beta model.
The following triple represents the model for the proportions of clay, with
Wt,β described in terms of discount factors as before:

{F = E2, G = J2(1),Wt = Wt,β} ,

For these data however, we used δTL = 0.80 (as the discount factor for the level
component), δTG = 0.90 (as the discount factor for the seasonal component),
and obtained φ̂ = 34. This choice resulted in the lowest values of both MSE and
MAD and highest value of the observed Log Likelihood (MSE=0.01045015,
MAD=0.07770061 and Log Likelihood=-157.5418).

In Figure 4 we present the retrospectively fitted proportions of clay. As can
observed, it is quite clear that the proportions of clay increase with the water
depth, corroborating the findings in Aitchison (2003). Figure 4 also shows the
smoothed estimates of the level and growth components. As can be seen, the
estimated level changes are the main factors responsible for the upward slop-
ing trend in the proportions of clay, while for the growth component, the rates
of changes in the levels for proportions of clay present a downward behavior
after a given depth.

The one-step-ahead predictions (see Figure 5) together with one standard
deviation limits show that some points are not very well described by the fit.
The residuals are also large, though no alarming patterns can be perceived.
It is possible that by collapsing the compositional data into just one category
(clay), some important data features could not be captured. This problem
calls for the development of dynamic models for compositional data.
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6 Discussion

We developed a Bayesian dynamic beta model (DBM) for modeling and fore-
casting single time series of proportions. The inferential process was based on
some forms of approximate Bayesian analysis, including linear Bayesian esti-
mation. The methodology was applied to both real and simulated data.

We envision some possible directions in order to improve/extend the current
DBM:

(i) Some natural extensions of our model include the description of a hierarchi-
cal DBM using a common mean for a multivariate time series. The component
means would be linked according to a random effects model.

(ii) Additionally, to enable the inclusion of different regimes for the level of
the process, a possible approach to the problem is the use of Markov switching
models. In the finance area there is an application proposed by Bruche and
Gonzáles-Aguado (2010). In a financial setting, they developed an econometric
model to describe the behavior of default probabilities to evaluate expected
financial losses and recovery rates considering economic cycles.

(iii) Further and more general developments include the creation of dynamic
models for compositional data and the development of the inferential process
involved using linear Bayesian methods, as an extension of the work proposed
by Grunwald, Raftery and Guttorp (1993).
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Appendix

An alternative approach to the one presented in Section 3.1.2 for describing
the hyperparameters rt and st is based on a second-order Taylor approxima-
tion.

Remembering that µt = g−1(λt), where g(µt) = log(µt/(1 − µt)), we can
get a second-order Taylor approximation of their mean and variance as:

E

[

exp(λt)

1 + exp(λt)

∣

∣

∣

∣

∣

Dt−1, φ

]

≈
eft

1 + eft
+
qt
2

eft(1 − eft)

(1 + eft)3
; (12)

V

[

exp(λt)

1 + exp(λt)

∣

∣

∣

∣

∣

Dt−1, φ

]

≈

(

eft

(1 + eft)2

)2

qt+
(8qtf

2
t − q2

t )

4

(

eft(1 − eft)

(1 + eft)3

)2

. (13)

Since (µt|Dt−1, φ) ∼ Beta(rt, st), then the following system of equations is
obtained

rt
rt + st

= ht and
rtst

(rt + st)2(rt + st + 1)
= vt,

where ht and vt are, respectivelly, given by the expressions in the right-hand
side of equations (12) and (13). The hyperparameters rt and st of the beta
prior for µt are obtained by solving the following system of equations:

rt =
(1 − ht)h

2
t

vt
− ht and st =

(1 − ht)
2ht

vt
− (1 − ht).

A first-order Taylor expansion is obtained when the last term in the right-hand
side of (12) and (13) are omitted.
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