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Abstract

This paper provides comparisons of the classical and Bayesian approaches

to estimation and prediction on intervention models. Intervention analysis

has been recently the subject of several studies, mainly because real time se-

ries present a wide variety of phenomena that are caused by external and/or

unexpected events. In this work, transfer functions are used to model differ-

ent forms of intervention to the mean level of a time series. This is performed

into the framework of state-space or structural models. Two canonical forms

of intervention are considered: pulse and step functions. The former af-

fects temporarily the level of the series and the latter affects permanently

the level of the series. Also, the models considered allow for static and dy-

namic explanation of the intervention effects. Classical inference for these

models is introduced and comparison between the two approaches, classical
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and Bayesian, is performed through Monte Carlo simulation. Bootstrap and

MCMC methods are used for approximate classical and Bayesian inferences,

respectively. Results are compared in terms of point and interval estima-

tion. Point estimation shows that the maximum likelihood and the posterior

mode estimators perform better than posterior mean and median. Inter-

val estimation shows that Bayesian credibility intervals perform better than

the respective classical confidence intervals. The methodology was applied

to two Brazilian economic indexes and showed satisfactory results for the

intervention models used.

Keywords: state space models, dynamic linear models, prediction, trans-

fer function, bootstrap, MCMC.

1 Introduction

Time series are frequently affected by external events, known as interventions, that

can change the structure of the series (such as strikes, policy changes, etc.). The

first proposals of intervention analysis seem to have arisen in the Social Sciences

with the work of Campbell & Stanley (1968), but the term intervention was first

introduced by Glass (1972). However, it was only in 1975 that Box and Tiao

developed the theory of intervention analysis to study structural changes in time

series (Box & Tiao, 1975).

At the same time, Box & Jenkins (1976) introduced the transfer function (TF)

models in the context of the Autoregressive Integrated Moving Average (ARIMA)

process. Transfer function models were designed to measure the relationship be-

tween an output series and one or more input series. For example, in the case of an

output series yt and an input series xt, the transfer function relates the variables

through a linear filter of the form

yt = ϑ(B)xt + εt
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where ϑ(B) =
∑∞

j=−∞ ϑjB
j, B is the backshift operator Bkyt = yt−k and the error

series εt is the possibly time-correlated. The coefficients ϑj in the transfer function

model are called impulse response function.

If the input series xt is a deterministic function that accounts for the structural

changes in the output series yt, TF can be used to model structural breaks following

the same idea of Box & Tiao (1975).

There exists a wide variety of approaches to model a time series. Structural

models, developed by Harvey (1989) and West & Harrison (1997), are a rich class

of models formulated directly in terms of non-observable components, such as trend,

seasonality, cycles and noise. The model is generally written in a state-space repre-

sentation, to allow the use of the Kalman filter (Kalman, 1960) to estimation and

prediction (see more in Durbin & Koopman (2001)). In the Bayesian context, these

models are also known as dynamic linear models.

Due to the fact that ARIMA models can be written in the state space form,

adapting the idea of transfer functions to structural models is quite natural. The

flexibility of the state space representation allows the insertion of covariates in the

observation or state equations. Some work on this subject include Penzer (2007),

de Jong & Penzer (1998), Harvey & Koopman (1992), Salvador & Gargallo (2004),

Ravines et al. (2008) and Alves et al. (2009).

In this work, two kinds of intervention procedures are described: pulse and step

functions. These are built in addition to the Local Level Model (LLM), the simplest

structural model for the trend component. Also, the gain factor associated with the

intervention is either fixed in time or is allowed to vary in time. Inference about the

parameters of the TF and the variances of the errors in the observation and state

equations are performed using classical or Bayesian approaches. Classical inference

for these time-varying intervention models was not done before, to the knowledge

of the authors.

Confidence intervals under the classical paradigm can be built using the boot-
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strap (Efron, 1979). The residuals of the fitted model are used here to generate the

bootstrap series, under a parametric approach. Previous application of the boot-

strap in structural models include Stoffer & Wall (1991), Franco & Souza (2002),

Pfeffermann & Tiller (2004) and Franco et al. (2008).

The Bayesian approach for these models does not lead to analytically tractable

posterior distributions. Thus, approximate methods are required and Markov chain

Monte Carlo (MCMC) methods are employed (Reis et al., 2006). Point estimates

are obtained and credibility intervals are also built. References about MCMC in

dynamic linear models include Carter & Kohn (1994), Fruhwirth-Schnatter (1994),

Lopes & Moreira (1999), Schmidt et al. (1999) and Santos & Franco (2008).

The objective of this paper is to compare the efficiency of the classical and

Bayesian paradigms for inference about the parameters of the intervention models

considered. Also, the efficiency of approximating methods is empirically evaluated.

Monte Carlo experiments are conducted for this purpose in a variety of settings

and the classical and Bayesian estimates are compared through the bias and mean

square error (MSE). Confidence and credibility intervals are built for the parameters

and the one-step ahead forecasts, and they are compared using the width and the

coverage rate.

Applications of the methodologies described are performed on two real monthly

time series of Brazilian indexes, an inflation index for the city of Belo Horizonte

and the São Paulo stock market index.

This paper is organized as follows. Section 2 shows how the intervention analysis

can be considered in structural models using transfer functions. Section 3 presents

the estimation procedures considered, along with confidence and credibility inter-

vals. Monte Carlo simulations are performed in Section 4 and Section 5 presents

two applications on real time series. Section 6 concludes the work.
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2 Intervention analysis in structural models

The state space model for a univariate time series yt, t = 1, ..., n is defined by the

equations

yt = Z
′
tαt + dt + εt (observation equation) (1)

αt = T tαt−1 + ct + Rtωt, (state equation) (2)

where αt is a m × 1 vector of unobserved state variables, dt and ct are the effect

of exogenous covariates and Zt, T t and Rt are system matrices. The model be-

comes non-linear when some of these matrices involve unknown quantities. In this

case, calculations become more complicated as updating equations for inference in

known analytic form no longer exist. The terms εt and ωt represent zero-mean

random processes, independent and identically distributed with variances ht and

Qt, respectively. Furthermore, the disturbances are serially uncorrelated.

The simplest structural model to describe series that present only the trend

component is the local level model (LLM), defined by

yt = µt + εt, εt ∼ (0, σ2
ε),

µt = µt−1 + ηt, ηt ∼ (0, σ2
η).

In this case, αt = µt, dt = ct = 0, ωt = ηt, εt = εt, ht = σ2
ε , Qt = σ2

η and

Z
′
t = Tt = Rt = 1.

If a change of level is observed in the series, its effect can be modelled inserting

a component Et in the state equation. Let the component Et be written as the

transfer function filter of Box et al. (1994),

Et = ϑ(B)xt (3)

where xt is an exogenous variable. It will be assumed that ϑ(B) = β(B)Bb/ρ(B)

where β(B) = β0 − β1B − ...− βsB
s, ρ(B) = ρ0 − ρ1B − ...− ρrB

r and b is a delay

parameter. This model will be denoted here by TF(r, b, s). More details can be

found in Wei (1991).
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In this work, the exogenous variable xt in (3) will represent intervention effects.

In practice, there are many possibilities for the occurrence of interventions. For

example, the impact of an external event can be felt b periods after the intervention,

with an effect only at that moment. In this case, the transfer function model is a

TF(0,0,b):

Et = β0B
bxt = β0xt−b.

Or it can happen that the impact is felt on the time of the intervention, but the

response is gradual. Thus, a suitable model is a TF(1,0,0),

Et =
β0B

0

ρ0 − ρ1B
xt ⇒ (ρ0 − ρ1B)Et = β0xt ⇒ Et = ρEt−1 + βxt. (4)

where ρ = ρ1/ρ0 and β = β0/ρ0.

Box & Tiao (1975) define two common types of intervention variables, step and

pulse functions, that can be represented by dummy variables as follows:

(1) Step function: If the intervention takes place at some fixed time T and

remains in effect thereafter:

ST
t =





0, t < T

1, t ≥ T
;

(2) Pulse function: If the intervention takes place at some fixed time T and has

an effect only in that period:

IT
t =





1, t = T

0, t 6= T
.

Figure 1 presents the behavior of the structural block Et for a series of size

n = 100 with a change of level at time T = 50, under Model TF(1,0,0), for pulse

and step functions. For the pulse function it can be seen that, increasing the value

of ρ causes a very slow return of the series to the mean level presented before the

impact. For the step function, if ρ increases the series takes more time to attain a
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Figure 1: Intervention effect of pulse and step functions.

new mean level.

In this work, Model TF(1,0,0) will be considered with two kinds of impulse

response function. In the first one (Model 1) the gain factor β in equation (4) is

fixed in time, while Model 2 allows β to vary in time. This later model is known

as a transfer function model with dynamic gain factor (see Alves et al. (2009)).

The local level model (LLM), is considered along with an intervention compo-

nent. The structure of Models 1 and 2 under the local level approach are described

below, with examples of series generated from these models.

Model 1

The local level model with an intervention component assuming the β coefficient
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fixed in time has the following structure:





yt = µt + Et + εt, εt ∼ N(0, σ2
ε)

µt = µt−1 + ηt, ηt ∼ N(0, σ2
η)

Et = ρEt−1 + βXt

, (5)

where t = 1, 2, . . . , n, εt and ηt are independent and 0 ≤ ρ ≤ 1. Thus, the impulse

response function has a geometric decay. For this reason, ρ is usually called per-

sistence or memory of the effect. Note also that it induces a non-linearity in the

model. The observation mean response is given by θt = µt + Et.

The model in (5) can be written in the state space form with matrices given by

Z
′
t = [ 1 1 ] , Rt =


 1 0

0 1


, T t =


 1 0

0 ρ


 , ωt =


 ηt

0


 , ht = [σ2

ε ],

Qt =


 σ2

η 0

0 0


 , dt = 0, ct =


 0

βXt


 and αt =


 µt

Et


.

Figure 2 shows some simulated series under Model 1. As expected, the behavior

of the series is very similar to the behavior of block Et showed in Figure 1. For the

pulse response, it can be seen that small values of ρ causes in the series an effect

similar to the presence of an outlier at the point of intervention. For large values

of ρ, the series presents a jump at the point of the intervention, but with a gradual

return to the mean value. For the step response, when ρ = 0.00 or 0.50, there is

a sudden jump at the time of intervention, with a change of level and the series

remaining at the new level. When ρ = 0.99 there is a gradual change of level and

the series takes a long time to attain a new level.

Model 2
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Figure 2: Examples of pulse and step functions for Model 1. In this case, n =

100, β = 4 and ρ = 0.00, 0.50 and 0.99. The vertical line indicates the time of

intervention, T = 50, the solid line indicates the series, yt, and the dashed line

indicates the mean response θt.

The local level model with a dynamic gain factor (Alves et al., 2009) is given by




yt = µt + Et + εt, εt ∼ N(0, σ2
ε)

µt = µt−1 + ηt, ηt ∼ N(0, σ2
η)

Et = ρEt−1 + βt−1Xt

βt = βt−1 + ξt, ξt ∼ N(0, σ2
ξ )

,

where t = 1, 2, . . . , n, εt, ηt and ξt are jointly independent.

Unlike Model 1, in Model 2 the parameter βt is stochastic and is obtained

dynamically through time by a stochastic law (here a random walk).

Model 2 can be written in the state space form with matrices given by

Z
′
t = [ 1 1 0 ], Rt =




1 0 0

0 1 0

0 0 1


, T t =




1 0 0

0 ρ Xt

0 0 1


, ωt =




ηt

0

ξt


 , ht =
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[σ2
ε ], Qt =




σ2
η 0 0

0 0 0

0 0 σ2
ξ


, dt = 0, ct =




0

0

0


 and αt =




µt

Et

βt


.

Figure 3 shows some simulated series under Model 2. The behavior is very

similar to Model 1, but in this case the dynamic β causes more noise in the series.

If a pulse function is used, the estimation of the βt’s is based entirely on one

observation, and this compromises their estimation. For this reason, only the step

function will be used in Model 2.

0 20 40 60 80 100

0
2

4
6

8
10

step and ρ=0

0 20 40 60 80 100

2
4

6
8

10
12

14

step and ρ=0.5

0 20 40 60 80 100

0
20

40
60

80
100

step and ρ=0.99

Figure 3: Examples of step functions for Model 2. In this case, n = 100 and ρ =

0.00, 0.50 and 0.99. The vertical line indicates the time of intervention, T = 50, the

solid line indicates the series, yt, and the dashed line indicates the mean response

θt.

3 Estimation and prediction procedures

The parameters in Models 1 and 2 can be estimated using classical methods (i.e,

maximizing the likelihood function) or Bayesian methods. Parameters can be di-

vided into two groups: state parameters αt and hyperparameters, denoted by ϕ.

The components of ϕ are (σ2
ε , σ

2
η, ρ, β) for Model 1 and (σ2

ε , σ
2
η, σ

2
ξ , ρ) for Model 2.
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In both cases, the Kalman filter (Kalman, 1960) algorithm will be used to es-

timate the state components, αt, given the observations Y t = {y1, ..., yt} and ϕ.

Denoting the linear estimator and its variance matrix by

at = E(αt|Yt) and V t = V ar(αt|Yt),

respectively, the Kalman filter can be used to calculate the one-step ahead forecast

error, νt, and its variance

νt = yt − E(yt|Yt−1) = yt − ỹt|t−1 and Ft = ZtV t|t−1Z
′
t + ht,

where V t|t−1 = V ar(αt|Yt−1). Note that both sequences of νt’s and Ft’s depend on

ϕ.

Assuming that the disturbances εt and ωt are normally distributed, the likeli-

hood function L(ϕ; Y n) can be computed after integrating out state variables. For

a univariate time series of size n, the logarithm of the likelihood function is given by

ln L(ϕ; Y n) = ln
n∏

t=1

p(yt|Y t−1,ϕ) = −n

2
ln(2π)−1

2

n∑
t=1

ln |Ft|−1

2

n∑
t=1

ν ′tF
−1
t νt. (6)

The range of possible values considered for the components of ϕ are <+ for vari-

ances, [0, 1] for ρ and < for β.

In the next sections, the classical and Bayesian estimation procedures are de-

tailed.

3.1 Classical inference

Maximizing the logarithm of the likelihood function, given in equation (6), with

respect to ϕ yields the maximum likelihood estimator of the parameters. As the

likelihood is a nonlinear function of ϕ, numerical procedures should be used. In

this work, the well-known BFGS optimization algorithm is employed (see Franco

et al. (2008) for details).
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Inferences for the parameters under the classical approach will be done using the

bootstrap (Efron (1979)). Bootstrap methods are resampling techniques designed

to approximate the probability distribution function of the data by an empirical

function of a finite sample. Their use in time series must be performed with caution

because the observations are not independent and the time series structure may be

lost in a careless resampling. Thus, the time series must be resampled indirectly.

The most common way of performing the bootstrap in time series is resampling

the residuals of the fitted model. In this work, a parametric bootstrap method in

the residuals is used. The method consists in the following. Initially, the parameters

of the model are estimated based on the original time series, yt. As the noises in

the observation and state equations follow the normal distribution with zero mean

and variances ht and Qt, respectively, the parametric bootstrap is easily performed

replacing the variances by their estimated values and sampling observations from

this distribution, thus obtaining the bootstrap residuals, ε∗t and ω∗
t . The bootstrap

series y∗t , t = 1, . . . , n is calculated using the bootstrap residuals as

y∗t = Z
′
tα

∗
t + dt + ε∗t

α∗
t = T tα

∗
t−1 + ct + Rtω

∗
t .

The percentile bootstrap confidence interval (Efron & Tibshirani, 1993) will

be employed to build intervals for the parameters. In this case, R independent

bootstrap samples y∗1t , y∗2t , ..., y∗Rt are generated and the parameter vector ϕ̂∗ is

estimated for each bootstrap series. The lower and upper bounds of the 100(1−κ)%

percentile bootstrap confidence interval will be given by

[ϕ̂
∗(κ/2)
i ; ϕ̂

∗(1−κ/2)
i ]

in which ϕ̂
∗(κ)
i is the R.(κ)th ordered value of the bootstrap replication for each

component ϕi of vector ϕ, i = 1, ..., p.
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3.2 Bayesian inference

Using the Bayesian approach, initially it requires the specification of a prior distri-

bution of the parameter vector, ϕ, which is denoted by π(ϕ). The prior distribu-

tions obtained from π(ϕ) should reflect the previous knowledge about the parame-

ters and, most of the times, this is not feasible or very difficult to obtain. Whereas

the state parameters are easily understood, the hyperparameters refer to character-

istic of the models that are not readily understandable by users. Thus, lack of prior

information seems to be the norm for them. In these cases, it seems advisable to

use non-informative or reference prior distributions. West & Harrison (1997) details

the use of reference prior distributions but only for the state parameters. Gomes

(2006) discusses the specification of reference priors for the hyperparameters in a

few, specific structural models but no general results are available to the knowledge

of the authors. A simpler alternative is the uniform prior, given by π(ϕ) ∝ c, for

all possible values of ϕ, and 0, otherwise.

The likelihood function L(ϕ; Y n) that summarizes the sample information about

ϕ, is used to update the prior distribution, thus generating the posterior distribu-

tion of ϕ. It is obtained via the Bayes’ theorem as follows

π(ϕ | Y n) =
L(ϕ; Y n)π(ϕ)∫
L(λ; Y n)π(λ)dλ

.

The posterior distribution reflects all the uncertainty about ϕ after the data

has been observed.

The Bayes estimators considered here are the posterior mean, obtained when the

quadratic loss function is used, the posterior median, obtained when the absolute

loss function is used and the posterior mode, obtained when the 0-1 loss function

is used (Migon & Gamerman, 1999).

As in this case the posterior distribution does not have a closed form, numerical

methods such as MCMC should be used to obtain the estimates of the parameters

(see Gamerman & Lopes (2006) for details).
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In this work, a hybrid version of the Metropolis-Hastings algorithm, a known

MCMC method, is adopted. In this version, the components of ϕ are updated

separately, with different proposed densities. This approach considers the marginal

posterior distribution of the hyperparameters once the state parameters are in-

tegrated out. This is equivalent to sampling all parameters jointly, since the full

conditional for the state parameters given the hyperparameters is analytically avail-

able. Reis et al. (2006) provide substantial empirical evidence in favor of this joint

sampling scheme of all model parameters against other blocking schemes. There

are several possibilities of candidate-generating densities in the literature. Here,

a candidate-generating density proposed by Chib & Greenberg (1995), given by a

random walk centered in the last value of the parameter is used.

Credibility intervals for ϕi, i = 1, ..., p are built as follows. Given a value

0 < κ < 1, any interval (t1, t2) satisfying

t2∫

t1

π(ϕi | Y n) dϕi = 1− κ

is a credibility interval for ϕi with level 100(1− κ)%. These intervals are approxi-

mated by the corresponding order statistics of the MCMC generated sample from

ϕi, i = 1, ..., p.

3.3 Predictions

An important issue in time series analysis is to predict future values, based on the

fitted model. The prediction of a future observation yn+k based on Y n can be

obtained by the combination of the observation equation (1) at time n+k with the

k-step ahead state equation given by

αn+k =
((∏k

i=1 T n+i

)
αn +

∑k
i=1

(∏k−i
j=1 T n+k−j+1

)
cn+i

)

+
∑k

i=1

(∏k−i
j=1 T ′

n+k−j+1

)
R′

n+iωn+i,
(7)

where
∏0

i=1 Ai = I, for any matrices A1, A2, ...
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In order to obtain k-step ahead predictions, consider the predictive distribution

of (yn+k|Y n,ϕ). For the structural model (1)-(2), its mean and variance are given

by

E(yn+k|Y n,ϕ) = Z
′
n+k

((
k∏

i=1

T n+i

)
an +

k∑
i=1

(
k−i∏
j=1

T n+k−j+1

)
cn+i

)
+ dn+k (8)

and

V (yn+k|Y n, ϕ) = Z
′
n+k

(∏k
i=1 T ′

n+i

)
Vn

(∏k
i=1 Tn+i

)
Zn+k +

Z
′
n+k

∑k
i=1

(∏k−i
j=1 T

′
n+k−j+1

)
R′

n+iQn+iRn+i

(∏k−i
j=1 T n+k−j+1

)
Zn+k + hn+k.

(9)

Classical approach

The prediction function is given by E(yn+k|Y n, ϕ̂), i.e., it is obtained by replac-

ing the parameter vector ϕ by its maximum likelihood estimator ϕ̂ (Brockwell &

Davis, 1996) and is denoted by ỹ
(c)
n+k|n. Similarly, the mean square error (MSE) of

the predictions are obtained from (9) after replacing ϕ by ϕ̂.

The prediction function can be obtained from (8) for Models 1 and 2. They are

respectively given by

ỹ
(c)
n+k|n = a(µ)

n + ρ̂ka(E)
n + β̂

k∑
i=1

ρ̂k−ixn+i

and

ỹ
(c)
n+k|n = a(µ)

n + ρ̂ka(E)
n +

k∑
i=1

ρ̂k−ia(β)
n xn+i

where a
(µ)
n is the component of the state vector that estimates µt, aE

n the component

that estimates Et and a
(β)
n the component that estimates βn, using the maximum

likelihood vector ϕ̂ = (σ̂2
ε , σ̂

2
η, ρ̂, β̂) for Model 1 and ϕ̂ = (σ̂2

ε , σ̂
2
η, σ̂

2
ξ , ρ̂) for Model 2.

A percentile bootstrap confidence interval of level 100(1−κ)% for yn+k is given

by

[ỹ
∗(κ/2)
n+k|n ; ỹ

∗(1−κ/2)
n+k|n ]
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where ỹ
∗(κ)
n+k|n is the R.(κ)th ordered value of the bootstrap replication for the fore-

casting. The bootstrap forecast ỹ∗n+k|n is calculated based on the work of Thombs

& Schuncany (1990).

Bayesian approach

The prediction function is given by the mean of the predictive distribution of

yn+k|Y n and is denoted by ỹ
(b)
n+k|n. It is obtained by solving the following integral

ỹ
(b)
n+k|n =

∫
E(yn+k|Y n,ϕ)π(ϕ|Y n)dϕ

and a 100(1− κ)% credibility interval for yn+k is given by

lu∫

li

p(yn+k | Y n)dy = 1− κ.

The limits li and lu can be approximately obtained by MCMC simulation and

the steps of the algorithm are described below. Once a sample ϕ(1), ..., ϕ(m) is

obtained from π(ϕ|Y n) for each j, j = 1, ...,m:

1. α
(j)
n is generated from the distribution p(αn|ϕ(j), Y n), obtained through

Kalman filter;

2. α
(j)
n+k is generated from the distribution p(αn+k|α(j)

n ,ϕ(j),Y n), obtained through

(7);

3. Then, y
(j)
n+k = Z ′

n+kα
(j)
n+k + ε

(j)
n+k, where ε

(j)
n+k is generated from a Normal

distribution with zero mean and variance σ
2(j)
ε .

Finally, the values of y
(1)
n+k, ..., y

(m)
n+k are ordered and the κ/2 and 1−κ/2 quantiles

are taken as the lower and upper limits of the interval, respectively.
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4 Simulation results

The procedures described in the previous sections are now investigated through

Monte Carlo (MC) experiments. Series with pulse and step interventions for the

local level model were simulated, based on Models 1 and 2. The performances of

the maximum likelihood (MLE), bootstrap (Boot) and Bayes estimators - mean

(Mean), median (Med) and mode (Mode) - were evaluated for series of size n = 100

and ρ = 0.00, 0.50 and 0.99. In all cases, σ2
ε = 1.00, σ2

η = 0.10, σ2
ξ = 0.50 and

β = 4. For the Bayes estimators, the uniform prior is used to allow for a fair

comparison with the classical approach. Two MCMC chains with 2000 samples

were generated from which the first 1000 were excluded. The number of MC and

bootstrap replications were fixed at 500. The level and probability of the confidence

and credibility intervals, respectively, were fixed at 0.95.

The codes, implemented by the authors in the Ox language (Doornik, 1999),

are available on the site ftp://ftp.est.ufmg.br/pub/glaura/strucmod. Convergence

diagnostic for the MCMC methods were based on Plummer et al. (2005).

4.1 Model 1

Figures below present the average of estimated bias and MSE over 500 replications

for Model 1 with pulse and step functions.

For the pulse function (Figures 4, 5 and 6), the first conclusion that can be

drawn is that ρ is always underestimated, except in the case ρ = 0.00. If ρ is large

(ρ = 0.99), the best estimator is the Mode, with a very small bias and MSE, but

for ρ = 0.50 the best estimators are the Med and Mean and for ρ = 0.00 the best

one is the MLE. The other parameters show a very satisfactory performance for

all methods. The best estimators for σ2
η are the MLE and the Mode, regardless

of the value of ρ. For σ2
ε , all the procedures show the same behavior. In the case

of parameter β, if ρ is large all the procedures present approximately the same
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performance, but the Mean and Med are slightly better for ρ = 0.50 and 0.00.

With regard to the bootstrap, it can be seen that it mimics well the behavior of

the MLE, thus allowing this technique to be used in the classical approach to build

confidence intervals for the parameters.

For the step function (Figures 7, 8 and 9), ρ is underestimated in cases ρ =

0.99, with the Bayesian estimators, and ρ = 0.50. All the procedures show an

excellent performance to estimate ρ when this parameter assumes a large value,

but for ρ = 0.50 and 0.00, the MLE and the posterior mode are slightly better.

The performances of the methods for estimating the other parameters in the step

function are very similar to the pulse function, except in the case ρ = 0.99. It seems

that in this case the MLE is not able to estimate σ2
η, σ2

ε and β very accurately,

presenting larger bias and MSE compared to the Bayesian estimators. Once again,

the behavior of the bootstrap is very close to the MLE.

Table 1: Confidence and credibility intervals for Model 1 with pulse function.

True Confidence Interval Credibility Interval

value mean limits width coverage mean limits width coverage

ρ 0.99 [0.177; 0.983] 0.806 0.87 [0.536; 0.994] 0.458 0.95

β 4.00 [2.167; 5.681] 3.514 0.91 [1.921; 5.845] 3.924 0.97

σ2
ε 1.00 [0.687; 1.371] 0.684 0.94 [0.683; 1.427] 0.744 0.95

σ2
η 0.10 [0.007; 0.256] 0.249 0.93 [0.043; 0.449] 0.406 0.93

yn+1 * [0.221; 4.590] 4.369 0.93 [0.013; 4.275] 4.262 0.93

ρ 0.50 [0.011; 0.757] 0.746 0.91 [0.040; 0.724] 0.684 0.89

β 4.00 [1.985; 6.144] 4.159 0.92 [1.724; 6.197] 4.473 0.96

σ2
ε 1.00 [0.668; 1.328] 0.660 0.93 [0.700; 1.445] 0.745 0.95

σ2
η 0.10 [0.011; 0.213] 0.202 0.87 [0.046; 0.390] 0.344 0.94

yn+1 * [-2.179; 1.960] 4.139 0.92 [-2.427; 2.024] 4.451 0.95

ρ 0.00 - - - - - -

β 4.00 [1.944; 6.148] 4.204 0.94 [1.802; 6.231] 4.429 0.96

σ2
ε 1.00 [0.663; 1.326] 0.663 0.93 [0.702; 1.441] 0.739 0.95

σ2
η 0.10 [0.015; 0.221] 0.206 0.90 [0.046; 0.377] 0.331 0.94

yn+1 * [-2.149; 1.944] 4.093 0.92 [-2.424; 2.025] 4.449 0.95

* - there is not a single true value for yn+1 as each generated series has its own value.

Tables 1 and 2 present bootstrap and credibility intervals for Model 1 with
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Figure 4: Maximum likelihood, bootstrap and Bayesian estimation for Model 1

with pulse function and ρ = 0.99. Horizontal and vertical lines indicate the bias

and the MSE root, respectively.
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Figure 5: Maximum likelihood, bootstrap and Bayesian estimation for Model 1

with pulse function and ρ = 0.50. Horizontal and vertical lines indicate the bias

and the MSE root, respectively.
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Figure 6: Maximum likelihood, bootstrap and Bayesian estimation for Model 1

with pulse function and ρ = 0.00. Horizontal and vertical lines indicate the bias

and the MSE root, respectively.
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Figure 7: Maximum likelihood, bootstrap and Bayesian estimation for Model 1

with step function and ρ = 0.99. Horizontal and vertical lines indicate the bias and

the MSE root, respectively.
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Figure 8: Maximum likelihood, bootstrap and Bayesian estimation for Model 1

with step function and ρ = 0.50. Horizontal and vertical lines indicate the bias and

the MSE root, respectively.
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Figure 9: Maximum likelihood, bootstrap and Bayesian estimation for Model 1

with step function and ρ = 0.00. Horizontal and vertical lines indicate the bias and

the MSE root, respectively.
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pulse and step functions. In these tables, besides the estimators, the one-step

ahead forecast is also included. When ρ = 0.99, both approaches have intervals

with coverage close to 0.95 in the pulse function for all the parameters considered,

except the bootstrap confidence interval for ρ. By the other hand, the performance

of the credibility interval for the step function is much better than the bootstrap

interval, except for the one-step ahead forecast, where both are very far from the

0.95 point. If ρ = 0.50 or 0.00, both intervals show approximately the same behavior

for all parameters, either for the pulse and step functions, with coverage rates very

close to 0.95. The only exceptions are the bootstrap interval for σ2
η, which is slightly

worse than the credibility interval, and the intervals for ρ in the step function, where

both methods present coverage rate below 0.90. It should be noted that intervals

for ρ = 0.00 are not built because, being at the boundary of parameter space, the

intervals would not cover the true value of this parameter.

Table 2: Confidence and credibility intervals for Model 1 with step function.

True Confidence Interval Credibility Interval

value mean limits width coverage mean limits width coverage

ρ 0.99 [0.988; 0.998] 0.010 0.75 [0.987; 0.992] 0.005 0.88

β 4.00 [3.165; 4.169] 1.004 0.78 [3.726; 4.257] 0.531 0.90

σ2
ε 1.00 [0.027; 1.255] 1.228 0.79 [0.688; 1.434] 0.746 0.94

σ2
η 0.10 [0.201; 2.238] 2.037 0.81 [0.035; 0.443] 0.407 0.95

yn+1 * [155.64; 160.35] 4.71 0.51 [155.45; 159.83] 4.38 0.38

ρ 0.50 [0.139; 0.655] 0.516 0.89 [0.090; 0.601] 0.511 0.81

β 4.00 [2.839; 6.330] 3.491 0.92 [2.964; 6.634] 3.670 0.91

σ2
ε 1.00 [0.695; 1.365] 0.670 0.94 [0.692; 1.441] 0.749 0.96

σ2
η 0.10 [0.005; 0.187] 0.182 0.80 [0.046; 0.436] 0.390 0.94

yn+1 * [5.761; 10.052] 4.291 0.93 [5.536; 9.819] 4.283 0.94

ρ 0.00 - - - - - -

β 4.00 [2.135; 5.329] 3.194 0.94 [0.729; 5.465] 4.736 0.95

σ2
ε 1.00 [0.686; 1.360] 0.674 0.93 [0.697; 1.434] 0.737 0.95

σ2
η 0.10 [0.007; 0.201] 0.194 0.84 [0.046; 0.395] 0.349 0.93

yn+1 * [1.792; 5.977] 4.185 0.92 [1.543; 5.816] 4.273 0.94

* - there is not a single true value for yn+1 as each generated series has its own value.
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4.2 Model 2

Figures 10, 11 and 12 present the average of estimated bias and MSE over 500 MC

replications for Model 2. As was explained in Section 2, in this case the model is

not able to estimate the influence of a pulse function. Therefore, only the results

for a step function are presented below.

It can be seen that, in general, the MLE and the posterior mode are slightly

better than the other procedures for estimating all parameters, with smaller bias

and MSE. Once again, ρ is always underestimated, except in the case ρ = 0.00.

The results for the bootstrap and credibility intervals with the step function are

presented in Table 3. The performance of the credibility interval is again better than

the bootstrap interval, in the case ρ = 0.99, like Model 1 with the step function.

If ρ = 0.50 or 0.00, the credibility interval shows, in general, coverage rates closer

to 0.95, except for σ2
ξ , where the bootstrap interval is better. Once again, intervals

for ρ = 0.00 are not built.

Table 3: Confidence and credibility intervals for Model 2 with step function.

True Confidence Interval Credibility Interval

value mean limits width coverage mean limits width coverage

ρ 0.99 [0.671; 0.998] 0.327 0.98 [0.887;0.997] 0.110 0.96

σ2
ξ 0.50 [0.128; 1.243] 1.115 0.99 [0.255; 1.815] 1.125 0.93

σ2
ε 1.00 [0.656; 1.407] 0.751 0.96 [0.604; 1.436] 0.832 0.97

σ2
η 0.10 [0.001; 0.280] 0.279 0.74 [0.032; 0.722] 0.690 0.95

yn+1 * [-27.19; -22.71] 4.48 0.27 [-29.49; -20.53] 6.956 0.81

ρ 0.50 [0.001; 0.608] 0.607 0.67 [0.103; 0.613] 0.510 0.81

σ2
ξ 0.50 [0.169; 2.058] 1.889 0.93 [0.240; 2.174] 1.934 0.90

σ2
ε 1.00 [0.562; 1.343] 0.781 0.90 [0.559; 1.420] 0.861 0.95

σ2
η 0.10 [0.003; 0.309] 0.306 0.85 [0.041; 0.762] 0.721 0.92

yn+1 * [-3.434; 0.855] 4.289 0.77 [-3.258; 2.660] 5.920 0.84

ρ 0.00 - - - - - -

σ2
ξ 0.50 [0.052; 1.141] 1.089 0.92 [0.102; 1.526] 1.424 0.97

σ2
ε 1.00 [0.636; 1.417] 0.781 0.93 [0.623; 1.471] 0.848 0.97

σ2
η 0.10 [0.003; 0.270] 0.267 0.85 [0.037; 0.588] 0.551 0.93

yn+1 * [-2.759; 1.368] 4.127 0.79 [-2.662; 3.329] 5.991 0.87

Obs.: There is not a single true value for yn+1 as each generated series has its own value.
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Figure 10: Maximum likelihood, bootstrap and Bayesian estimation for Model 2

with step function and ρ = 0.99. Horizontal and vertical lines indicate the bias and

the MSE root, respectively.
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Figure 11: Maximum likelihood, bootstrap and Bayesian estimation for Model 2

with step function and ρ = 0.50. Horizontal and vertical lines indicate the bias and

the MSE root, respectively.
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Figure 12: Maximum likelihood, bootstrap and Bayesian estimation for Model 2

with step function and ρ = 0.00. Horizontal and vertical lines indicate the bias and

the MSE root, respectively.

5 Application to real series

In this section, the methodology previously described is applied to two real time

series. The first one is the Ample Price to Consumer Index (APCI) in the city of

Belo Horizonte, Brazil, from July, 1997 to June, 2008. This series appears to have

a pulse intervention around October, 2002. The second series is the monthly index

of BOVESPA (stock market of São Paulo, Brazil), in the period from January, 1991

to August, 2008. For this series, the intervention takes the form of a step function,

presenting a jump around mid 1994.

5.1 APCI series

The data for the Ample Price to Consumer Index in Belo Horizonte are collected by

IPEAD - Fundação Instituto de Pesquisas Econômicas, Administrativas e Contábeis

de Minas Gerais - Brazil. This index measures the evolution of the incomes in

families spending from 1 to 40 minimum salaries per month. The APCI series is
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composed of 132 monthly observations in the period July, 1997 to June, 2008.

From Figure 13, the APCI series seems to present a behavior of a local level

model (LLM), with an intervention around October, 2002. This shift was due to

the concerns in the economy after the election of the leftist President Lula. There-

fore, the LLM was fitted with and without the intervention component, in order to

assess the relevance of the intervention. As it was seen in Section 2, Model 2 is not

appropriate in this case, as the intervention is of a pulse form.

Time
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Figure 13: The solid line indicates the series, yt, and the dotted line and dashed

line indicate the mean responses of Bayesian Model 1 and Classical Model 1, re-

spectively.

Table 4: AIC and one-step ahead forecast for the APCI series.

Models AIC Forecast (true value=0.350) Forecast Int.

LLM Classical 212.650 0.320 [-0.508; 1.456]

LLM Bayesian 212.600 0.330 [-0.302; 0.962]

Model 1 Classical 198.050 0.419 [-0.407; 1.442]

Model 1 Bayesian 198.101 0.349 [-0.443; 1.430]
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Table 5: Fit of Model 1 to the APCI series.

Classical Inference Bayesian Inference

MLE Interval Mode Interval

ρ 0.797 [0.030; 0.883] 0.801 [0.558; 0.884]

β 1.975 [1.411; 2.888] 1.968 [0.851; 2.685]

σ2
ε 0.225 [0.167; 0.277] 0.222 [0.168; 0.298]

σ2
η 5.88×10−12 [2.13×10−18; 1.63×10−3] 3.52×10−5 [2.88× 10−5; 2.52× 10−2]

From Table 4, it is verified that Model 1, in both classical and Bayesian estima-

tion, presents a lower AIC than the LLM, thus confirming that the pulse interven-

tion should be included in the model. One-step ahead forecast was calculated for

July, 2008. The true value is 0.35, and it can be seen that the Bayesian prediction

is much closer to the true value than the classical one, with smaller interval width.

Estimates for the parameters are shown in Table 5. It seems that the level term µt

is constant in time, as the credibility interval of σ2
η is tightly concentrated around

zero. The most probable value of ρ is 0.80 with a skewed posterior distribution.

The posterior mode of the magnitude of the jump is 1.934, compatible with the

visual inspection of the series.

5.2 IBOVESPA series

IBOVESPA series is the monthly series of an index of the stock market of São

Paulo (Brazil), in the period from January, 1991 to August, 2008. This series

is composed of 212 monthly observations. From Figure 14, it seems IBOVESPA

follows a LLM with intervention component of a step form. The series has values

above zero up to mid 1994 and around zero afterwards. One reason for this behavior

is the introduction of the Real Plan, a government strategy that changed currency

in Brazil, implemented in July 1994. In order to compare the procedures, the LLM

and Models 1 and 2 with intervention of a step form will be fitted to IBOVESPA.
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Figure 14: The solid line indicates the series, yt, and the dotted line and dashed

line indicate the mean responses of Classical Model 2 and Bayesian Model 2, re-

spectively.

Table 6 shows the AIC and one-step ahead forecast using the three models

mentioned above. It can be seen that Model 2, in both classical and Bayesian

approaches, presents a lower AIC than the LLM and Model 1, but the Bayesian

procedure gives a forecast closer to the true value of -0.064 than the classical proce-

dure, with smaller interval width. Estimates for the parameters are shown in Table

7. Once again, it seems that the level term µt is constant in time, as it can be

verified from the credibility interval for σ2
η. The value of ρ is very small.

6 Concluding remarks

Intervention analysis with structural models was investigated using classical and

Bayesian approaches for inference. Intervention was only applied for the mean level

of the series and in two canonical forms: pulse and step functions. These functions

allowed for breaks of abrupt and gradual forms, respectively. Static and dynamic

gain factors were considered. Normal observations were assumed and they led to
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Table 6: AIC and one step ahead forecast for the IBOVESPA series.

Models AIC forecast (true value=-0.064) Interval forecast

LLM Classical -174.389 -0.020 [-0.291; 0.229]

LLM Bayesian -174.042 -0.009 [-0.314; 0.294]

Model 1 Classical -212.488 0.020 [-0.255; 0.296]

Model 1 Bayesian -212.050 0.003 [-0.229; 0.348]

Model 2 Classical -255.019 0.010 [-0.291; 0.306]

Model 2 Bayesian -255.009 -0.016 [-0.195; 1.001]

Table 7: Fit of Model 2 to the IBOVESPA series.

Classical Inference Bayesian Inference

MLE Interval Mode Interval

ρ 0 [0; 0.022] 0.002 [0.001; 0.184]

σ2
ξ 0.079 [0.042; 0.123] 0.090 [0.046; 0.164]

σ2
ε 0.010 [0.010; 0.012] 0.010 [0.008; 0.013]

σ2
η 2.30×10−13 [3.69×10−21; 3.23×10−5] 1.086×10−6 [1.815×10−7; 2.427×10−4]

an exact expression for the integrated likelihood for the hyperparameters. Under

the classical approach, maximum likelihood (ML) was performed and approximate

confidence intervals were built using the bootstrap technique. Under the Bayesian

approach, the posterior distribution was obtained and MCMC methods were used

to approximate it. Other approximating methods could also be used to perform

the likelihood-based inference presented. Some of these alternative methods are

mentioned in Durbin & Koopman (2001).

Comparisons between the classical and Bayesian procedures were performed

through extensive Monte Carlo simulation in a variety of parameter settings. The

ML estimator and the posterior mode behaved very similarly and presented smaller

bias and MSE than posterior means and medians overall. The only exception

was near non-stationary persistence (ρ = 0.99) with static gain factor, where all
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Bayesian point estimators showed a clear superiority over classical ones.

Confidence and credibility intervals were built for the parameters and forecasts

and compared in terms of width and coverage rate. Credibility intervals provided

better results with step function intervention, for the models considered. For the

pulse function, the coverage rates of both intervals were very close, in general, to

the nominal level.

There are a number of other issues related to the topic that were not addressed

here. This paper focused more directly towards hyperparameter estimation and

prediction of future values. Therefore, smoothed distributions for the state param-

eters were not discussed but they can be easily obtained. Seasonality and more

general trend forms can also be considered as extra components to be added to

the model and can be easily included. Results could also be extended to interven-

tion models in the exponential family, considered in Alves et al. (2009), but exact

likelihood is no longer analytically available. A more thorough discussion about

forecasting with incorporation of the uncertainty about the hyperparameters could

also be undertaken but will be left for future work. This task requires more consid-

eration along the lines suggested by Harvey (1989) for classical inference although

this issue is automatically taken into account in Bayesian inference.
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de Amparo à Pesquisa no Estado de Minas Gerais (FAPEMIG Foundation). The

author Dani Gamerman was supported by CNPq-Brazil and Fundação de Amparo
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