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Abstract

In this paper, two integrated Bayesian models for differential item functioning (DIF)
analysis in item response theory (IRT) models are proposed and compared. The model is
integrated in the sense of modelling the responses along with the DIF determination, thus
allowing DIF detection and DIF explanation in a simultaneous setup. DIF occurs because
item characteristics may change according to grouping factors and its explanation is provided
in the form of mixed models. Practical situations may lead to the simultaneous consideration
of a number of factors. This gives rise to an extended class of models also introduced in this
paper. The hypothesis of multifactorial DIF with possibly different explanations for each
factor or combination of factors is also introduced. Important practical issues concerning
identifiability of the models and the convergence of MCMC algorithms are discussed and
illustrated in simulated examples. A real data set analysis of a Mathematics exam applied
nationally to Brazilian elementary school students is performed considering two DIF factors:
geographical region and type of school. The results highlight the relevance of the proposed
methodology and of each of its model components to address important issues in educational
studies and testing.

Key Words: Bayesian analysis, Item Response Theory, Differential Item Functioning,
MCMC, multifactor.

1 Introduction

Standard item response theory (IRT) is based on models that assume that items behave
equally to all individuals. Differential Item Functioning (DIF) allows an item to function differ-
ently among groups in its usual characteristics: discrimination, difficulty and guessing. Namely,
if an item has DIF, students from different groups and with same proficiency may have different
probability of correctly answering it. It is important to have items without DIF (usually called
anchor items) in order to identify the proficiencies and the DIF’s correctly.

Differential Item Functioning (DIF) analysis has been very important in educational research
since the 1960’s. Its importance is shown in a large number of applied studies. For instance,
studies on performance differences in items of educational assessment tests (like GRE, SAT,
GMAT, etc.) in groups defined by different ethnic characteristics, gender and socioeconomic
status have been frequently shown in literature (eg. O’Neil & McPeck (1993), Shimitt & Ble-
instein (1987), Berberoglu (1995), Gierl et al. (2003) and cited references). Therefore, it is not
surprising that several statistical methods have been developed in order to support empirical
analysis. There is a profusion of methods for the detection of items with DIF. Some of the most
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used ones are: Mantel-Haenszel statistic based procedures (particularly the MH D-DIF statistic,
cf. Dorans & Holland (1993)), the logistic regression method (Swaminathan & Rogers (1990)),
the Simultaneous Item Bias Test - SIBTEST (Shealy & Stout (1993)) and methods that use the
item parameters from Item Response Theory (IRT) models (Lord (1980); Thissen, Steinberg &
Wainer, (1993)). Other methods are found, for example, in Clauser & Mazor (1998).

The first three methods cited above depend, directly or indirectly, on a previous estimation
of the ability or from alternative criteria to match the individuals, which, in general, can not
be dissociated from the DIF existence. Therefore, the ability purification in successive stages
is recommended where the DIF item detected (in each stage) are eliminated from the ability
calculation for the next analysis (Holland & Thayer (1988); Wang & Su (2004)). On the other
hand, the methods based on IRT models construction postulate two approaches for model iden-
tification. The first one consists in setting the mean of the DIF parameters equal to a constant,
typically zero. In the second one, a subset of anchor items, for which the non existence of DIF is
assumed, is defined a priori, like the IRT-LR and IRT-D2 (Thissen, Steinberg & Wainer (1993)).
In other approaches, the anchor items can remain constant or vary in different stages depending
on the results of the tests (Wang & Yeh (2003)). In any case, all these proposals involve differ-
ent stages of DIF parameters detection and decision about which items have DIF. May (2006)
proposes an extension of the standard graded response model (Samejima, 1997) which allows
the overall threshold (difficulty) and discrimination parameter to vary across different groups,
except for a set of anchor itens.

The detection of items with DIF is an important step in DIF analysis, but a complete analysis
also requires satisfactory classification of the DIF found, identification of the factors associated
to DIF along with the respective hypotheses formulation related to the DIF causes and perhaps,
a hypotheses confirmatory analysis. For example, Schmitt, Holland & Dorans (1993) suggest
that specially planned studies should be used to confirm the hypotheses formulated from the
DIF factors study. In this context, it is natural to construct regression models that associate
covariates, related to the items, to the DIF’s magnitude. The covariates would represent the
DIF factors in such a way that the results of the regression analyses would confirm or not the
formulated hypotheses.

Longford, Holland & Thayer (1993) proposed a random effects regression model where the
parameters of the model vary according to different forms of the test administration and, in
addition, the DIF’s magnitude is explained by variables correlated to the items (in particular,
a difficulty measure of the item). Rogers & Swaminathan (2000) used characteristics of the
individuals on the second level of their two levels model to improve the equalization between the
members of the reference and focal groups. Swanson et al. (2002) propose an extension of the
logistic regression method of Swaminathan & Rogers (1990) imposing an hierarchical structure
where characteristics related to the items via covariates are included on the second level of
the regression model allowing the confirmation or rejection of the hypotheses about DIF. Once
again, all the three approaches above require the previous determination of the ability or of a
DIF measure. In addition, the detection and the explanation (through associated factors) steps
are performed separately.

The importance of the Bayesian approach have been steadily growing in IRT (see, for exam-
ple, Albert (1992), Patz & Junker (1999a), Patz & Junker (1999b), Fox & Glas (2001), Béguin
& Glas (2001)). Janssen, Schepers & Peres (2004) propose a model with item group predictors
using a Bayesian approach. DIF analysis is a particularly appropriate environment for a genuine
Bayesian formulation due to the complex structure of the models and the subjective decision
features involved, which can be naturally formulated through the Bayesian argument. For ex-
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ample, Zwick, Thayer & Lewis (1999, 2000) and Zwick & Thayer (2002) consider a formulation
where the MH D-DIF statistic is represented by a normal model where the mean is equal to
the “real DIF parameter” for which a normal prior distribution is explicitly considered. These
authors use the Empirical Bayes (EB) approach for the posterior estimation of the parameters.
Sinharay et al. (2006) consider the same formulation and propose informative prior distributions
based on past information and show that the “Full Bayes” (FB) method leads to improvements
if compared to the two other approaches, specially in small samples. More recently, Soares,
Gonçalves & Gamerman (2006) proposed a methodology for incorporating DIF detection along
with parameter estimation from a Bayesian perspective.

This paper presents an integrated Bayesian approach for DIF detection and analysis. A
model based on Gonçalves (2006) is introduced and compared with the model proposed by
Soares, Gonçalves & Gamerman (2006). Both models simultaneously detect items with DIF
in difficulty and discrimination and estimate all the other parameters of the model. They
additionally provide explanation of DIF through covariates.

All models above consider the existence of DIF in the item characteristics and/or allow for
changes in the population model for the proficiencies according to a single classifying factor.
Examples of factors include: gender, ethnicity, geographical region, type of school. However,
these factors may jointly intervene in the analysis. The different forms this can take place range
from no interactions between them to the saturated model with all possible forms of interaction.

In this paper, practical considerations of the data set lead to the consideration of multiple
factors. Wang (2000) presents a model for multifactor analysis of DIF considering only the
Rasch Model. In his model, at least one item has to be anchored (i.e., believed to have no DIF)
for model identification. Besides that, the DIF detection is not made simultaneously with the
estimation of the other parameter and the DIF parameters do not have a structure of explanation
through covariates.

The models introduced in this paper consider the 3 parameters logistic model (Birnbaum
(1968)), and do not required neither any previously set anchor item nor setting the mean of
the DIF parameters equal to zero. Besides that, the DIF detection is made simultaneously
with the estimation of the other parameter and a regression structure is used to explain the DIF
parameters using covariates. The model identification is achieved by imposing prior distributions
either to the DIF parameters and/or to the DIF probability parameters. In the second situation,
prior distributions may be asymmetric or not.

Given the large dimensionality of the parameter space, it becomes important to understand
the implications of the model assumptions. Some issues of practical relevance concerning prior
distributions, the identifiability of the model and the convergence of the MCMC algorithm will
also be discussed. Simulated data sets are used to illustrate the capabilities of the model in a
variety of settings. The models are then used to analyse a data set concerning a Mathematics
Exam applied to students of the 4th grade of elementary school in Brazil. The students are
firstly separated by a factor given by the country’s main regions. Important cultural differences
between the regions are shown to provide a substantial impact to the study. Later, another
grouping factor associated with the type of school is also incorporated to the analysis. Different
multifactor DIF models are then formed and compared.

Section 2 shows the proposed models for DIF Analysis. Section 3 presents aspects of the
Bayesian inference procedure. In Section 4 simulated studies are applied to the proposed models
and Section 5 shows a real data analysis where the proposed models are applied.
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2 Models for DIF Analysis

Typically, in educational assessment, a test is formed by I items, but student j only answers
a subset I(j) of these items. Let Yij , j = 1, . . . , J , be the score attributed to the answer given
by the student j to the item i ∈ I(j) ⊂ {1, . . . , I}. Only the dichotomic case, where one of the
scores in {0, 1} is attributed to the item will be considered. This way, Yij = 1 if the answer
is correct and Yij = 0 if the answer is wrong. In general, there can be different types of DIF
(see Hanson (1998) for a wider characterization), but restricted to the characteristics which are
made explicit by the three parameters model - 3PL (Birnbaum (1968)), the types of DIF can be
immediately characterized according to the difficulty, discrimination and guessing.

2.1 3PL Model with DIF

Define P (Yij = 1) = pij , and ∆ij = logit(pij) = ln
(

pij
1− pij

)
. Then, pij = logit−1(∆ij) =

1
1 + e−∆ij

. The main structure of the models used in this paper to associate the student’s answer

to his/her ability is:

P (Yij = 1|θj , aig, big, cig) = cig + (1− cig)logit−1(∆ij) (1)
where ∆ij = Daig(θj − big)

for i = 1, . . . , I , j = 1, . . . , J and g denotes the group the individual belongs to, where g =
1, ..., G is assumed to be known for all individuals, with G < J .

DIF is explicited in the model by setting the item’s discrimination parameter as aig =
e−d

a
igai, the item’s difficulty parameter as big = bi − dbig and the item’s guessing parameter as

cig = ci (∈ [0, 1]),∀g where dhig is the DIF parameter for discrimination and difficulty respectively,
for h = a, b. For identification, dhig = 0 is set for the reference group g = 1 and h = a, b. Thus,
the DIF related to the discrimination or difficulty of item i in group g is dhig 6= 0 whenever
g = 2, . . . , G, for h = a, b, respectively. It represents the DIF related to the difficulty or
discrimination of the item in group g with respect to group 1. Although conceptually possible,
DIF is not incorporated to the guessing parameter due to the known difficulties in the estimation
of this parameter and by practical restrictions.

It can also be assumed that the students proficiencies are affected by the grouping factor
and thus, they are modelled as θj |λg ∼ N(µg, σ2

g), where λg = (µg, σ2
g), where g = 1, ..., G.

Some constraints are also required for identification of the mean and variance parameters for
the proficiencies in this model. In line with the restrictions for the DIF parameters, restrictions
are set by taking µg = 0 and σ2

g = 1 when g = 1. Thus, λg = (µg, σ2
g), for g = 2, . . . , G, is

unknown and must be estimated along with the other parameters.

2.2 DIF Detection

It is possible to structure DIF parameters in a variety of ways. An interesting approach is
provided by mixed model through the inclusion of covariates and random effects to explain them.
This mixed model can be placed as one component in a mixture while the other one accounts for
the absence of DIF. This way, DIF can be detected and, if detected, explained simultaneously.
One simple model accommodating for that assumes that

dhig ∼
(

1− πhig
)
F0 + πhigN

(
whigγ

h
g , (τ

h
g )2
)
, (2)
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where whig is a row vector containing the values of the covariates that are relevant to explain

the DIF behaviour, γhg is the vector of their coefficients and
(
τhg

)2
is the item’s specific random

factor variance in group g for parameter h.
Equation (2) defines a normal regression model where a design matrix W h

g is formed with
rows whig, i = 1, . . . , I. The explanatory variables can be different for each group. When they
are the same, the design matrix can be denoted by W h. If the covariates to explain DIF for
difficulty and discrimination are the same, the notation for the design matrix simplifies further
to W .

Two classes of model can be proposed under (2). Model 1 assumes that F0 = N
(

0, s2
i (τ

h
g )2
)

and πhig ∈ {0, 1}, where s2
i is a suitably small number. This kind of mixture was proposed by

George & McCulloch (1993) for variable selection in a regression model and was applied for DIF
analysis by Soares, Gonçalves and Gamerman (2006). Model 2 assumes that F0 = δ0, where
δ0 is a point-mass at zero and πhig ∈ [0, 1]. Point-mass mixture ideas go back to Jeffreys (1939)
and are the basis of point null versus composite alternative hypothesis testing from a Bayesian
viewpoint. This kind of mixture is also used nowadays, for example, in gene expression genomics
modeling (West et al. 2006).

The distribution in (2) can be rewritten with the use of latent variables zhig as

dhig|zhig ∼ N
((
whi γ

h
g

)
zhig , [s2

i ]
1−zhig(τhg )2

)
and zhig|πhig ∼ Ber(πhig), (3)

where s2
i = 0 for Model 2, defining 00 = 0. Despite this similarity, the range of possible values and

consequently the prior distribution for the weights π is substantially different between the two
models presented above and results below illustrate some of the consequences of this difference.

2.3 Multifactor Models

It is possible to consider more than one group division for the DIF analysis. This possibility
is very relevant in practical situations when a number of factors such as gender, ethnicity, region
and type of school affect the item´s operating characteristics. The existence of more than one
grouping factor opens up a host of possible models to describe the DIF parameters dhig.

Models entertained by categorical data analysis (Agresti, 2002) can be applied. On one
extreme there is the saturated model where all interactions between factors are allowed and
on the other extreme, the factors may not interact leading to models having only main factor
effects. Intermediate models may allow for second or higher order interactions as in standard
categorical models. These ideas can be applied for both proficiencies and DIF parameters as
described below.

2.3.1 Multifactor DIF

The K-factor model for the DIF parameters is obtained by generalizing the 1-factor model
as follows. Let g = (g1, . . . , gK) denote the group an individual belongs to according to its
classification in each of the K grouping factors, where gk is the group the individual belongs to
in the k-th factor for gk = 1, ..., Gk and k = 1, ...,K. (For example, if sex and region are the
factors of the model then K = 2, G1 = 2 and G2 = 5 for a country with 5 regions.) From this
formulation, DIF parameters become denoted by dhi(g1(j),...,gK(j)), for i = 1, ..., I and h = a, b.
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It is possible to have several models for both item parameters a and b by including or not
each possible interaction between factors. A general form of the model for h = a, b is

dhi(g1,...,gK) =
K∑
k=1

dhi(gk) +
K∑
k=1

K∑
l=1

dhi(gk,gl) + ... (4)

The first summation in the right hand side considers only the main effects while the second
considers 2nd order interactions between pairs of factors. Wang (2000) introduced these models
for the DIF difficulty. Here, they are extended to account for DIF in discrimination but also to
incorporate detection and explanation of DIF, as detailed below.

The multifactor modelling of the DIF can be combined with the mixed model structure (2)
of the previous subsection. Thus, each main effect dhi(gk) or p-th order interaction parameter
dhi(gk1 ,...,gkp ) (2 ≤ p ≤ K) can be explained by a mixture allowing for simultaneous detection
and explanation. For the main effects, the multi-factor model with detection and explanation is
given by

dhigk |z
h
igk
∼ N

((
whigkγ

h
gk

)
zhigk , [s2

i ]
1−zhigk (τhgk)2

)
and zhigk |π

h
igk
∼ Ber(πhigk), (5)

where whigk is the vector of the DIF explanatory variables for item i, γhgk is the vector of their

coefficients and
(
τhgk

)2
is the item’s specific random factor variance, for group gk of factor k for

parameter h, for gk = 1, ..., Gk, k = 1, ...,K and h = a, b. Similar mixed models can be built for
detection and explanation of interaction effects.

The saturated model is obtained when all possible interactions are considered and is equiv-
alent to the model with a single grouping factor with

∏K
k=1Gk groups. The DIF model having

only main effects and no interaction is given by the first terms in the right hand side of expression
(4). In any case, some identification restrictions must be imposed. For simplicity, we assumed
for main effects that dhigk = 0 when gk = 1 and dhigk 6= 0 whenever gk = 2, ..., Gk, for k = 1, ...,K
and h = a, b. Under this parametrization, dhigk represents the DIF parameter of item i in group
gk compared to group 1 for factor k, k = 1, ...,K.

2.3.2 Multifactor Proficiencies

Similar ideas may be applied for the proficiencies as a number of factors may intervene
and induce heterogeneity in the characterization of the student population, possibly the same
factors that affect the items characteristics. For the multifactor modelling of the proficien-
cies it is assumed that, a priori, θj |λ(g1,...,gK) ∼ N(µ(g1,...,gK), σ

2
(g1,...,gK)), where λ(g1,...,gK) =

(µ(g1,...,gK), σ
2
(g1,...,gK)).

Same comments made above are applied here and a number of models may be considered
according to the each interactions between factors is allowed. If the factors do not interact in the

specification of both population parameters for the proficiencies, then µ(g1,...,gK) =
K∑
k=1

µgk and

σ2
(g1,...,gK) =

K∏
k=1

σ2
gk

, for i = 1, . . . , I, j = 1, . . . , J . The usual additive form is used for variances

in the logarithmic scale. This is not compulsory but makes interpretation and identification
easier.
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Some constraints are required for identification of the mean and variance parameters for the
proficiencies in this model. These restrictions are set for the main effects by taking µgk = 0 and
σ2
gk

= 1 when gk = 1, for k = 1, ...,K. Similar constraints are applied to interaction effects.
Thus, λgk = (µgk , σ

2
gk

), for gk = 2, . . . , Gk and k = 1, . . . ,K, is unknown and must be estimated
along with the other parameters.

In this paper, special attention is given to the model only with main effects (no interaction)
and the saturated model (all interactions) for both DIF parameters and proficiencies. They have
a strong and meaningful interpretation in the light of the data under analysis.

3 Bayesian Inference

This section explains the Bayesian inference process and discusses some relevant issues con-
cerning the prior distribution of the parameters πhigk in Model 2, the identifiability of the models
and the convergence of the MCMC algorithms.

3.1 Inference

Define the parameter vector Ψ = {Ψ1,Ψ2,Ψ3}, divided into components Ψ1 = {θ, λ}, Ψ2 =
{a, b, c} e Ψ3 = {d, π, γ, τ}, and each element in the components represents the corresponding
parameter with all possible indexes, for example θ = {θ1, . . . , θJ}. The main aim of the inference
process is to obtain the joint posterior p(Ψ|Y ) distribution given by:

p(Ψ|Y ) = p(Ψ|Y,W ) =
p(Y |Ψ)p(Ψ|W )∫

. . .
∫
p(Y |Ψ)p(Ψ|W )dΨ

, (6)

where the vector Y contains all data values Yij that are observed.
Since it is not possible to obtain the complete analytic expression for the density above,

MCMC (Markov chain Monte Carlo) methods are used to draw samples of this distribution and
approximate it (see Gamerman & Lopes (2006) for details).

It is assumed, a priori, that Ψ1, Ψ2 and Ψ3 are independent, that is: p(Ψ) =
3∏
i=1

p(Ψi). The

prior below is detailed for the multifactor model for DIF and proficiencies only with main effects.
The prior for other DIF and proficiencies models with interaction between effects differ only in
a few details and are therefore omitted for conciseness.

The prior for the first group of parameters is given by

p(Ψ1) =
J∏
j=1

p(θj |µ(g1,...,gK), σ
2
(g1,...,gK))

K∏
k=1

Gk∏
gk=2

p(µgk)p(σ2
gk

)

where:

(θj |µ(g1,...,gK), σ
2
(g1,...,gK)) ∼ N

(
K∑
k=1

µgk ,

K∏
k=1

σ2
gk

)
, µgk ∼ N

(
m0, s

2
0

)
and σ2

gk
∼ IG (α0, β0),

for j = 1, . . . , J , k = 1, . . . ,K and g = 2, . . . , G, where IG denotes the Inverse Gama distribution.
The prior for the second group of parameters is given by

p(Ψ2) =
I∏
i=1

p(ai)p(bi)p(ci)
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where ai ∼ LN
(
mai , s

2
ai

)
, bi ∼ N

(
mbi , s

2
bi

)
and ci ∼ beta (αci , βci), for i = 1, . . . , I, where LN

denotes the Log-Normal distribution.
The prior distribution of Ψ3 is

p(Ψ3|W ) =
∏
h=a,b

K∏
k=1

G∏
g=2

(
I∏
i=1

p
(
dhigk |π

h
igk
,W h

gk
, γhgk , (τ

h
gk

)2
)
p(πhigk)

)
p(γhgk)p

(
(τhgk)2

)
where p

(
dhigk |π

h
igk
,W h, γhgk , (τ

h
gk

)2
)

is given in (3), πhigk ∼ Ber
(
ξhigk

)
in Model 1, πhigk ∼ beta

(
απhigk

, βπhigk

)
in Model 2, γhgk ∼ N

(
mγhgk

, s2
γhgk
ILhgk

)
and (τhgk)2 ∼ GI(ατhgk

, βτhgk
) for h = a, b, i = 1, . . . , I,

k = 1, . . . ,K and g = 2, . . . , G. Note that Model 2 has one hierarchical level more than Model
1. This is equivalent to setting πhig|ξhig ∼ Ber(ξhig) and ξhig ∼ beta(απhig , βπhig).

3.2 Prior distribution of πhigk

Simulated studies in Gonçalves (2006) show that the prior distribution of the parameters πhigk
has a substantial influence on the joint posterior distribution, specially on the estimation of these
parameters. The following Lemma helps to explain why. The proof is left for the Appendix.

Lemma 1 If a prior distribution beta(α, β) is assumed for πhigk in Model 2, then, its posterior

mean is restricted to the interval
[

α

α+ β + 1
,

α+ 1
α+ β + 1

]
.

If, for example, a beta(1,1) prior distribution is used then, from Lemma 1, the posterior
mean of πhigk will be restricted to the interval [1/3, 2/3]. Larger values of the parameters will
make this interval even smaller. This is bound to make the classification of an item as having
or not having DIF more difficult and, consequently, lead to a more difficult estimation of the
other parameters of the model. For that reason, beta distributions with parameters smaller than
1 are recommended whenever the analyst lacks knowledge about them. This will be assumed
as the prior distribution for the parameters πhigk in this paper. This kind of distribution has a
“bath tub” shape, that is, it is bimodal and concentrates most of its mass in the extremes of
the interval (0, 1).

Simulation studies presented in Gonçalves (2006) compare several prior distributions and
concludes that the beta(0.01,0.01) leads to better estimation of the other parameters of the
model. This distribution will be used when there is little or no information about the item.
If there is information only about the location of π, asymmetric distributions with small but
unequal parameters such as beta(0.01, 0.05) or beta(0.07, 0.01), may be a possibility. The use
of “bath tub” shape beta prior distributions makes the marginal posterior distribution of πhigk
bimodal, with the modes located in the extremes of the interval (0, 1), as illustrated in the
example shown in Figure 1.

Although πhigk represents a probability, and, in principle, can vary freely in the unit interval,
the kind of posterior distributions obtained indicates that bernoulli prior distributions, restrict-
ing the distribution of the πhigk ’s to {0, 1}, may yield basically the same results. Figure 2 shows
the posterior mean of the πhigk ’s obtained in a simulated study using different prior distributions.
The results of the beta(0.01,0.01) and the bernoulli(0.5) (both symmetric with mean 0.5) are
very close. When using asymmetric distributions, more difference may be found. In any case,
bernoulli distributions seem to provide more discrimination. This feature may be helpful when
analysing real datasets.
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Figure 1: Histograms of the marginalized posterior distributions of πa4,2 (left) and πb4,2 (right)
for item 4 in a simulated example with one factor (K = 1) and 2 groups (G = 2). The prior
distribution of these parameters is a beta(0.01,0.01). This item only has DIF in the difficulty
and this is correctly estimated as the histograms show.

Figure 2: Posterior mean of πbi,2 in the same simulation data set of Figure 1 using different
prior distributions. Left panel shows symmetric priors with mean = 0.5: beta(0.01, 0.01) - solid;
bernoulli(0.5) - hollow. Right panel shows asymmetric priors with mean = 0.2: beta(0.01, 0.04)
- solid; bernoulli(0.2) - hollow. Circles represent items with DIF and triangles represent items
without DIF.

3.3 Model identifiability and convergence issues

Note that the likelihood function of both models is not identifiable, since any transformation

θj
∗ =

θj + r2

e−r1
+
bi(e−r1 − 1)

e−r1
,
(
daigk(j)

)∗
= daigk(j) + r1 and

(
dbigk(j)

)∗
=

db
igk(j)

−r2
e−r1

, ∀ j for which
gk ≥ 2, k = 1, . . . ,K, g = 2, . . . , G, i = 1, . . . , I and r1, r2 ∈ IR, gives the same probability
for the individual j to correctly answer item i. Simulated studies presented in the next section
show that the parameters of the model are well estimated despite that. The reason can only be
attributed to the influence of the prior distribution. It identifies the parameters and thus makes
the posterior distribution identifiable.

This is a situation encountered in other statistical models; the likelihood is not identifiable
or is not efficient to estimate the parameters, and the prior distribution “corrects” the likelihood
misbehavior by forming a posterior distribution that estimates the parameters effectively (see,
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for example, Steel & Fernández (1999) and Liseo & Loperfido (2006) for different instances of
this phenomenon).

Although the posterior distribution corrects the likelihood problems, it is still possible to
have problems when using MCMC algorithms; and they may converge to secondary, unimportant
modes. The choice of the initial values of the chains has a strong influence on the convergence.
Simulated examples presented in Gonçalves (2006) show that it is crucial to set the initial values
of the parameters dhigk as zero to obtain good estimates for both models’ parameters. Different
initial values may lead to convergence to secondary modes.

3.4 Inference Procedures

The decision on the classification of an item as having or not DIF is based on the parameters
πhigk . A simple classification rule decides based on the posterior mean of πhigk . If it is greater than
a threshold value p∗, item i is classified as having DIF in parameter h, in group gk with respect
to group 1 in factor k and vice-versa if it is smaller than p∗. Special attention must be paid to
items for which πhigk is close to p∗. In this paper it is assumed p∗ = 0.5, but more elaborated
criteria may be used to choose the value of p∗, for example, based on other scoring rules (see
Migon & Gamerman (1999)). Once the item is classified, it is only necessary to analyse the
DIF parameters of the items classified as DIF ones. For the other items, the DIF parameter is
assumed to be 0.

Considering the scale of the model, DIF parameters with absolute value smaller than 0.1 may
be considered insignificant, between 0.1 and 0.2 very small, between 0.2 and 0.3 small, between
0.3 and 0.5 medium and greater than 0.5 as a high DIF.

An important issue concerning DIF analysis is how to proceed in a situation with more than
2 groups in a given factor k. Since DIF in group gk is detected and estimated with reference to
group 1 (reference group), it seems sensible to perform the analysis as follows:
a) if a given item is detected as a non DIF one in L groups, then, there is no DIF between these
L groups and the item behaves the same way in these groups;
b) if a certain item is detected as having DIF in a group and as not having DIF in another
group, then, the item behaves differently with respect to the reference group only for the first
group;
c) if a certain item has DIF in two groups, the magnitudes of the DIF´s can be compared by the
estimates of the DIF parameters of this item in both groups since they have the same scale.

4 Simulated examples

This section briefly presents results of two simulated studies. The first one designed to
compare the results obtained with Models 1 and 2 described in Section 2. The second one
analyzes a two factor data set to show the model’s ability to estimate the parameters.

In all examples, the parameters of the items and the proficiencies are randomly drawn.
The discrimination parameters ai are drawn from a LN(−0.1, 0.25) distribution, the difficulty
parameters bi are drawn from a standard normal distribution and the guessing parameters ci
from a beta distribution with parameters (25, 85). These values are chosen in the range typically
encountered in our practical experience.

The data sets are composed of I = 40 dichotomic items and J = 1000 individuals in each
group. The items with DIF are also randomly chosen. Around 30% of them have DIF in
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discrimination and 40% in difficulty. A binary covariate is used to explain DIF in discrimination
and difficulty.

The convergence of the Markov chains drawn from the MCMC was tested using the R criteria
of Gelman & Rubin (RGR) (see Gamerman & Lopes (2006) for details), calculated from three
parallel chains with 10000 iterations (after a burn-in of 5000) and different initial values. The
test showed that all the chains converged with RGR < 1.1 for all of them, when parameters dhig
are initialized as zero in all the chains. The algorithm was implemented in Ox language.

The following prior distributions are used in all examples: µgk ∼ N(0, 1), σ2
gk
∼ IG(0.1, 0.1),

γhgk ∼ N2((0, 0)′, 10I2) and (τhgk)2 ∼ GI(0.1, 0.1), for h = a, b, gk = 2, . . . , Gk and k = 1, 2,
ai ∼ LN(0, 2), bi ∼ N(0, 1) and ci ∼ beta(5, 17) for i = 1, . . . , 40, πhigk ∼ Ber(0.5) in Model 1
and πhigk ∼ beta(0.01, 0.01) in Model 2, for h = a, b, i = 1 . . . , 40, gk = 2 . . . , Gk and k = 1, 2.

4.1 Comparison of Models 1 and 2

Comparison between both models defined in (3) is based on the posterior mean of the πhig’s
and for the dhig’s it is also possible to compare means against the actual values used in the
simulation. The deviance information criterion (DIC) (Spiegelhalter et al., 2002) is used to
compare the models in a more comprehensive form. Posterior means of the parameters of the
proficiencies’ distributions and the parameters of the DIF regression are also presented.

Figure 3: Graphs of the posterior mean of parameters πhig. Solid symbols represent Model 1 and
empty symbols represent Model 2. Circles represent items with DIF and triangles items without
DIF: πa (left) and πb (right), group 2 (top) and group 3 (bottom).

Figure 3 shows that the results for the DIF probabilities πhig are similar for most of the items
for the two models for group 2 (when g = 2). Their posterior mean differs by more than 0.10
for eight items in the discrimination and for only two items in the difficulty. The results are
also similar concerning difficulty in group 3 with only three items having their posterior mean
differing more than 0.10. The results for group 3 are quite different for the discrimination; Model
1 presents twelve misclassified items (taking 0.5 as the cut-off point), Model 2 presents only four,
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and one of them (item 10), for which the posterior mean is smaller than 0.5, has almost no DIF
with E(da10,3|Y ) = −0.035.

Figure 4: Plots of the real values and posterior means of parameters dhig. Solid circle represents
the real value, empty circle represents the posterior mean in Model 1 and empty triangle in Model
2. da (left) and db (right), group 2 (top) and group 3 (bottom).

Discrimination Difficulty
Model 1 82.5% 85%
Model 2 90% 87.5%

Table 1: Percentage of correct classification in each model for discrimination and difficulty
(considering even the items with insignificant DIF as DIF items).

The results for the parameters dhig are similar for all groups in the discrimination and in
the difficulty (see Figure 4). Little difference is found in the posterior means of the parameters
presented in Table 1 but Model 2 is a little more effective on the parameters estimation, with a
smaller MSE.

D̄ pD DIC
Model 1 115834 -91213 24621
Model 2 115835 -90693 25142

Table 2: D̄, pD and DIC in both Models.

The DIC criterion is the sum of of two parts. The first one, D̄, is the posterior expectation
of the deviance and is a goodness of fit measure; the smaller it is, the best the model fits the
data. The second part, pD, measures the complexity of the model through the effective number
of parameters; the smaller it is, the less complex is the model. It can be seen, from Table 2, that
the value of D̄ is essentially the same in both models, that is, the models are equally good to
fit the data. Besides that, Model 1 has a pD value smaller than Model 2, reflecting the greater
complexity of Model 2 due to its extra hierarchical level.
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Parameter Real value Model 1 Model 2

µ2 0.12 0.114 0.098

µ3 -0.03 -0.063 -0.070

σ2 1 1.068 1.078

σ3 2 2.124 2.134

γa02 0.7 0.280 0.309

γa12 -1.4 -0.734 -0.801(
τa2
)2

0.04 0.139 0.141

γb02 -0.4 -0.532 -0.542

γb12 0.8 0.780 0.834(
τb2
)2

0.0625 0.109 0.121

γa03 0.4 0.189 0.222

γa13 -0.8 -0.286 -0.334(
τa3
)2

0.0625 0.050 0.069

γb03 -0.7 -0.555 -0.584

γb13 1.4 1.084 1.140(
τb3
)2

0.04 0.127 0.116

MSE 1.116 0.915

Table 3: Real value and posterior mean of the parameters of the abilities’ distribution and of the
parameters of the DIF regression in both Models. MSE is their mean square error.

These results of Table 3 indicate that little difference is found between the results obtained
in each model for most of the parameters. Larger differences are found in the estimation of the
parameters πai3. Interestingly, this is the group for which there are less items with DIF. This
indicates that Model 1 seems to be less efficient than Model 2 in situations with few DIF items.

4.2 Two factors example

In this section a data set with two factors drawn from the multifactor model with no inter-
action is analyzed using the no interaction and the saturated versions of the multifactor Model
2. The first factor has three groups and the second factor has two groups. A binary covariate is
used to explain DIF in difficulty in both factors. The models are compared using DIC.

Discrimination Difficulty

Factor 1 - group 2 95% 87.5%
Factor 1 - group 3 82.5% 95%
Factor 2 - group 2 95% 100%

Table 4: Percentage of correct classification for discrimination and difficulty in both factors.

The model is again capable of good recovery of parameters as shown in previous simulated
example. Table 4 shows that most of the items are correctly classified as having or not DIF.
The model also estimates well the DIF parameters and, as in the previous example, only the
parameters τ ’s are not well estimated.

Table 5 seems to favour the multifactor model having only main effects (with no interaction),
as expected. Note that the value of D̄ is a little smaller for the saturated model, which is
reasonable, since it has more parameters but the difference is very small. But the value of pD is
considerably smaller in this model as the multifactor model with no interaction has much less
parameters.

Another way to choose between models is to compare the estimates of the parameters of the
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D̄ pD DIC

Multifactor Model 123150 -90669 32479
Saturated Model 123140 -88036 35108

Table 5: D̄, pD and DIC in both Models.

DIF regression structure and the parameters of the proficiencies’ distributions in both models.
Similarities between the estimates in both model is another indication of absence of interaction.
Figure 5 presents this comparison. The estimates of the multifactor model with no interaction
are obtained by summing (for the parameters of DIF regression structure and the mean of the
proficiencies’ distribution) or multiplying (for the variance of the proficiencies’ distribution) the
parameters of the respective group the student belongs to in each factor. For example, γ0 of
group 6 is obtained by adding γ03 from factor 1 with γ02 from factor 2, since group 6 correspond
to the intersection of these two groups. All the parameters presented in Figure are very similar
in both models providing indication of no interaction between the two factors in the DIF in
discrimination and difficulty. It can also been seen that there is no interaction between the
factors when considering the proficiencies.

Figure 5: Posterior mean and 95% credibility interval of the parameters µ, σ, γa0 , τ2
a (top row),

γb0, γb1, τ2
b (bottom row) in each group for both models. Left interval: multifactor model with no

interaction, right interval: saturated model.

5 Application

The real data set analysed in this paper refers to SAEB, which stands for “Sistema de
Avaliação da Educação Básica” (System for Assessment of Basic Education). It is coordinated
by the Brazilian government and aims the assessment of the basic education system of the
country since 1990. SAEB’s assessments produce information on the Brazilian educational
reality and, specifically, by regions, in private and public schools, through a bi-annual (since
1993) proficiency exam in Mathematics and Portuguese. It is applied to a sample of students in
the 4th and 8th year of elementary school and in the 3rd year of high school (for more information
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on SAEB, visit http://www.inep.gov.br/basica/saeb/ingles.htm).
Brazil is separated in five great regions: South-East (SE), South (S), North-East (NE),

Center-West (CW) and North (N), as shown in figure 6. South-East is the most economically
developed one and has around 42% of the Brazilian population, South is the second most eco-
nomical developed one. There are four types of elementary and high school in the country:
private, federal, state and municipal schools. Private schools are thought to be better than state
and municipal ones. Federal schools are known to provide good education but there are very few
of them in Brazil. The data set analysed in this paper does not contain students from federal
schools.

Figure 6: Brazilian regions.

The data set analysed in this paper refers to the Maths test applied to the 4th grade in the
year 2003. The 169 items are separated into thirteen blocks of thirteen items and the tests are
formed by three blocks via incomplete balanced blocks. Each student answers to one of these
tests. The tests are composed of multiple choice items with four options each, where only one is
correct. 46131 students were evaluated. Due to computational price, a sample of 9930 students
is randomly sampled to be analysed: 1986 from each region; 2686 from private schools, 3669 from
state schools and 3575 from municipal schools. The Regions are chosen as the group division for
the one factor DIF analysis. Region SE is considered the reference group (group 1), Region S is
group 2, followed by Regions NE, CW and N, respectively. A two factor analysis incorporating
the type of school is also performed with the multifactor model with no interactions and with
the saturated model. Private school is the reference group, state school is group 2 and municipal
school is group 3.

5.1 One factor analysis

Based on the content of the test’s items and on the opinion of specialists on education, it is
believed that some item contents may have some influence on DIF explanation for difficulty. Four
covariates are then introduced in the model and the results are reported below. The covariates
are binary and indicate if the item content is related to: numeric problems involving sum and
subtraction, use of decimal system in number decomposition, area and/or perimeter calculation
drawn in a square-lined mesh, and rational number representation using fractions. From the
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169 items of the test, 85 are related to some of these contents. Table 6 shows the items related
to each content.

Content Items

2 6 7 13 14 23 24 29 37 38 39 44 50 56 58 61 62 65 67

Numeric problems involving sum and subtraction 71 77 80 84 90 103 104 106 113 123 124 135 136 139

141 142 146 148 149 152 153 156 160 162 165

Use of decimal system in number decomposition 4 8 30 33 43 54 64 75 91 107 117 143 144 151 163 168

Area and/or perimeter calculation drawn in a 11 32 35 40 57 68 81 83 92 94 109 115

square-lined mesh 125 128 131 138

Rational number representation using fractions 20 21 72 86 95 98 114 137 158

Table 6: Items related to each covariate.

Figure 7: Posterior mean and 95% credibility interval of the items parameters. Top row: Dis-
crimination, Middle row: Difficulty, Bottom row: Guessing.

Figure 7 presents the estimates of the item parameters in the reference group (South-East).
The estimates of the discrimination parameters vary from 0.4 to 2.5 (except item 20 with dis-
crimination 3.8) with mean 1.07 and variance 0.20. The items with highest discrimination in
SE are 20, 98 and 137. They are also difficult items and have very small values (< 0.10) for the
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Figure 8: Posterior mean and 95% credibility interval of the DIF parameters in the discrim-
ination of the items detected as DIF ones. Top-left: S, Top-right: NE, Bottom-left: CW,
Bottom-right: N.

Figure 9: Posterior mean and 95% credibility interval of the DIF parameters in the difficulty of
the items detected as DIF ones. Top-left: S, Top-right: NE, Bottom-left: CW, Bottom-right: N.

guessing parameter. The estimates of the difficulty parameters vary between -2.5 and 3.0 with
mean 0.26 and variance 0.92. The most difficult items are 19, 20, 24, 87, 115, 125 and 132. The
easiest ones are 27, 40 and 41. The estimates of the guessing parameters vary from 0.07 to 0.38
with mean 0.20 and variance 0.004.

Considering the threshold probability p∗ = 0.5, 31 items have been detected as having DIF in
discrimination in Region S, 28 in NE, 28 in CW, and Region N has 25 items detected as having
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Parameter Post. mean Cred. interval

µ2 -0.045 (-0.109 , 0.028)

µ3 -0.676 (-0.746 , -0.607)

µ4 -0.399 (-0.463 , -0.330)

µ5 -0.784 (-0.867 , -0.691)

σ2 0.960 (0.913 , 1.005)

σ3 1.128 (1.063 , 1.198)

σ4 1.003 (0.954 , 1.055)

σ5 0.989 (0.934 , 1.041)

γa02 0.037 (-0.032 , 0.104)(
τa2
)2

0.024 (0.012 , 0.043)

γb02 -0.01 (-0.114 , 0.096)

γb12 0.031 (-0.109 , 0.166)

γb22 -0.086 (-0.366 , 0.141)

γb32 -0.050 (-0.549 , 0.314)

γb42 -0.167 (-0.503 , 0.106)(
τb2
)2

0.023 (0.012 , 0.042)

γa03 -0.020 (-0.109 , 0.064)(
τa3
)2

0.030 (0.013 , 0.058)

γb03 -0.105 (-0.215 , 0.003)

γb13 0.115 (-0.036 , 0.269)

Parameter Post. mean Cred. interval

γb23 -0.025 (-0.334 , 0.210)

γb33 0.158 (-0.181 , 0.483)

γb43 0.068 (-3.828 , 3.857)(
τb3
)2

0.033 (0.018 , 0.058)

γa04 -0.013 (-0.064 , 0.101)(
τa4
)2

0.024 (0.012 , 0.044)

γb04 -0.030 (-0.134 , 0.057)

γb14 0.060 (-0.069 , 0.194)

γb24 -0.078 (-0.278 , 0.155)

γb34 0.000 (-0.442 , 0.298)

γb44 0.074 (-2.364 , 2.77)(
τb4
)2

0.019 (0.009 , 0.034)

γa05 -0.044 (-0.152 , 0.058)(
τa5
)2

0.032 (0.015 , 0.059)

γb05 0.039 (-0.073 , 0.163)

γb15 -0.019 (-0.185 , 0.137)

γb25 -0.201 (-0.511 , 0.046)

γb35 -0.050 (-0.304 , 0.439)

γb45 -0.514 (-1.082 , -0.070)(
τb5
)2

0.034 (0.017 , 0.059)

Table 7: Posterior mean and 95% credibility interval of the parameters of the abilities’ distri-
bution and of the parameters of the DIF regression. The first index of parameters γ refers to
the covariate: 1- numeric problems involving sum and subtraction, 2- use of decimal system in
number decomposition, 3- area and/or perimeter calculation drawn in a square-lined mesh, 4-
rational number representation using fractions.

DIF in this parameter. Concerning difficulty, 29 DIF items were detected in Region S, 30 in
NE, 21 in CW and 41 in N. Note, from Figures 8 and 9, that some of the items detected as DIF
ones have a very small value for the DIF parameter, meaning that this difference is practically
irrelevant. Forty three (25% of total) items are detected as not having DIF in any groups and
any parameters, these items are important to assure good equalization of the proficiencies.

It can be noticed from Figure 8 that most of the items with DIF in discrimination are more
discriminant in region NE than in all other regions. The same happens in Region N. In Region
S most of the DIF items are less discriminant than in the other regions. No item presents DIF
in discrimination for all regions.

It is observed from Figure 9 that most of the items with DIF in difficulty are more difficult
in Region S than in all other regions. The same happens in Regions NE and CW. In Region N,
58% of the items present positive DIF (less difficulty). From these, most of them are less difficult
than in all other regions. Nevertheless, most of the other DIF items (with negative DIF) have
greater absolute values that the ones with positive DIF and they are more difficulty in Region
N than in the other regions.

Table 7 shows that items related to rational number representation using fractions seems to
be harder for students from S (E(γb42|Y ) = −0.16). Items with DIF in NE are, on average, harder
in this region than in SE (E(γb03|Y ) = −0.10). Numeric problems involving sum and subtraction
seems to be easier in NE (E(γb13|Y ) = 0.11). The estimate of the regression coefficient related
to area and/or perimeter calculation drawn in a square-lined mesh has a considerable estimated
value (E(γb33|Y ) = 0.15) in Region NE, which indicates that this kind of item is also easier in
Region NE.

Items related to use of decimal system in number decomposition (E(γb25|Y ) = −0.20) seems to
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be harder for students from the Region N. Items related to rational number representation using
fractions have a high value for the estimate of the regression coefficient (E(γb45|Y ) = −0.51),
which means that this kind of item is harder for students from Region N than for students from
the other regions of the country. Four out of the nine items related to this content are detected
as having DIF in difficulty in Region N and these four items are among the five items with
highest DIF parameter estimate. According to specialists, this difference is probably due to
curricular differences related to this content between the teaching system in Region North and
in the other regions.

The credibility intervals of some of the coefficients cited above contain 0, but these are not
the maximum density intervals and zero is close to one of the interval limits. So, these coefficients
may be considered significant.

Item 55 presents DIF in difficulty for all regions, this item is a subtraction operation that
demands decompositions of a decimal order unit into units of a inferior decimal order. It is
easier in South than in all other regions, more difficult in CW and N (DIF parameter is smaller
in N, but there seems to be no significant difference between these two regions) than in SE and
S, and it is harder in NE than in all other regions.

Figure 10 presents the estimate of the characteristic curve of item 55 in all Regions. Besides
presenting DIF in difficulty in all regions, this item has DIF in discrimination in NE (more
discriminant than in all other regions). Note that NE is the region where it is more difficult.
This relation between difficulty and discrimination is very commonly found: the more difficult
is an item, the more discriminant it is.

Figure 10: Estimate of the characteristic curve of item 55 in all Regions.

5.2 Two factors analysis

In this section, the real data set will be analysed considering two factors: the country’s
regions and the type of school. This last factor is composed by three groups: private school,
state school and municipal school. The same four covariates used in the one factor analysis will
be considered now. The analysis will be performed with the main effects model and with the
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saturated model, that considers the interaction between the two factors. The models will be
compared using the DIC and also analysing the parameters of the DIF regression structure and
the parameters of the proficiencies’ distribution in both models, as done in section 4.3.

Figure 11: Posterior mean and 95% credibility interval of the parameters µ, σ, γa0 , τ2
a in each

group for both models. Left interval: multifactor model with no interaction, right interval:
saturated model.

Figure 12: Posterior mean and 95% credibility interval of the parameters γb0, γb1, γb2, γb3, γb4, τ2
b in

each group for both models. Left interval: multifactor model with no interaction, right interval:
saturated model.

In Figure 11, Group ij means group i in factor 1 and group j in factor 2. It can be
noticed that the interaction between the factors in the mean of the proficiencies happens in
two situations. The first one is that municipal school is a little better than state school in SE
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µ σ

1FM MM SM 1FM MM SM

SE 0.00 -0.71 -0.83 1.00 1.06 1.27

S -0.04 -0.71 -0.85 0.96 0.99 1.19

NE -0.67 -1.37 -1.66 1.12 1.07 1.33

CW -0.40 -1.11 -1.32 1.00 1.00 1.20

N -0.78 -1.53 -1.83 0.99 0.95 1.15

Table 8: Posterior mean and variance of the proficiencies in each region obtained with tree
different models. 1FM is the one factor model, SM is Saturated Model and MM is Multifactor
Model with no interactions.

µ σ

School MM SM MM SM

Private -0.19 -0.18 0.96 1.15

State -1.37 -1.66 0.90 1.07

Municipal -1.46 -1.77 0.90 1.09

Table 9: Posterior mean and standard-deviation of the proficiencies in each school obtained with
two different models. SM is Saturated Model and MM is Multifactor Model with no interactions.

Parameter Post. mean Cred. interval

Factor 1 - Region

γb42 -0.21 (-0.74 , 0.20)

γb03 -0.13 (-0.26 , 0.00)

γb13 0.14 (-0.02 , 0.30)

γb25 -0.24 (-0.62 , 0.01)

γb45 -1.07 (-2.09 , -0.46)

Factor 2 - School

γb02 -0.15 (-0.25 , -0.05)

γb12 0.25 (0.10 , 0.43)

γb42 -0.77 (-1.07 , -0.45)

γb03 -0.15 (-0.25 , -0.04)

γb13 0.26 (0.12 , 0.42)

γb43 -0.79 (-1.18 , -0.43)

Table 10: Posterior mean and 95% credibility interval of the parameters of the DIF regres-
sion that seem to be significantly different from zero. Estimates obtained by the model with no
interaction.

and is the opposite in the other regions. The second situation is that the difference between
private and public (state and municipal) schools is a little different in each region. Concerning
the variance of the proficiencies, the interaction is more complex, that is, the difference between
the three types of schools is considerably different in each region.

Table 8 shows that the ordering of the means of the proficiencies in each region is the same in
the three models. Notice that the values between the one factor model and the other two models
can not be compared since the reference group is not the same. But it can be done between the
last two models. It shows that the difference among the regions is larger in the saturated model.
Concerning the variance os the proficiencies, the one factor model has a different ordering from
the models that consider two factors and, comparing these last two, the estimates obtained with
the saturated model are greater.

Table 9 confirms the information extracted from Figure 11; the difference between the mean
of the proficiencies in private and public school is greater in the saturated model. Besides
that, the variances of the proficiencies are greater in the saturated model and the schools are
differently ordered.
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Figure 13: Estimate of the characteristic curve of item 133 in four subgroups obtained by the
model with no interaction.

D̄ pD DIC

One Factor Model 413712 -222771 190941
Main Effects model 410648 -221366 189282

Saturated Model 410442 -212881 197561

Table 11: D̄, pD and DIC in three Models.

Note from Table 11 that the DIC for the main effects model is the smallest one, indicating
that this model is preferred. The values of D̄ and pD show that the multifactor models fit the
data much better. They also show that, naturally, the one factor model is the less complex one,
followed by the main effects model and finally the saturated model.

The moderate difference between the values of D̄ of the multifactor models indicate that a
small interaction between the two factors may exist. Indeed, no intervals are disjoint for the DIF
parameters, indicating that there is no or little interaction between the factors considering DIF.
In the case of the distribution of the proficiencies, there seems to be a small but considerable
interaction between the factors.

All the arguments above support the importance of considering the second factor in the
DIF analysis, although the one factor analysis is not worthless. Moreover, the results obtained
by comparing the analysis with the models with and without interaction indicate that another
possible option would be to consider interaction only in the proficiencies.

The mean of the differences of the DIF probability parameters between the one factor model
and the multifactor model with no interaction is 0.007. This is an evidence that the results of
the one factor analysis are important and valid.

The high complexity of the saturated model is due to the interaction on the DIF parameters,
which brings more parameters into consideration. The modelling of the proficiencies’ distribution
have a great impact in the analysis only in small sample situations. Then, unless the researcher
is sure about the non interaction on the proficiencies’ distribution, such interaction should be
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considered in the analysis.
From the coefficients that were significant in the one factor analysis, only γb33, which indi-

cated that items related to area and/or perimeter calculation drawn in a square-lined mesh are
easier in Region NE, is not significant in the two factor analysis with no interaction. This may
have happened due to two reasons: the parameter value is not high in the one factor analysis, so
the small difference on the estimates between the two models is caused the difference on the sig-
nificance of the covariate; the other reason is that the inclusion of the new factor accommodated
the influence of the covariate.

Concerning the type of school, the same coefficients are significant for state and municipal
school, and their values are basically the same. They show that items with DIF are, on aver-
age, more difficult in public school. Besides that, they indicate that items concerning numeric
problems involving sum and subtraction that present DIF are easier for students from public
school while items related to rational number representation using fractions that present DIF
are harder for these students.

Note that the coefficient related to rational number representation using fractions (γb45) is
even higher in the two factors analysis for Region N and this content is also much harder for
students from public schools (γb42 and γb43).

More generally, it can be concluded that students from private school have, on average,
higher proficiencies than students from public schools. Moreover, state and municipal schools
are very similar on both DIF and proficiency.

Figure 13 shows the estimated characteristic curve of item 133 in four subgroups. This item
has DIF (in difficulty) in Region NE (harder than in SE) and in state school (harder than in
private school), and these DIF’s are practically the same. For that reason the curve is almost
equal for state school in SE and private school in NE.

The results of the analysis show that it is possible to perform DIF detection, DIF explanation
(in a mixed regression model) and multifactor DIF in a single step. This approach seems to
be promising for practical applications since it is rarely known in advance which items have
DIF. Additionally, multifactor DIF can be combined with the regression setup in an unified
framework, as introduced in this paper, giving meaningful answers to educational issues that
require them.

6 Conclusions

In this paper, two integrated Bayesian models for detection of items with differential func-
tioning and explanation of the differential functioning by regression structures with covariates
associated to the items were presented and studied. These models also consider the hypotheses
of more than one grouping factors. The Bayesian inference procedures in both model were also
presented along with important issues concerning prior distributions, the models’ identifiability
and the MCMC algorithm convergence.

The two models were compared in simulated studies, and it was concluded that Model 1
seems to be less efficient than Model 2 in situations with few DIF items. The DIC indicates that
both models are equally good to fit the data and Model 2 is a little more complex than Model 1.
Simulated studies showed the efficiency of the Bayesian methodology for parameters estimation
and for solving identifiability problems of the likelihood function. A real analysis showed the
viability of using the model in practical situations with satisfactory and intuitively consistent
results.
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This paper shows that many ideas that were explored separately for DIF analysis in IRT
can be successfully accomplished in a simultaneous setup. This has the advantage of avoiding
performance of data analysis in 2 or more steps. These procedures are bound to make ad-
hoc assumptions and misleadingly assume with certainty when uncertainty is clearly present.
Nevertheless, improvements in the model can still be achieved. Examples are: incorporation of
correlation structures between the DIF magnitude and the item’s difficulty, and among the DIF
in the different items. These are possible directions for future works.

Appendix

Proof of Lemma 1

Suppose that a prior distribution beta(α, β) is assumed for πhig. Then, the full conditional
distribution p(πhigk |Ψ−πhigk

, Y ) of πhigk is a beta(α, β + 1) if dhigk = 0 and is a beta(α + 1, β) if

dhigk 6= 0, where Ψ−πhigk
denotes Ψ without its component πhigk . These distributions have means

α

α+ β + 1
and

α+ 1
α+ β + 1

, respectively.

Let zhigk be the indicator of dhigk = 0. For a discrete zhigk , the posterior distribution of πhigk
can be written as

p(πhigk |Y ) =
∑
zhigk

p(πhigk |Y, z
h
igk

)p(zhigk |Y ) (7)

= p(πhigk |Y, z
h
igk

= 0)P (zhigk = 0|Y ) + p(πhigk |Y, z
h
igk

= 1)P (zhigk = 1|Y ).

Taking expectations on both sides and setting whigk = P (zhigk = 0|Y ) gives

E(πhigk |Y ) = E(πhigk |Y, z
h
igk

= 0)whigk + E(πhigk |Y, z
h
igk

= 1)(1− whigk).

Since 0 < whigk < 1, E(πhigk |Y ) will be a weighted mean of the conditional expectations and thus
will always be between them.

The proof is completed by noting that since πhigk |Ψ−πhigk
, Y ∼ πhigk |z

h
ig, then, πhigk |Y, z

h
igk
∼

πhigk |z
h
igk

. Therefore, the posterior mean of πhigk is a weighted mean of the two values the expecta-
tion of its full conditional distribution can assume, ∀ i = 1, . . . , I, ∀ k = 1, . . . ,K, ∀ g = 2, . . . , G
and ∀ h = a, b.
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