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Summary. A new class of space-time models derived from standard dynamic factor models is
proposed. The temporal dependence is modeled by latent factors while the spatial dependence
is modeled by the factor loadings. Factor analytic arguments are used to help identifying tem-
poral components that summarize most of the spatial variation of a given region. The temporal
evolution of the factors is described in a number of forms to account for different aspects of
time variation such as trend and seasonality. The new structure implies nonseparable space-
time variation to observables, despite its conditionally independent nature, while reducing the
overall dimensionality, and hence complexity, of the problem.
Conditionally conjugate and reference-type prior distributions are entertained for the param-
eters of the spatial components. Different covariance structures are also entertained. Con-
ditionally on the number of common factors, inference is performed by standard Gibbs and
Metropolis-Hastings steps. The number of factors is treated as another unknown parameter
and fully Bayesian inference is performed by a reversible jump Markov Chain Monte Carlo
algorithm.
The new class of models is tested against two synthetic and one real data sets. The real data
was obtained from Clean Air Status and Trends Network (CASTNET) and refers to atmospheric
concentration of sulfur dioxide weekly observed at 24 monitoring stations from 1998 to 2004.
The factor model decomposition is shown to capture important aspects of spatial and temporal
behavior of the data.

Keywords: Bayesian inference, forecasting, Gaussian process, spatial interpolation, reversible
jump Markov chain Monte Carlo, random fields.

1. Introduction

Factor analysis and spatial statistics are just two successful examples of statistical areas
that have been experiencing major attention both from the research community as well as
practitioners, mainly due to increased availability of efficient computational schemes coupled
with faster and easy to use (desktop) computers. In particular, Markov chain Monte Carlo
(MCMC) simulation methods (Gamerman and Lopes, 2006) have opened up access to fully
Bayesian treatments of factor analytic and spatial models as described, for instance, in
Lopes and West (2004) and Banerjee, Carlin and Gelfand (2004), respectively, and their
references.

This paper proposes a a new class of space-time model that resembles a standard dy-
namic factor model (Peña and Poncela, 2004, for instance). The novelty of the proposal
lies on the fact that at any given time the univariate observations from all observed loca-
tions, either areal or point-referenced, are group together in what otherwise would be the
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vector of attributes in standard factor analysis. Consequently, the common factors look for
similarities amongst regions/sites. The columns of the factor loadings matrix are modeled
using standard spatial Gaussian processes (equation (1) below).

More specifically, let N be the number of locations in a given region and let yt =
(y1t, . . . , yNt)′ be the N -dimensional vector containing all observations at time t, for t =
1, . . . , T . The basic set up of the proposed model is

yt = βft + εt, εt ∼ N(0, Σ) (1)
ft = Γft−1 + ωt, ωt ∼ N(0, Λ) (2)

where ft is an m-dimensional vector containing the common factors, for m < N (potentially
m is several orders of magnitude smaller than N) and β = (β(1), . . . , β(m)) is the N × m
matrix of factor loadings.

The modeling of multivariate data through spatially correlated factors has previously
been done. Wang and Wall (2003), for instance, fitted a spatial factor model to the mortality
rates for three major diseases at nearly one hundred counties of Minnesota. Christensen and
Amemiya (2002, 2003) proposed what they called the shift-factor analysis method to model
multivariate spatial data with temporal dependence modeled by autoregressive components.
Also, Hogan and Tchernis (2004) fitted a one-factor spatial model and entertain several
forms of spatial dependence through the single common factor. In all these applications,
factor analysis is used in its original setup, i.e., the common factors are responsible for
potentially reducing the overall dimension of the response vector observed at each location.

Here, the observations are univariate and factor analysis is used to reducing (identifying)
cluster/groups of locations/regions whose temporal dependence can be primarily described
by a few common dynamic factors. Prior information about these clusters/groups is reflected
in the columns of the factor loadings matrix, which are spatially structured. Where the
common factor completely known, this class of structured hierarchical priors fall into the
class of spatial priors for regression coefficients (see Nobre, Schmidt and Lopes, 2005, and
Gamerman, Moreira and Rue, 2003, for instance). Adopting similar modeling structures,
Mardia, Goodall, Redfern and Alonso (1998), Wikle and Cressie (1999) and Calder (2005)
applied deterministic spatial characterization for the factor loadings.

The rest of this paper is organized as follows. Section 2 specifies in details the compo-
nents of Equations (1) and (2) along with prior specification for the model parameters, as
well as forecating and interpolation strategies. Posterior inference for fixed number of fac-
tors is outlined in Section 3, while uncertainty about m appears in Section 3. Simulated and
real data illustrations appear in Section 4 with Section 5 listing conclusions and directions
of current and future research.

2. Proposed space-time model

Recalling, equations (1) and (2) define the first level of the proposed dynamic factor model.
Throughout this paper it is assumed that Σ = diag(σ2

1 , . . . , σ2
N ). In words, it is assumed,

like in standard factor analysis, that all covariance structure present in yt is captured by
m independent common factors ft, i.e., Λ = diag(λ1, . . . , λm). The dynamic evolution of
the factors is characterized by Γ = diag(γ1, . . . , γm), which could be easily extended to the
non-diagonal case. It is also assumed that f0 ∼ N(m0, C0), for known hyperparameters m0

and C0.
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Conditional spatial dependence is introduced by the columns of the factor loadings
matrix, β. More specifically, the m columns of β are conditionally independent and fol-
low distance-based Gaussian processes or Gaussian random fields (GRF), i.e., β(j)(·) ∼
GRF

(
µj , τ

2
j ρφj

(·)), for j = 1, . . . , m. This notation is equivalent to

β(j) ∼ N(µj1N , τ2
j Rφj

), (3)

where 1N is an N -dimensional vector with ones, Rφj
a N × N matrix whose (l, k) en-

try given by rlk = ρ(|sl − sk|; φj), l, k = 1, . . . , N , for some suitably defined correlation
functions ρ(·;φj) possibly depending on parameters φj ’s, typically scalars or low dimen-
sional quantities, j = 1, . . . , m. There are many options for the correlation function.
The most used ones are exponential: ρφ(d) = exp{−d/φ}, power exponential: ρφ(d) =
exp{−(d/φ1)φ2}, spherical: ρφ(d) = (1 − 1.5(d/φ1) + 0.5(d/φ1)3)1{d/φ1≤1} and Mátern:
ρφ(d) = 21−φ2Γ(φ2)−1(d/φ1)φ2κφ2(d/φ1) where κφ2(·) is the modified Bessel function of
the second kind and of order φ2 In each of above families, the range parameter φ1 > 0.
controls how fast the correlation decays with distance, and the smoothness parameter φ2

controls the differentiability of the underlying process (for details, see Cressie, 1993 and
Stein, 1999). An alternative nonparametric formulation for spatial dependence is given by
Gelfand, Kottas and MacEachern (2005).

The spatial dynamic factor model is defined by equations (1) - (3). In a related article,
Mardia, Goodall, Redfern and Alonso (1998) introduced the kriged Kalman filter (KKF)
and named the columns of β the common fields. They split the columns of β in two
sets: trend fields and principal fields, which are fixed at the beginning of the analysis and
are functions of empirical orthogonal functions. Similar, and almost simultaneous, work
appears in Wikle and Cressie (1999) where the columns of β are deterministic, complete
and orthonormal basis functions. More recently, Calder (2005) uses smoothed kernels to
deterministically derive β (see Sansó and Schmidt, 2004, for related ideas).

All these papers assume that both the number of common factors m and the entries of
the factor loading matrix β are known and commonly derived by a pre-gridding principal
component decomposition (Wikle and Cressie, 1999) or by a principal kriging procedure
(Sahu and Mardia (2005ba,b) and Lasinio, Sahu and Mardia (2005)). In this paper both
m and β are fully treated as unknown parameters and posterior inference is performed by
MCMC algorithms, to be described in the next few sections.

Likelihood function
Conditional on ft, for t = 1, . . . , T , model (1) can be rewritten in matrix notation as

y = Fβ′ + ε, (4)

where y = (y′1, . . . , y
′
T )′ and F = (f ′1, . . . , f

′
T )′ are T ×N and T ×m matrices, respectively.

The error matrix, ε, is of dimension T ×N and follows a matric-variate normal distribution,
i.e., ε ∼ N(0, IT ,Σ) (Dawid, 1981 and Brown, Vannucci and Fearn, 1998), so the likelihood
function is

p(y|Θ, F, β,m) = (2π)−TN/2|Σ|−T/2etr

{
−1

2
Σ−1(y − Fβ′)′(y − Fβ′)

}
, (5)

where Θ = (σ, λ, γ, µ, τ, φ), σ = (σ2
1 , . . . , σ2

N )′, λ = (λ1, . . . , λm)′, γ = (γ1, . . . , γm)′,
µ = (µ1, . . . , µm)′, τ = (τ2

1 , . . . , τ2
m)′, φ = (φ1, . . . , φm)′, etr(X) = exp(trace(X)). The
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dependence on the number of factors m is made explicit and considered as another param-
eter in Section 3.

Prior information
For simplicity, conditionally conjugate prior distributions will be used for all parameters
defining the dynamic factor model, while two different prior structures are considered for
the parameters defining the spatial processes. Independent prior distributions for the hy-
perparameters σ, γ and λ are as follows: i) σ2

i ∼ IG(nσ/2, nσsσ/2), i = 1, . . . , N ; ii)
γj ∼ N(mγ , Sγ), j = 1, . . . , m; and iii) λj ∼ IG(nλ/2, nλsλ/2), j = 1, . . . ,m, where
nσ, sσ,mγ , Sγ , nλ and sλ are know hyperparameters. The parameters µj , φj and τ2

j , for
j = 1, . . . , m, follow one of the two priors: (i) vague but proper priors and (ii) reference-type
priors.

In the first case, µj ∼ N(mµ, Sµ), φj ∼ IG(ε, ε) and τ2
j ∼ IG(nτ/2, nτsτ/2), j =

1, . . . , m, where mµ, Sµ, ε, nτ and sτ are known hyperparameters, i.e., π(µj , τ
2
j , φj) =

πN (µj)πIG(τ2
j , φj) where

πIG(τ2
j , φj) = πIG(τ2

j )πIG(φj) ∝ τ
−(nτ+2)
j e−nτ sτ /2τ2

j φ
−(ε+1)
j e−ε/φj , (6)

where the subscripts N stands for normal and IG stands for inverted gamma. In the second
case, the reference analysis proposed by Berger, Oliveira and Sansó (2001) is considered,
which guarantee propriety of the posterior distributions. More specifically, πR(µj , τ

2
j , φj) =

πR(µj |τ2
j , φj)πR(τ2

j , φj), with πR(µj |τ2
j , φj) = 1 and

πR(τ2
j , φj) = πR(τ2

j )πR(φj) ∝ τ−2
j

{
tr(W 2

φj
)− 1

N − 1
[tr(Wφj )]

2

}1/2

, (7)

where Wφj = ((∂/∂φj)Rφj )R
−1
φj

(IN − 1(1′R−1
φj

1)−11′R−1
φj

). Notice that πIG(τ2
j ) = πR(τ2

j )
when nτ = 0.

Berger, Oliveira and Sansó propose and recommend the use of the reference prior for the
parameters of the correlation function. The basic justification is simply that the reference
prior yield a proper posterior, in contrast to other noninformative priors. It is important to
emphasize that this prior specification defines a reference prior when conditioning on the
factor loadings matrix. Nonetheless, it seems to be a reasonable approach to follow, which
is corroborated by the good empirical findings from Section 4.

Seasonal dynamic factors
Equations (1) and (2) encompasses a fairly large class of models, such as multiple dynamic
linear regressions, transfer function models, autoregressive moving average models and gen-
eral time series decomposition models, to name a few.

A seasonal common factor of period p (p = 52 for weekly data and annual cycle)
can be easily accommodated by simply letting β = (β(1), 0, β(2), 0, . . . , β(h), 0) and Γ =
diag(Γ1, . . . , Γh), where

Γl =
(

cos(2πl/p) sin(2πl/p)
− sin(2πl/p) cos(2πl/p)

)
, l = 1 . . . , h = p/2,

where h = p/2 is the number of harmonics need to capture the seasonal behavior of the
time series.
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In this context the covariance matrix Λ is no longer diagonal since the seasonal factors
are correlated, i.e., Λ = diag(Λ1, . . . , Λh). Note that the seasonal factors are weighted for
loadings that follow Gaussian processes, so implying different seasonal patterns for different
stations. Inference for the seasonal model is done using the algorithm proposed below with
(conceptually) simple additional steps. For instance, posterior samples for Λl, l = 1, . . . , h
are obtained from inverted Wishart distributions, as opposed to the usual inverse gamma
distributions. See West and Harrison (1997, Chapter 8) for further details. For the sake of
notation, the following sections present the inferential procedures based on the more general
equations (1) and (2).

Forecasting
Forecasting is theoretically straightforward. More precisely, one is usually interested in
learning about the h-steps ahead predictive density p(yT+h|y), i.e.

p(yT+h|y) =
∫

p(yT+h|fT+h, β, Θ)p(fT+h|fT , β, Θ)p(fT , β, Θ|y)dfT+hdfT dβdΘ

where (yT+h|fT+h, β, Θ) ∼ N(βfT+h,Σ), (fT+h|fT , β, Θ) ∼ N(µh, Vh), µh = ΓhfT and
Vh =

∑h
k=1 Γk−1Λ(Γk−1)′, for h > 0. Therefore, if {(β(1),Θ(1), f

(1)
T ), . . . , (β(M),Θ(M), f

(M)
T )}

is a sample from p(fT , β, Θ|y) (Section 3), then it is easy to draw f
(j)
T+h from (fT+h|f (j)

T , β(j),

Θ(j)), for all j = 1, . . . ,M , such that

p̂(yT+h|y) =
1
M

M∑

j=1

p(yT+h|f (j)
T+h, β(j), Θ(j))

is a Monte Carlo approximation to p(yT+h|y). If y
(j)
T+h is a draw from p(yT+h|f (j)

T+h, β(j), Θ(j)),

for j = 1, . . . , M , then {y(1)
T+h, . . . , y

(M)
T+h} is a sample from p(yT+h|y).

Interpolation
The interest now is in interpolating the response for Nn locations where the response
variable y has not been observed. More precisely, let yo denote the vector of observations
from locations in S = {s1, . . . , sN} and yn denote the (latent) vector of measurements from
locations in Sn = {sN+1, . . . , sN+Nn}. Analogously, let βo

(j) and βn
(j) be the j-column of the

factor loadings matrix corresponding to the observed and non-observed values, respectively.
Interpolation consists of finding the posterior predictive distribution of βn,

p(βn|yo) =
∫

p(βn|βo, Θ)p(βo, Θ|yo)dβodΘ.

where p(βn|βo,Θ) =
∏m

j=1 p(βn
(j)|βo

(j), µj , τ
2
j , φj). The distributions p(βn

(j)|βo
(j), µj , τ

2
j , φj),

for j = 1, . . . , m, can be easily obtained by using multivariate normal results. Conditionally
on Θ,

(
βo

(j)

βn
(j)

)
= N

(
µj1N+Nn , τ2

j

(
Ro

φj
Ro,n

φj

Rn,o
φj

Rn
φj

))



6 H. F. Lopes, E. Salazar and D. Gamerman

where Rn
φj

is the correlation matrix of dimension Nn between ungauged locations, Ro,n
φj

is a matrix of dimension N × Nn where each element represents the correlation between
gauged location i and ungauged location j, for i = 1, . . . , N and j = N + 1, N + Nn. Con-
sequently, βn

(j)|βo
(j), Θ ∼ N

(
µj1Nn + Rn,o

φj
Ro

φj

−1(βo
(j) − µj1N ); τ2

j (Rn
φj
−Rn,o

φj
Ro

φj

−1Ro,n
φj

)
)

and a Monte Carlo approximation to p(βn|yo) is given by

p̂(βn|yo) ≈ 1
L

L∑

l=1

p(βn|βo(l), Θ(l))

where {(βo(1), Θ(1)), . . . , (βo(L),Θ(L))} is a sample from p(βo, Θ|y) (Section 3). If βn(l) is
drawn from p(βn|βo(l), Θ(l)), for l = 1, . . . , M , then {βn(l), . . . , βn(L)} is a sample from
p(βn|yo). As a by-product, the posterior distribution of non-observed measures yn can be
approximated by

p̂(yn|yo) ≈ 1
L

L∑

l=1

fN (yn; βn(l)f (l),Σ(l)).

3. Posterior inference

Posterior inference for the proposed class of spatial dynamic factor models is facilitated by
novel Markov Chain Monte Carlo algorithms designed for two cases: (1) known number of
common factors m and (2) unknown m. In the first case, standard MCMC for dynamic
linear models are adapted, while reversible jump MCMC algorithms are designed for when
m is unknown.

Fixed number of common factors
Conditional on m, the joint posterior distribution of (F, β,Θ) is

p(F, β,Θ|y) ∝ p(y|F, β, σ)p(F |γ, λ)p(β|µ, τ, φ)p(σ)p(γ)p(λ)p(µ)p(τ)p(φ)

=
T∏

t=1

p(yt|ft, β, σ)p(f0|m0, C0)
T∏

t=1

p(ft|ft−1, λ, γ)
m∏

j=1

p(β(j)|µj , τ
2
j , φj)

×
m∏

j=1

p(γj)p(λj)p(µj)p(τ2
j , φj)

N∏

i=1

p(σ2
i ), (8)

which is analytically intractable. Exact posterior inference is performed by means of a cus-
tomized MCMC algorithm that cycles through the following full conditionals. Throughout
this section p(θ| . . .) denotes the full conditional of θ given all other parameters. Sampling
schemes to draws from the full conditionals appear in the Appendix.

Unknown number of common factors
This section extends the MCMC algorithm detailed in the previous section to account for
uncertainty regarding m the number of common factors in the spatial dynamic factor model.
The reversible jump MCMC (RJMCMC) scheme introduced by Lopes and West (2004) for
standard static factor models is adapted.



Spatial dynamic factor analysis 7

Their algorithm builds on a preliminary set of parallel MCMC outputs that are run
over a set of pre-specified number of factors. These chains produce a set of within-model
posterior samples for Ψm = (Fm, βm, Θm) that approximate the posterior distributions
p(Ψm|m, y). Then, posterior moments from these samples were used to guide the choice of
the proposal distributions from which candidate parameter would be drawn. For the spatial
dynamic factor model, the overall proposal distribution is

qm(Ψm) = qm(Fm)qm(βm)qm(γm)qm(λ)qm(µm)qm(φm)qm(τm)qm(σm)

=
m∏

j=1

fN (f(j); Mf(j) , aVf(j))fN (β(j); Mβ(j) , bVβ(j))fN (γj ; Mγj , cVγj )

×
m∏

j=1

fIG(λj ; d, dMλj
)fN (µj ; Mµj

, eVµj
)fIG(φj ; f, fMφj

)

×
m∏

j=1

fIG(τ2
j ; g, gMτj )fIG(σ2

j ; h, hMσj ),

where a, b, c, d, e, f , g e h are tuning parameters and Mx and Vx are sample means
and sample variances based on the preliminary MCMC runs. By letting p(y,m, Ψm) =
p(y|m,Ψm)p(Ψm|m)Pr(m) and initial values m and Ψm, the reversible jump algorithm
proceeds similar to a standard Metropolis-Hastings algorithm, i.e., a candidate model m′

is drawn from the proposal q(m,m′) and then, conditional on m′, Ψm′ is sampled from
qm′(Ψm′). The pair (m′,Ψm′) with probability

α = min
{

1,
p(y, m′, Ψm′)
p(y,m, Ψm)

qm(Ψm)q(m′,m)
qm′(Ψm′)q(m,m′)

}
. (9)

A natural choice for initial values are the sample averages of Ψm based on the prelim-
inary MCMC runs. Throughout this paper it is assumed that Pr(m) = 1/M , where M is
the maximum number of common factors. It should be emphasized that the chosen proposal
distributions qm(Ψm) are not generally expected to provide globally accurate approxima-
tions to the conditional posteriors p(Ψm|m, y). The closer qm(Ψm) and p(Ψm|m, y) are, the
closer acceptance probability is to

α = min
{

1,
p(y|m′)
p(y|m)

q(m′,m)
q(m,m′)

}
,

which can be thought of as a stochastic model search algorithm (George and McCulloch,
1992). The adopted algorithm is a particular case of what Godsill (2001) and Dellaportas,
Forster and Ntzoufras (2002) called the Metropolised Carlin and Chib method, where the
proposal distributions generating both new model dimension and new parameters depend
on the current state of the chain only through m. This is true here as proposals based on
the initial, auxiliary MCMC analysis are used. A more descriptive name is independence
RJMCMC, analogous to the standard terminology for independence Metropolis-Hastings
methods (see Gamerman and Lopes, 2006, Chapter 7).

4. Applications

This section exemplifies the proposed spatial factor dynamic model in two situations. In
the first case, space-time data is simulated from the model structure and the customized
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MCMC and RJMCMC algorithms implemented. The second case considers a real data
set. The data was obtained from the Clean Air Status and Trends Network (CASTNET)
and refers to atmospheric concentration of sulfur dioxide weekly observed at 24 monitoring
stations from 1998 to 2004.

4.1. Simulated study
In this simulated study a total of T = 100 observations are simulated for N = 50 locations
in the square [0, 1] × [0, 1], so yt is a 50-dimensional vector. Figure 1 exhibits the 50
selected locations. The simulated data is a function of m = 4 dynamic common factors.
The matrices Γ and Λ defining the dynamic factors’ evolutions (2) are diag(0.6, 0.5, 0.2, 0.3)
and diag(0.15, 0.1, 0.2, 0.07), respectively. The columns of the factor loadings matrix follow
Gaussian processes with exponential correlations given by ρ(d; φj) = exp(−d/φj) for φ =
(0.2, 0.5, 0.3, 0.1) and τ = (1, 0.6, 0.8, 0.5). The vector of means µ was considered fixed
and equal to zero. Finally, σ2

i were uniformly simulated in the interval (0.01, 0.05), for
i = 1, . . . , 50.

Figure 1 about here.

The prior distributions for σ2
i and λj are the same inverse gamma, i.e., GI(a, b) with

mean |ȳ| and unit variance. The prior distribution of γ is multivariate normal, i.e., γ ∼
N((0.6, 0.5, 0.2, 0.3)′, I4). For the parameters defining the Gaussian process, two prior dis-
tributions were considered: (i) vague inverse gamma prior distributions for both τ2

j and φj ,
i.e., IG(0.1, 0.1), or (ii) reference priors (see Section 2).

Models with up to six common factors were entertained and compared based on their
posterior model probabilities. They were also compared based on routine information cri-
teria, such as the AIC (Akaike, 1974) and the BIC (Schwarz, 1978), as well as mean square
errors (MSE). The results are summarized in Table 1, with the m = 4 factor model present-
ing the lowest values, regardless of the prior used. The proposed RJMCMC algorithm also
selects the right model by assigning the highest posterior model probability to the dynamic
factor model with 4 common factors.

Table 1 about here.

Conditioning on m = 4, i.e., the true number of common factors, the MCMC algorihtm
outlined in Section 3 was run for a total of 5000 iterations and posterior inference was
based on the last 4000 draws. Table 2 presents posterior means and standard deviations
for some of the model parameters. As an initial indication that the dynamic factor model
is correctly capturing the right structure, all parameters are well estimated and all true
values fall within the marginal 95% credibility intervals (not shown here). The correctness
of the fitted model is also evident by examining Figures 2 and 3, which show how accurately
estimated both factor loadings matrix and common factor scores are.

Table 2 and Figures 2 and 3 about here.
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4.2. SO2 concentrations in eastern US
Here, the proposed spatial dynamic factor model is used to study the spatial and temporal
variations of SO2 concentrations across 24 monitoring stations (each coded by three letters).
Figure 4 exhibits the monitoring stations and the interpolation grid. Weekly measurements
are collected by the Clean Air Status and Trends Network (CASTNET), which is part of
the Environmental Protection Agency (EPA). Measurements used in this section span from
the first week of 1998 to the 30th week of 2004, a total of 342 observations. Stations BWR
and SPD were left out of the analysis and will be used to check the performance of the
model’s spatial interpolation. Similarly, the last 30 weeks (2004:1-2004:30) were left out of
the analysis and will be used to check the performance of the model’s time series forecast.
In other words, a total of 22 stations and 312 observations are used in the following analysis.

Figure 4 about here.

An important issue is the correction of the curvature of the earth in spatial data set.
A procedure that eliminates the curvature effect by converting latitudes and longitudes
to universal transverse mercator (UTM) coordinates was used. The converted coordinates
are measured in kilometers from western-most longitude and the southern-most latitude
observed in the data set.

Figure 5 shows the time series for logarithm of SO2 for some stations. The time series
exhibit seasonal components with a marked annual cycle and higher values at the begin-
ning of each year. Besides, the trend and seasonality of the series are, at least visually,
related. It will be assumed that the logarithm of the SO2 is normally distributed and sea-
sonal and nonseasonal dynamic factor model (Section 2) considered. Let SDFM(m) and
SSDFM(m,h) stand for spatial dynamic factor model and seasonal spatial dynamic factor
model, respectively, in order to distinguish the two subclasses of models that were enter-
tained, with m = 2, 3 and 4 factors and h = 1 harmonic with cycles of 52 weeks. Gaussian
processes with exponential correlation functions were used in all models.

Figure 5 about here.

Relatively vague prior distributions were used, that is p(σ2
i ) = p(λj) = IG(0.01, 0.01),

p(γj) = N(0, 0.52), p(Λ2,l) = IW (Q, 10) where diag(Q) = (0.1, 0.1) and q12 = −0.05.
Reference priors were used for the parameters of the Gaussian processes. A 50000 run
of the MCMC scheme was generated, discarding the first half as burn-in and retaining
only every 10th step thereafter. Therefore posterior summaries are based on 2500 draws.
Models with more than 4 factors were analyzed but results not included because most of
the additional parameters seemed to be insignificant.

Competing models were compared based on their posterior model probabilities (through
RJMCMC schemes), as well as their mean square errors (MSE) and mean absolute errors
(MAE). Two separate groups of models were considered: models with seasonality and mod-
els without seasonality. From Table 3, it can be seen that MSE and MAE do not convincingly
differentiate SDFM from SSDFM. Nonetheless, SDFM(3) and SSDFM(2,1) exhibit some-
what smaller indicators. On the other hand, MSE based on forecasted and interpolated
values are smaller for SSDFM with two and three common factors. Finally, the posterior
model probabilities for SDFM(3) and SSDFM(2,1) are the highest. Models SSDFM(2,1)
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and SSDFM(3,1) share similar posterior results (not shown here), with the additional com-
mon factor in SSDFM(3,1) centered at zero and with high variability. This helps explaining
the higher posterior model probability for the more parsimonious model.

For illustrative purposes, the rest of the analysis if performed under the SSDFM(2,1)
specification. Nevertheless, it should be mentioned that forecasting observations at gauged
locations, forecasting observations at ungauged locations and many other functionals that
appear in all competing models could be analyzed by combining the forecasts/interpolations
of different and competing models through Bayesian model averaging, as detailed, for in-
stance, in Raftery, Madigan and Hoeting (1997) and Clyde (1999).

Table 3 about here.

Table 4 shows posterior summaries for some of the SSDFM(2,1) model parameters.
Notice that the parameters that control how fast spatial correlation decays, φjs, are very
high. This fact is expected since after the correction of the curvature the matrix of distances
has high values in kilometers. Figure 6 exhibits the evolution of the common factors over
time. As it is fairly common in factor analysis applications, the first common factor account
for the global variability of the series and plays the role of the grand mean. One can argue
that there is a slight decrease in SO2 over the years. This characteristic will be further
discussed later on. The second trend factor is very noisy but of limited variation. The
seasonal common factor captures the cyclic behavior of the time series. It appears that the
amplitude of the cycles are slightly increasing with time.

Table 4 and Figure 6 about here.

Figure 7 presents the mean surfaces for the columns of the factor loadings matrix β
obtained by Bayesian kriging. Loadings for the first factor are shown to be higher in the
center of the interpolated area, around station QAK. Simple exploratory data analysis indi-
cates that the highest values of SO2 concentrations were measured at QAK, confirming the
role of the first factor as a grand mean. Smaller loadings for the second factor are obtained
for the Appalachians Mountains, where fewer industrial activities take place. Loadings for
the seasonal factor are smaller in state of Ohio, an industrial region. This indicates that
seasonality has lower amplitude in this area.

Figure 7 about here.

Combining these findings regarding the factor loadings matrix with those related to the
three common factors, one can argue that (i) the first factor is basically an averaged time
series with higher loadings associated with the region of higher pollution levels; (ii) the
second factor is differentiating regions of different levels of economic occupation and; (iii)
the seasonal factor exhibits a cyclical pattern with amplitudes that seem to be increasing
over time and to be less relevant over more industrialized regions. In summary, the proposed
dynamic spatial factor model is able to meaningfully and parsimoniously separate the data
spatial variation from its temporal variation. Figure 8 exhibits encouraging out-of-sample
properties of the model, with data points being accurately forecasted and interpolated, for
several steps ahead and out-of-sample monitoring stations, respectively.
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Figure 8 about here.

5. Conclusions

This paper introduces a new class of spatial dynamic factor models that nonlinearly sepa-
rates space and time variations of space-time data. The spatial variation is brought into the
modeling through the columns of the factor loadings matrix, while time series dynamics are
captures by the common factors. The dynamic spatial factor model is capable of separating
spatial variation from temporal variation in parsimonious way. The model takes advan-
tages of well established literature for both spatial processes and multivariate time series
processes. The matrix of factor loadings plays the important role of weighing the common
factors in general factor analysis and is here incumbent of modeling spatial dependence.
Similarly, the common factors follow time series decomposition processes, such as local and
global trends, cycle and seasonality.

Fully Bayesian inference is made feasible by novel reversible jump MCMC algorithms
with within m-factor model inference facilitated by a MCMC algorithm that combines well
established schemes, such as the forward filtering backward sampling algorithm.

The simulated application exploits the potentials of the proposed model and indicates
that the designed MCMC and RJMCMC algorithms are practically sound. The true number
of factors was given the highest posterior model probability and the parameters of the modal
model were accurately estimated, including the dynamic common factors and the spatial
loading matrix. The real data application reiterates the potentials of the model both as an
interpolation tool and a forecasting tool.

The flexibility of the spatial dynamic factor model is promising and a few generalizations
are currently under investigation, such as time-varying factor loadings to dynamic link the
latent spatial processes (Lopes and Carvalho, 2006). Another interesting direction is to
allow binomial and Poisson responses by replacing the first level normal likelihood by an
exponential family representation. In this case, the spatial dynamic factors would be used to
model transformations of mean functions. One can argue that the affluence of well known
and reliable statistical tools coupled with highly efficient, and by now well established,
MCMC schemes and plenty of room for extensions will make this area of research flourish
in the near future.

Appendix

The full conditional distribution of all parameters in model (8) are listed here. Namely, the
idiosyncratic variances, σ, the common factor dynamics, γ, the common factors’ variances,
λ, the loadings means, µ, the spatial hyperparameters, τ2

j and φj , the factor loadings matrix,
β, and the common factors, ft, for t = 1, . . . , T .

Idiosyncratic variances From Equation (4), it can be shown that yi|F, σ2
i , βi ∼ N(Fβi, σ

2
i I),

i = 1, . . . , N ; where yi is the ith column of y, βi is the ith row of β. The conditional distri-
bution of σ2

i is given by p(σ2
i | . . .) ∝ p(yi|F, βi, σ

2
i )p(σ2

i ), so (σ2
i | . . .) ∼ IG(n∗σi

/2, n∗σi
s∗σi

/2),
with n∗σi

= T + nσ and n∗σi
s∗σi

= (yi − Fβi)′(yi − Fβi) + nσsσ.

Common factors dynamics It follows from (2) that fjt ∼ N(γjfj,t−1, λj), j = 1, . . . , m
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and t = 2, . . . , T . Therefore, p(γi| . . .) ∝
∏T

t=2 p(fjt|fj,t−1, γi, λi)p(γi|mγ , Sγ), so (γj | . . .) ∼
N(m∗

γj
, S∗γj

), m∗
γj

= S∗γj

[
λ−1

j

∑T
t=2 fjtfj,t−1 + mγS−1

γ

]
and S∗−1

γj
= λ−1

j

∑T
t=2 f2

j,t−1 +S−1
γ .

Common factors variances Similarly, p(λi| . . .) ∝
∏T

t=2 p(fjt|fj,t−1, γi, λi)p(λi|nλ, nλsλ), so
(λj | . . .) ∼ IG(n∗λi

/2, n∗λj
s∗λj

/2), n∗λj
= T−1+nλ and n∗λj

s∗λj
=

∑T
t=2(fjt−γjfj,t−1)2+nλsλ.

Loadings means It follows from (8) that p(µj | . . .) ∝ p(β(j)|µj , τ
2
j , φj)p(µj), so (µj | . . .) ∼

N(m∗
µj

, S∗µj
), m∗

µj
= S∗µj

[
τ−2
j β′(j)R

−1
φj

1N + mµS−1
µ

]
and S∗−1

µj
= τ−2

j 1′NR−1
φj

1N +S−1
µ .

Factor loadings The factor loadings matrix is jointly sampled. To that end, Equation (1)
is rewritten as yt = f∗t β∗ + εt, where f∗t = f ′t ⊗ IN and β∗ = (β′(1), . . . , β

′
(m))

′ are N ×Nm

and Nm× 1 matrices †. Similarly, the prior distribution of β∗ is β∗ ∼ N(µβ∗ , Σβ∗), where
µβ∗ = µ ⊗ 1N , Σβ∗ = Σβ ⊗ Rφ and Σβ = diag(τ2

1 , . . . , τ2
m). From standard Bayesian

multivariate regression (Box and Tiao, 1973), it can be shown that (β∗| . . .) ∼ N(µ̃β∗ , Σ̃β∗),

where Σ̃−1
β∗ =

∑T
t=1 f∗t

′Σ−1f∗t + Σ−1
β∗ and µ̃β∗ = Σ̃β∗

(∑T
t=1 f∗t

′Σ−1yt + Σ−1
β∗ µβ∗

)
.

Common factors The vectors of common factors f1, . . . , fT are sampled jointly by means
of the well known forward filtering backward sampling (FFBS) scheme of Carter and Kohn
(1994) and Früwirth-Schnatter (1994), which explores, conditionally on β and Θ, the follow-
ing backward decomposition p(F |y) = p(fT |DT )

∏T−1
t=0 p(ft|ft+1, . . . , fT , Dt) = p(fT |DT )∏T−1

t=0 p(ft|ft+1, Dt), where Dt = {y1, . . . , yt}, t = 1, . . . , T and D0 represents the initial in-
formation. Roughly speaking, the FFBS works as follows. The density p(fT |DT ) is obtained
by recursively updating a standard multivariate dynamic linear model (West and Harrison,
1997). Starting with f0 ∼ N(m0, C0), it can be shown that ft|Dt ∼ N(mt, Ct), where mt =
at+At(yt−ỹt), Ct = Rt−AtA

′
tQt, at = Γmt−1, Rl = ΓCt−1Γ′+Λ, ỹt = βat, Qt = βRtβ

′+Σ
and At = RtβQ−1

t , for t = 1, . . . , T . fT is sampled from p(fT |DT ). This is the forward
filtering step. For t = T − 1, . . . , 2, 1, 0, ft is sampled from p(ft|ft+1, Dt) = fN (ft; ãt, C̃t),
where ãt = mt + Bt(ãt+1 − at+1), Ht = Ct −Bt(Rt+1 −Ht+1)B′

t and Bt = CtΓR−1
t+1. This

is the backward sampling step.

Spatial hyperparameters By combining the inverse gamma prior density form (6) or the ref-
erence prior density from (7) with the likelihood function from (8), it follows that (τ2

j | . . .) ∼
IG(n∗τj

/2, n∗τj
s∗τj

/2), where n∗τj
= N+nτ and n∗τj

s∗τj
= (β(j)−µj1N )′R−1

φj
(β(j)−µj1N )+nτsτ

when inverse gamma prior distributions are used, and n∗τj
= N and n∗τj

s∗τj
= (β(j) −

µj1N )′R−1
φj

(β(j) − µj1N ) when reference prior distributions are used. The full conditional
density of φj has no known form and a Metropolis-Hastings step is implemented. A can-
didate draw φ̃j is generated from a log-normal distribution with location log φj and scale
∆φ, i.e., qj(φj , ·) = fLN (·; log φj , ∆φ). ∆φ is a tuning parameter and is frequently used to
calibrate the proposal density. The candidate draw is accepted with probability

α(φj , φ̃j) = min

{
1,

fN (β(j);µj1N , τ2
j Rφ̃j

)πP (φ̃j) φ̃j

fN (β(j);µj1N , τ2
j Rφj )πP (φj)φj

}
,

where πP is either an inverse gamma prior, i.e., πIG or the reference prior, i.e., πR.

†For m×n and s× t matrices A and B, the Kronecker product A⊗B is the ns×nt matrix that
inflates matrix A by multiplying each of its components by the whole matrix B.



Spatial dynamic factor analysis 13

Acknowledgement

The authors would like to thank the participants of the talks ministered at the Department
of Statistics, University of Chicago, Department of Applied Mathematics and Statistics,
University of California at Santa Cruz and the participants of the eight Brazilian meeting
for Bayesian inference for invaluable comments that improved the quality of this article. In
particular, we would like to thank Kate Calder, Alexandra Schmidt, Ed George, Athana-
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Number of common factors
m = 3 m = 4 m = 5 m = 6

PMP 0.000 0.840 0.158 0.002

AIC1 7503.1 6296.0 6596.5 7510.9
AIC2 8957.3 6263.2 6829.4 6891.91
BIC1 10839.8 10636.5 11940.6 13858.7
BIC2 12294.1 10603.7 12173.5 13239.7

MSE1 305.4 144.47 144.49 154.36
MSE2 295.4 140.60 140.70 146.20

Table 1. Posterior model probabilities (PMP) and
standard information criteria. AIC1, BIC1 and MSE1
are relative to vague but proper priors, while AIC2,
BIC2 and MSE2 are relative to the reference priors.
PMP are computed based sole on the vague but
proper priors. Best models appear in italic.

j True λj True γj True τ2
j True φj

1 0.15 0.16 (0.07) 0.6 0.54 (0.09) 1.0 0.83 (0.43) 0.2 0.19 (0.08)
2 0.10 0.24 (0.14) 0.5 0.50 (0.09) 0.6 0.31 (0.23) 0.5 0.44 (0.48)
3 0.20 0.15 (0.05) 0.2 0.18 (0.09) 0.8 0.64 (0.34) 0.3 0.22 (0.16)
4 0.07 0.17 (0.06) 0.3 0.29 (0.10) 0.5 0.27 (0.11) 0.1 0.17 (0.08)

Table 2. Posterior means (posterior standard deviations in parenthesis) for the parameters
in the simulated study.

Model MSE MAE MSE1 MSE2 PMP

SDFM(2) 0.12 0.26 0.52 0.20 0.37
SDFM(3) 0.08 0.21 0.46 0.16 0.48
SDFM(4) 0.11 0.26 0.45 0.18 0.15

SSDFM(1,1) 0.11 0.24 0.76 0.15 0.43
SSDFM(2,1) 0.08 0.21 0.22 0.16 0.56
SSDFM(3,1) 0.12 0.25 0.23 0.13 0.01

Table 3. Comparison criteria for SDFM(m) and SSDFM(m, h) models:
mean squared error (MSE), mean absolute error (MAE), and posterior
model probabilities (EPD). MSE1 are based on predicted values and
MSE2 are based on interpolated values at stations BWR and SPD.
Best models appear in italic.
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Mean S.D. 2.5% 50% 97.5%

γ1 0.997 0.002 0.991 0.997 1.000
γ2 0.029 0.064 -0.092 0.029 0.149
λ1 0.011 0.004 0.005 0.011 0.020
λ2 0.018 0.013 0.002 0.015 0.054
λ3 0.006 0.002 0.003 0.006 0.009
λ4 0.005 0.001 0.003 0.005 0.008
λ34 -0.002 0.001 -0.004 -0.002 0.000

µ1 0.85 0.63 -0.51 0.93 1.54
µ2 0.33 3.20 -4.07 0.14 7.20
µ3 2.68 0.50 1.83 2.61 3.79
τ2
1 0.44 1.60 0.033 0.094 4.37

τ2
2 12.60 28.00 0.69 3.84 103.00

τ2
3 0.46 0.37 0.14 0.36 1.46

φ1 1488.00 5287.00 62.17 268.23 16452.00
φ2 983.08 1595.40 136.84 463.54 5826.60
φ3 180.11 155.98 46.71 138.92 600.96

Table 4. Posterior summaries for SSDFM(2,1) model.
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Fig. 1. Coordinates of the N = 50 locations on the square [0, 1]× [0, 1].
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Fig. 2. Interpolation of the four columns of the factor loadings matrix. True surfaces are the left
contour plot on each panel, while interpolated ones are the right contour plot on each panel.
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Fig. 5. CASTNET data (a) Time series of weekly log(SO2) concentrations at MCK, QAK, BEL and
CAT stations. (b) Normal Q-Q plot for time series plotted in (a).
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(c) Seasonal Factor

Fig. 6. Posterior means of the factors following the SSDFM(2,1) model. Solid lines represent the
posterior means and dashed lined the 95% credible interval limits.
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Fig. 7. Bayesian interpolation for loadings of the first, second and seasonal factors respectively.
Values represent the range of the posterior means.
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(a) Interpolated values at SPD station (b) Interpolated values at BWR station.
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(c) Forecasted values at some stations.

Fig. 8. (a)-(b)Interpolated values at stations SPD and BWR left out from the sample. (c) Forecasted
values for the period 2004:1–2004:30. Solid lines represent the posterior mean, dashed lines to the
95% credible interval limits and × the observed values.


