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Recommendation systems seek to predict the rating or preference that a user would give to an item. We propose a new method for
collaborative filtering that allows flexible recommendations to users through Markov Chain Monte Carlo algorithms (MCMC). With
this approach, one can draw samples from the predictive posterior distribution and use it to produce point estimates, since after
convergence each sampled value can be used as rate prediction. Our proposal allows fast results to be displayed since it does not
require waiting for the simulation of a full chain before making predictions. This is not only welcome by the users themselves but
also helps with the learning mechanism of the algorithm. Also, one of the biggest concerns of this study was to create an algorithm
that is scalable. To do so, we propose a Bayesian optimization step within the MCMC algorithm, in order to circumvent a costly
matrix inversion. Finally, an application to the Movie Lens data set [7] is presented as an illustration, and results comparable to the
state-of-the-art were obtained.
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1 INTRODUCTION

Custom recommendations are often obtained from lists of ranked items. When building a ranking, recommendation
systems try to predict which product or service most likely fits the user preferences based on their background. To
this end, the system must constantly collect information from users and update their preferences dynamically. This
information can be explicit (such as grades assigned to a product), or inferred from user actions (time spent on a
webpage, number of clicks, recent searches). In both cases, the system learns based on users’ feedback: an option is
recommended for an user and the system automatically learns through his positive or negative reaction to it.

Several model-based approaches have been proposed through matrix factorization methods within the context of
collaborative filtering ([2], [16]), but in most of them the system is limited to a fixed ranking per user and suffers from
the well known cold start problem. Some approaches deal with the latter problem in an interactive way (see [9] and
[15]).

Dimension reduction is one of the tools used in the recommendation system scheme. Often, a recommendation
problem can contain high-dimensionality structures. Several sophisticated methods were proposed and discussed in
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[16] (Alternating least squares - ALS), [2], [11] and [1]. These models leverage well-known dimensionality reduction
methods to fill in the missing entries. An elegant application of ALS in the context of Latent Factor Models was proposed
by [16]. In this approach, the goal is to find a vector x𝑖 ∈ R𝑓 for each user 𝑖 and a vector y𝑗 ∈ R𝑓 for each item 𝑗 that
will factor user preferences. In other words, preferences are assumed to be the inner products 𝑟𝑖 𝑗 = x𝑇

𝑖
y𝑗 . Vectors x𝑖

and y𝑗 are known as the user-factors and item-factors, respectively.
Another approach was presented in [14], where linear models were used in the recommender system scenario. The

authors compare their method to another model-based method using decision trees, and to memory-based methods
using data from several domains. In this paper we propose a new collaborative filtering approach for recommendation
systems. We focus on a model-based recommendation approach similar to the one proposed by [14], and with the
same core algorithm, but under the Bayesian paradigm. In the application section, we compare our algorithm to the
dimensionality reduction-based algorithm ALS, and to the Probabilistic Matrix Factorization - PMF [10].

Our model assumes that the ratings matrix, with 𝑛 rows (total number of users) and 𝑝 columns (total number of
items) follows a matrix variate normal distribution. Note that in general we only observe only a few entries of this
matrix, and our challenge is to predict the missing scores in order to make the recommendations. To do so, we use a
conditional construction that specifies a linear regression to each column of the ratings matrix, assuming that part of the
variability of the ratings given to a fixed item is explained by the ratings given to the other items. Also, one can penalize
the parameters in the regression structure depending on the goal of the recommendation system of interest. Our final
purpose is to rank the items based on the predictive distribution of the missing ratings, and make the recommendations
following these results. This approach has the advantage of allowing new recommendations even if the user has not
interacted with the system yet. We propose Markov Chain Monte Carlo (MCMC, [4]) methods to sample from the
posterior and the predictive distributions. In this scenario, it is possible to use a fully Bayesian approach to sample
from the full posterior distribution. A recurrent problem in this approach is the intense computational demand. We
propose a semi-Bayesian approach using Bayesian optimization to obtain a point estimate of a set of parameters in
the algorithm structure at each iteration as opposed to drawing from it, aiming to improve the computational time
processing the algorithm.

Under this approach, after convergence, the algorithm can provide different and varied recommendations to the
user, which can be desirable. For example, the system can give a new recommendation to the same user when he (or
she) updates the website, instead of always providing the same one. Indeed, under the Bayesian paradigm, any kind of
flexible prediction can be used.

2 PROPOSED MODEL

In this section we present the proposed model and it’s interpretation. To build the model we assume that the ratings
given by different users to a fixed item are conditionally independent given all other ratings. However, ratings given by
the same user to different items are correlated. This is a reasonable assumption as a user will have a particular preference
and will tend to rate similar items in a similar way. We also assume that the ratings can be seen as approximately
Normal, with every item assuming a different mean and variance. Therefore the matrix of ratings will follow a Normal
matrix variate distribution (see [6]).

Our method takes advantage of the fact that, after some algebra, the vector of ratings given to each item can be
written as a regression of the ratings given to the other items. This result will be developed below. These regression
structures are explored inside the proposed MCMC method. Note, however, that our algorithm must be able to deal
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with both high dimension (large number of users) and several covariates (large number of items), which are usual in
recommendation systems.

Similar approaches to ours can be found in the literature under the classic paradigm, such as [13] and [14]. We, on
the other hand, follow a Bayesian approach that makes the structure more flexible, and allows to use each sample from
the posterior as a recommendation structure.

Suppose 𝑛 users rated 𝑝 items, and let 𝑦𝑖, 𝑗 be the rating given by user 𝑖 to item 𝑗 . Denote by (𝑦𝑖,1, 𝑦𝑖,2, · · · , 𝑦𝑖,𝑝 )𝑇 the
vector of ratings provided by the 𝑖-th user, with 𝑖 = 1, . . . , 𝑛. As mentioned before, we assume these ratings are normally
distributed, with the ratings of item 𝑗 having mean 𝜇 𝑗 and variance 𝜙2

𝑗
, 𝑗 = 1, . . . , 𝑝 . We also assume that the ratings

given by different users to an item are independent conditionally on 𝝁, Φ and other item’ ratings, that is

(𝑦𝑖,1, 𝑦𝑖,2, · · · , 𝑦𝑖,𝑝 )𝑇 iid∼ 𝑁𝑝 (𝝁,Φ) , 𝑖 = 1, . . . , 𝑛,

with 𝝁 = (𝜇1, 𝜇2, . . . , 𝜇𝑝 )𝑇 and

Φ =

©­­­­­­«

𝜙21 𝜙1,2 . . . 𝜙1,𝑝

𝜙2,1 𝜙22 . . . 𝜙2,𝑝
.
.
.

.

.

.
. . .

.

.

.

𝜙𝑝,1 𝜙𝑝,2 . . . 𝜙2𝑝

ª®®®®®®¬
, (1)

where 𝑁𝑝 (𝝁,Φ) denotes a 𝑝-variate normal distribution with mean 𝝁 and covariance matrix Φ.
Now, denote by 𝑌𝑘 the vector of ratings given by all the users to the 𝑘-th item, such that 𝑌𝑘 = (𝑦1,𝑘 , 𝑦2,𝑘 , . . . , 𝑦𝑛,𝑘 )𝑇 ,

𝑘 = 1, 2, . . . 𝑝 , and denote by Y = (𝑌1, 𝑌2, . . . , 𝑌𝑝 ) ∈ R𝑛×𝑝 the matrix of ratings provided by the 𝑛 users to the 𝑝 item.
Therefore,

Y =

©­­­­­­«

𝑦1,1 𝑦1,2 . . . 𝑦1,𝑝

𝑦2,1 𝑦2,2 . . . 𝑦2,𝑝
.
.
.

.

.

.
. . .

.

.

.

𝑦𝑛,1 𝑦𝑛,2 . . . 𝑦𝑛,𝑝

ª®®®®®®¬
(2)

is a random matrix with mean matrix𝑀 and covariance matrix Σ = Φ ⊗ 𝐼𝑛 , that is, when written as a vector

𝑣𝑒𝑐 (Y) =
(
𝑌𝑇1 𝑌𝑇2 . . . 𝑌𝑇𝑝

)𝑇
=

(
𝑦1,1 𝑦2,1 . . . 𝑦𝑛,1 𝑦1,2 𝑦2,2 . . . 𝑦𝑛−1,𝑝 𝑦𝑛,𝑝

)𝑇
∼ 𝑁𝑛𝑝 (𝝁, Σ) (3)

with
𝝁 =

(
𝜇1 𝜇1 . . . 𝜇1 𝜇2 𝜇2 . . . 𝜇𝑝 𝜇𝑝

)𝑇
, (4)

where 𝐼𝑛 denotes the n-dimensional identity matrix and ⊗ represents the Kronecker product. More details about matrix
variate distributions can be found in [6]. Here 𝝁 = 𝑣𝑒𝑐 (𝑀). The covariance matrix Σ of the vectorized matrix 𝑣𝑒𝑐 (Y) is
given by

Σ = Φ ⊗ 𝐼𝑛 =

©­­­­­­«

𝜙21𝐼𝑛 𝜙1,2𝐼𝑛 . . . 𝜙1,𝑝 𝐼𝑛

𝜙1,2𝐼𝑛 𝜙22𝐼𝑛 . . . 𝜙2,𝑝 𝐼𝑛
.
.
.

.

.

.
. . .

.

.

.

𝜙1,𝑝 𝐼𝑛 𝜙1,𝑝−1𝐼𝑛 . . . 𝜙2𝑝 𝐼𝑛

ª®®®®®®¬
. (5)

Defining
𝑌−𝑘 = 𝑣𝑒𝑐 (𝑌1, . . . 𝑌𝑘−1, 𝑌𝑘+1, . . . , 𝑌𝑝 )𝑇 , (6)
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a vector with mean 𝝁−𝑘 and covariance matrix Σ−𝑘,−𝑘 , we have that ([8])(
𝑌𝑘

𝑌−𝑘

)
∼ 𝑁

((
𝝁𝑘
𝝁−𝑘

)
,

(
Σ𝑘,𝑘 Σ𝑘,−𝑘
Σ−𝑘,𝑘 Σ−𝑘,−𝑘

))
(7)

and
𝑌𝑘 | (𝑌−𝑘 = 𝑦−𝑘 ) ∼ 𝑁𝑛 (𝝁𝑘 , Σ𝑘 ) (8)

with

𝝁𝑘 = 𝝁𝑘 + Σ𝑘,−𝑘Σ
−1
−𝑘,−𝑘 (𝑦−𝑘 − 𝝁−𝑘 ), (9)

Σ𝑘 = Σ𝑘,𝑘 − Σ𝑘,−𝑘Σ
−1
−𝑘,−𝑘Σ−𝑘,𝑘 . (10)

Note that the model structure allows us to describe each column of the ratings matrix as a function of the other columns.
Therefore, it is possible to reparametrize the distribution above in the following way

𝑌𝑘 |𝑌−𝑘 ∼ 𝑁𝑛 (1𝛽 (𝑘)1 + 𝑋 (𝑘)𝜷 (𝑘) , 𝜎2
𝑘
𝐼𝑛), (11)

where 1 is a 𝑛-dimensional vector of ones; 𝛽 (𝑘)1 is a scalar; 𝜷 (𝑘) is a vector of coefficients with dimension 𝑝 − 1; 𝑋 (𝑘) is
the ratings matrix Y without the column 𝑘 ; and 𝜎2

𝑘
is defined as the variance of 𝑌𝑖𝑘 |𝑌−𝑘 .

The model when written as above has the form of a multiple regression. Instead of assigning prior distributions to the
parameters under thematrix variate formulation of themodel, we prefer towork under thismore convenient construction.
Therefore, to complete the model specification, we assign independent prior distributions for the parameters 𝛽 (𝑘)1 , 𝜷 (𝑘)

and 𝜎2
𝑘
, ∀𝑘 . As we do not want to assume any prior knowledge about some parameters, we assign a flat distribution as a

prior for the intercept 𝛽 (𝑘)1 and a non informative Jeffreys’ prior for 𝜎2
𝑘
. Also, given the large number of covariates

in each regression and the fact that almost always the 𝑘-th item will have only a few users who interacted with it,
we propose a Laplace prior distribution for the regression coefficients 𝜷 (𝑘) . Also, [12] reports that with this structure
the maximum of the posterior distribution is the same as obtained by the LASSO penalization. With this prior, we are
penalizing the parameters and dealing with the 𝑝 > 𝑛 problem.

The proposed model can be written as:

𝑌𝑘 | 𝑌−𝑘 , 𝛽
(𝑘)
1 , 𝜷 (𝑘) , 𝜎2

𝑘
∼ 𝑁𝑛𝑘 (𝜷

(𝑘)
1 + 𝑋 (𝑘)𝜷 (𝑘) , Σ𝑘 ) 𝑘 = 1, . . . , 𝑝, (12)

𝛽
(𝑘)
1 | . ∼ 𝑓 𝑙𝑎𝑡 𝑘 = 1, . . . , 𝑝, (13)

𝛽
(𝑘)
𝑗

| 𝜎2
𝑘
, 𝜆𝑘 ∼ 𝐿𝑎

(
0,
2𝜎2

𝑘

𝜆𝑘

)
, 𝑗 = 1, . . . , 𝑝 − 1, 𝑘 = 1, . . . , 𝑝, (14)

𝑝 (𝜎2
𝑘
) ∝ 1

𝜎2
𝑘

, 𝑘 = 1, . . . , 𝑝, (15)

𝜆𝑘 ∼ 𝐺 (𝛼0, 𝛾0), 𝑘 = 1, . . . , 𝑝, (16)

where 𝑛𝑘 denotes the number of users that have rated the 𝑘𝑡ℎ item. It can be shown that the joint distribution of Y exists
with this construction (see [3]), but the posterior distribution does not have a known form. That way, we propose a
MCMC algorithm to sample from the model parameters. To do so, it is useful to obtain the full conditional distributions,
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which are given below:

𝑝 (𝜷 (𝑘) |Y, 𝜆𝑘 , 𝜎2𝑘 ) ∝ exp

−1
2𝜎2

𝑘

𝑛𝑘∑
𝑖=1

(𝑦𝑖𝑘 − 𝑋
(𝑘)
𝑖

𝜷 (𝑘) )2 + −𝜆𝑘
2𝜎2

𝑘

𝑝∑
𝑗=1

|𝛽 (𝑘)
𝑗

|


𝛽1 |Y, 𝜆𝑘 , 𝜎2𝑘 ∼ 𝑁

(
1
𝑛𝑘

𝑛𝑘∑
𝑖=1

(𝑦𝑖𝑘 − 𝑋
(𝑘)
𝑖

𝜷 (𝑘) ),
𝜎2
𝑘

𝑛𝑘

)

𝜎2
𝑘
|Y, 𝜆𝑘 , 𝛽0, 𝜷 ∼ 𝐼𝐺

©­«𝑛𝑘2 + 𝑝 − 1,

∑𝑛𝑘
𝑖=1 (𝑦𝑖𝑘 − 𝑋

(𝑘)
𝑖

𝜷 (𝑘) )2 + 𝜆𝑘
∑𝑝

𝑗=2 |𝛽
(𝑘)
𝑗

|
2

ª®¬
𝜆𝑘 |𝑌, 𝜎2𝑘 , 𝜷 ∼ 𝐺

©­«𝛼0 + 𝑝 − 1, 𝛾0 +
∑𝑝

𝑗=2 |𝛽
(𝑘)
𝑗

|

2𝜎2
𝑘

ª®¬ ,
where 𝑋 (𝑘)

𝑖
is the 𝑖-th row of 𝑋 (𝑘) .

Here, we are presenting a model that is decomposed in multiple regressions to handle the full matrix of ratings. The
structure can be seen as a variation of [13] and [14], where linear regressions are used to model each column. Our model
provides a full probabilistic construction that allows to do the same under a Bayesian approach. A natural limitation of
this approach is the fact that we are modeling Normal variables when in the usual recommendation systems problems
the ratings are discrete. However, [14] shows that linear models are well suitable even with few possible values for the
ratings in the matrix. Also, many other authors have used the same structure to discrete ratings such as [16], [2] and
[13]. Note as well that even though we are making an approximation, our approach still gives to the system a natural
way of sorting the items after the prediction, which is our main goal.

Themodel is capturing the correlation between items and supposing that users are observed conditional independently.
Note that this choice is not themost usual. In the recommendation system literature, usually the correlation between users
is modeled, specially in the collaborative filtering approach, while the items are considered conditionally independent.
This can be achieved by making the matrix of users correlation in (3) to be a full matrix of parameters and changing the
matrix of correlations between the items to the identity.

As in [14], we are using the model to fill the missing data in the ratings matrix with estimates. Under our approach,
one can access the predictive posterior distribution, and obtain point estimates from there. Also, each sample from the
MCMC can be used as a recommendation, allowing the system to have varying recommendations even without new
inputs from the users.

3 COMPUTATIONAL METHODS

Under the presented model construction, one can use MCMC methods to sample from the posterior distribution of the
unknown model parameters. This approach brings all information needed to make inference about these parameters
under the Bayesian paradigm. A natural disadvantage using this algorithm is the computational demand. In practice,
some parameters such as the parametric vector 𝜷 brings a big complexity to the algorithm when drawing from it,
since it is requires inverting a large matrix and also drawing from a high dimensional normal distribution. Taking this
into account, we present a semi-Bayesian approach for the estimation of the model parameters, which improves the
computational efficiency of the method while achieving similar results when compared to the full Bayesian approach.

A Gibbs sampling algorithm (see [5]) is proposed where the elements in 𝜷 are replaced by their maximum a posterior
point estimation at every iteration of the algorithm. It is interesting to note, as pointed out by [12], that when we
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specify a Laplace prior to the regression coefficients, the maximum a posterior is the same as under the LASSO, which
allows us to keep the same interpretation of the model construction under this penalization.

The other model parameters are sampled from their full conditionals, and we also sample from the predictive posterior
distribution. Algorithm 1 shows the full construction, given initial values to 𝜎2

𝑘
, 𝜆𝑘 and all missing values of Y.

Algorithm 1 Maximum a Posterior Approach

(1) Set the 𝛽 (𝑘)1𝑜𝑝 and 𝜷 (𝑘)
𝑜𝑝 from the optimization step where

𝜷 (𝑘)
𝑜𝑝 = argmin

𝜷 (𝑘 ) ∈R𝑝−1


𝑛𝑘∑
𝑖=1

(𝑦𝑖𝑘 − 𝑋
(𝑘)
𝑖

𝜷 (𝑘) )2 + 𝜆𝑘

𝑝∑
𝑗=2

|𝛽 (𝑘)
𝑗

|
 (17)

𝛽
(𝑘)
1𝑜𝑝 =

1
𝑛𝑘

𝑛𝑘∑
𝑖=1

(𝑦𝑖𝑘 − 𝑋
(𝑘)
𝑖

𝜷 (𝑘)
𝑜𝑝 ) (18)

(2) Draw 𝜎2
𝑘
|𝜷 (𝑘) ,Y ∼ 𝐼𝐺

©­«𝑛𝑘2 + 𝑝,

∑𝑛𝑘
𝑖=1 (𝑦𝑖𝑘 − 𝑋

(𝑘)
𝑖

𝜷 (𝑘) )2 + 𝜆𝑘
∑𝑝

𝑗=2 |𝛽
(𝑘)
𝑗

|
2

ª®¬
(3) Draw 𝜆𝑘 |𝜎2𝑘 , 𝜷

(𝑘) ∼ 𝐺

(
𝑝 + 𝛼0,

1
2𝜎2

𝑘

∑𝑝

𝑗=2 |𝛽
(𝑘)
𝑗

| + 𝛾0

)
(4) Draw from the predictive posterior distribution.

This approach has the same advantage of sampling from the posterior distribution, as one can use each iteration as a
full recommendation. Using the maximum a posterior estimation of 𝜷 instead of sampling from their full conditional
substantially improved the computational costs without causing deterioration of the results.

4 APPLICATION

In this section we present an application of the proposed methodology to a matrix of ratings obtained from the
MovieLens dataset. It can be a challenge in the business to improve recommendation to a specific segment group. For
our application we did two experimental applications. One segment considered movies that were rated by more than 25
users and a second segment considered movies that were rated by more than 100 users. The dataset was then split into
train and test samples, with 75% of the data being used for training. The proposed methodology (MAP) was applied and
100 draws were obtained from the predictive posterior distribution, after a burn-in of 10 iterations and thinning of size
2. To evaluate the model, the mean of the predictive posterior distribution was used to calculate the RMSE and the
Mean Absolute Error. The results are given in Table 1, where we compare MAP with ALS [16] and PMF [10].

Table 1. RMSE and Absolute Error of ALS, PMF and MAP algorthms under a dataset from MovieLens

More than 25 users More than 100 users

ALS PMF MAP ALS PMF MAP

RMSE 0.862407 0.871272 1.044578 0.836530 0.849594 0.921344
Mean Absolute Error 0.668212 0.676056 0.771120 0.645152 0.651407 0.701926

It can be seen that even with worst results, MAP has competitive metrics values, when comparing with both ALS
and PMF. Besides that, MAP showed a significant improvement when used in segments that have less sparsity levels.
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These segments, such as heavy users or items that are usually consumed by many users, reduce the sparsity of the
ratings matrix and are a particular focus of companies. One natural advantage of our approach is drawing from the
posterior distribution the parameters. With this, other metrics can be used to sort the items to be recommended, taking
into account not only a mean or median estimation, but also the variation estimated for each item. Another suggestion
is that each draw from the predictive posterior distribution can be used as a recommendation. Therefore, we took 5
random recommendations structures and evaluate the RMSE in each one of them. Table 2 shows the error achieved in
each structure.

Table 2. RMSE for 5 random samples from the predictive posterior distribution for items rated by more than 25 users

Sample RMSE

1 1.079552
2 1.044665
3 1.046287
4 1.066011
5 1.039273

The obtained results show that our approach achieved overall a good performance when considering point estimation.
It is interesting to note, however, that a recommendation system based on point estimates alone would clearly suggest a
fixed ranking of movies. We propose to make recommendations at every iteration of the algorithm, instead. Since we
draw several samples from the predictive posterior distribution, the predicted ratings vary for a given user 𝑖 , allowing
new movies to be recommended at different steps of the algorithm. We believe this diversification is a desirable property
of our methodology as users may get unusual recommendations from time to time, which may not only be welcome by
the users themselves but also help the learning mechanism of the algorithm.

5 CONCLUSION

Since the main interest of the proposed model is to sample from the predictive posterior distribution, a semi-Bayesian
approach was presented using Bayesian optimization steps in the algorithm. Another important aspect that we must
take into account in this field of application is the computational time that is required for the estimation of the model
and obtaining of the final product of interest, which is the recommendation. Instead of sampling from the regression
parameters 𝜷 at every iteration of the MCMC algorithm, we use their maximum a posterior estimates at each step. This
substantially improved the computational costs without causing deterioration of the results.

A next step in our research is to consider cases where new users and new movies are introduced into the system. It
is a challenge to recommend movies to new users, when we have no information about their preferences. Also, when
new movies are introduced, to whom must they be recommended? With our approach, the vectorization of the ratings
matrix allows one to see each row as a rating to be estimated. In particular, a new latent vector representing a new user
or a new item can be estimated and the system will be ready for making recommendations for this users.

When working under a Bayesian approach, one good advantage is the possibility of assigning prior knowledge to the
parameters. If there are metadata available about the items, one possible future work would be to try to find correlation
or similarity between the items and input it in the prior of the regressors parameters. With this approach, the system
will use both information: the users preferences and the available information about the items.
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