UFRJ - CCMN - IM - Departamento de Métodos Estatísticos

Prova Final de Probabilidade e Estatística

Atenção: Só serão aceitas respostas com justificativa. - 27/06/2017

- 1. Considere um reino encantado bem, bem distante. Há uma chance de 50% de que uma rainha carregue o gene da magia. Se ela for portadora do gene, então cada príncipe terá, um independentemente do outro, 50% de chance de ter poderes mágicos. Se a rainha não for portadora desses poderes, os príncipes não herdarão o dom da magia. A rainha teve três filhos.
 - (a) Se a rainha for portadora do gene da magia, qual a probabilidade de pelo menos um de seus três filhos possuir o gene da magia?
 - (b) Supondo que todos os filhos da rainha não têm poderes mágicos, qual a probabilidade de que ela seja portadora do gene da magia?
- 2. Admita que o intervalo de tempo T entre duas chegadas sucessivas de mensagens de Whatsapp ao celular de determinada pessoa segue uma distribuição Exponencial, e que a probabilidade de que esse intervalo de tempo seja maior que 20 minutos é igual a 0,135.
 - (a) Em média, quanto tempo após a chegada de uma mensagem deve chegar a próxima mensagem?
 - (b) Qual a probabilidade de que T seja no máximo 40 minutos, dado que T é no mínimo 25 minutos?
 - (c) Qual o desvio padrão do número de mensagens que a pessoa recebe em meia hora?
 - (d) Qual a probabilidade de que, ao longo de 1 hora, ela receba pelo menos 4 mensagens?
- 3. Sejam T_1 e T_2 dois estimadores não tendenciosos do parâmetro θ tais que

$$Var(T_1) = 1$$
, $Var(T_2) = 4$ e $COV(T_1, T_2) = -1$.

Considere o estimador de θ definido por

$$T = \alpha T_1 + (1 - \alpha)T_2, \quad \alpha \in \mathbb{R}.$$

- (a) Para que valores de α , T é um estimador não tendencioso de θ ?
- (b) Expresse a variância de T em função de α .
- (c) Para que valor de α , a variância de T é mínima?
- 4. Uma companhia produz peças para um aparelho. A medição do tamanho, em mm, para 30 espécimes de peças desse tipo resultou nas observações abaixo:

- (a) Calcule o p-valor do teste de hipótese para a média populacional dessa variável ser no máximo 95 contra a alternativa de ser maior do que 95. Baseado no p-valor, que conclusão se tem ao nível $\alpha=5\%$;
- (b) Teste a hipótese de que a proporção de peças com comprimento estritamente superior a 100 mm seja maior ou igual (\geq) que 30%, ao nível α de 8% ;
- (c) Utilize os dados como uma amostra piloto para dimensionar uma nova amostra com base na qual se pode obter uma estimativa da média populacional do comprimento das peças, de modo a que o coeficiente de variação do estimador, \overline{X} seja da ordem de 0,01.

Para esta amostra temos: $\sum_{i=1}^{30} x_i = 2916$ e $\sum_{i=1}^{30} x_i^2 = 286084$.

Solução

- 1. Considere os eventos: R: "rainha possui o gene da magia" e A_i : "príncipe i possui o gene da magia", com i = 1, 2, 3.
 - (a) A probabilidade desejada, usando independência condicional, é

$$P(\bigcup_{i=1}^{3} A_i | R) = \sum_{i=1}^{3} P(A_i | R) - \sum_{i>j} P(A_i \cap A_j | R) + P(\bigcap_{i=1}^{3} A_i | R)$$

$$= (1/2) + (1/2) + (1/2) - (1/2)^2 - (1/2)^2 - (1/2)^2 + (1/2)^3$$

$$= 7/8.$$

(b)

$$P(R|\; \cap_{i=1}^3 \; A_i^c) = \frac{P(R \cap (\cap_{i=1}^3 A_i^c))}{P(\cap_{i=1}^3 A_i^c)} = \frac{P(R)[\prod_{i=1}^3 P(A_i^c|R)]}{P(R)[\prod_{i=1}^3 P(A_i^c|R)] + P(R^c)[\prod_{i=1}^3 P(A_i^c|R^c)]}.$$

Calculando obtém-se

$$P(R|\cap_{i=1}^3A_i^c) = \frac{(1/2)(1/2)(1/2)(1/2)}{(1/2)(1/2)(1/2)(1/2) + (1/2)(1)(1)(1)} = \frac{1}{9}$$

- 2. (a) $T \sim Exp(\lambda)$. Sabemos que $0.135 = P(T > 20) = e^{-20\lambda}$. Logo, $ln(0.135) = -2 = -20\lambda$, $\lambda = 0.1$. Assim, $E(T) = 1/\lambda = 10$ minutos.
 - (b) Pela Propriedade da Perda de memória da Exponencial: $P(T > 40|T > 25) = P(T > 40 25) = P(T > 15) = e^{-0.1x15} = e^{-1.5} = 0.223$. Portanto, P(T < 40|T > 25) = 1 0.223 = 0.777.
 - (c) Seja X o número de chegadas de mensagens em meia hora, ou seja, 30 minutos. Então, pela relação existente entre os modelos Exponencial e de Poisson, $X \sim Poisson(\mu X)$, onde $\mu X = 30\lambda = 30x0$, 1 = 3. Logo $DP(X) = \sqrt{3} = 1,73$.
 - (d) Seja Y o número de chegadas de mensagens em 1 hora = 60 minutos. Então, $Y \sim Poisson(\mu_Y)$, onde $\mu_Y = 60\lambda = 60x0, 1 = 6$. Daí, $P(Y \ge 4) = 1$ $P(Y \le 3) = 1$ P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 1 P(X = 6) + P(X = 1) = 1 P(X = 1) + P(X = 1) + P(X = 1) + P(X = 1) = 1 P(X = 1) + P(X = 1) + P(X = 1) = 1 P(X = 1) + P(X = 1) + P(X = 1) = 1 P(X = 1) + P(X = 1) + P(X = 1) = 1 P(X = 1) + P(X = 1) + P(X = 1) = 1 P(X = 1) + P(X = 1) + P(X = 1) = 1 P(X = 1) + P(X = 1) + P(X = 1) = 1 P(X = 1) +
- 3. (a) T é estimador não tendencioso de θ para todo $\alpha \in R$, pois $\mathsf{E}[T] = \mathsf{E}[\alpha T_1 + (1-\alpha)T_2] = \alpha \underbrace{\mathsf{E}[T_1]}_{=\theta} + (1-\alpha)\underbrace{\mathsf{E}[T_2]}_{=\theta} = \alpha \underbrace{\mathsf{E}[T_1]}_{=\theta} + (1-\alpha)\theta = \theta$

(b)
$$\operatorname{Var}(T) = \alpha^2 \underbrace{\operatorname{Var}(T_1)}_{=1} + (1 - \alpha)^2 \underbrace{\operatorname{Var}(T_2)}_{=4} + 2\alpha(1 - \alpha) \underbrace{\operatorname{COV}(T_1, T_2)}_{=-1} =$$

$$= \alpha^2 + 4(1 - 2\alpha + \alpha^2) - 2\alpha + 2\alpha^2 = 7\alpha^2 - 10\alpha + 4$$

- (c) Observe que a expressão da variância em função de α é uma parábola com a concavidade voltada para cima de tal modo que o valor mínimo da variância é obtido no vértice da parábola, ou seja, para $\alpha = \frac{-(-10)}{2 \times 7} = \frac{5}{7}$.
- 4. Com base na amostra: $\overline{x} = \frac{\sum_{i=1}^{30} x_i}{n_1} = \frac{2916}{30} = 97, 2mm;$ $s^2 = \frac{\sum_{i=1}^{2} x_i^2 n\overline{x}^2}{n-1} = \frac{286084 30 \times (97,2)^2}{29} = 91, 34mm^2; \text{ e } s = \sqrt{91,34} = 9,6mm$
 - (a) A estatística de teste a ser usada aqui é a média amostral, \overline{x} . Como o tamanho amostral é razoavelmente grande, sob H0, $\overline{X} \sim N(95, s/\sqrt{n})$. Devido à forma como foram definidas as hipóteses H0: $\mu \leq 95$ versus H1: $\mu > 95$, é natural que valores baixos de \overline{x} nos levem a aceitar H0, enquanto valores altos de \overline{x} nos levem a rejeitar H0. Então, p-valor= $P(\overline{x} > 97, 2) = 1 \Phi(\frac{97, 2-95}{9, 6/\sqrt{30}}) = 1 \Phi(1, 25) = 0, 1056$. Como o p-valor é uma probabilidade que representa uma medida de quanto os dados concordam com a hipótese H0, 11% é um valor alto comparado com 5%. Assim, não temos evidência para a rejeição de H0.
 - (b) A estatística de teste a ser usada aqui é a proporção amostral, \hat{p} . Como o tamanho amostral é razoavelmente grande, sob H0, $\hat{p} \sim N(p, p(1-p)/n)$. Devido à forma como foram definidas as hipóteses H0: $\hat{p} \geq 0, 3$ versus H1: $\hat{p} < 0, 3$, é natural que valores altos de \hat{p} nos levem a aceitar H0, enquanto valores baixos de \hat{p} nos levem a rejeitar H0. Na amostra temos 8 valores estritamente maiores que 100, $\hat{p} = 8/30 = 0, 27$ Então, p-valor= $P(\hat{p} < 0, 27) = \Phi(\frac{0.27 0.3}{\sqrt{0.3 \times 0.7/30}}) = \Phi(-0, 40) = 1 \Phi(0, 40) = 0, 35$. Como o p-valor é aproximadamente 35% sendo um valor alto comparado com 8%, não temos evidência para a rejeição de H0.

(c) Com a nova amostra, de tamanho n, o coeficiente de variação do estimador de μ será

$$cv(\overline{X}) = (DP(\overline{X}))/(E(\overline{X}) = \frac{\sigma/\sqrt{n}}{\mu}.$$

Como μ e σ são ambos desconhecidos, vamos substituí-los por suas estimativas baseadas na piloto, de tamanho n₁ = 30, ou seja, $\overline{x}_1 = 97,2mm$ e $s_1 = 9,6mm$, respectivamente. Então, para que $cv(\overline{X})$ seja aproximadamente igual a 0,01, devemos ter: $\frac{\frac{9.6}{\sqrt{n}}}{97,2} = 0,01$, o que implica que $n \approx \left(\frac{9.6}{97,2\times0.01}\right)^2 \approx 98$ espécimes.